Vector Barrier Certificates and Comparison Systems

Andrew Sogokon¹

Khalil Ghorbal² André Platzer¹ Yong Kiam Tan¹

1 - Carnegie Mellon University, Pittsburgh, USA

2 - Inria, Rennes, France

16 July 2018, FM 2018, Oxford, UK

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · の Q · 1/26

Preliminaries: Systems of ODEs

An autonomous *n*-dimensional system of ODEs has the general form:

$$\begin{aligned} x_1' &= f_1(x_1, \dots, x_n), \\ &\vdots \\ x_n' &= f_n(x_1, \dots, x_n), \end{aligned}$$

where x'_i denotes the time derivative $\frac{dx_i}{dt}$ and f_i are continuous functions.

Preliminaries: Systems of ODEs

An autonomous *n*-dimensional system of ODEs has the general form:

$$\begin{aligned} x_1' &= f_1(x_1, \dots, x_n), \\ &\vdots \\ x_n' &= f_n(x_1, \dots, x_n), \end{aligned}$$

where x'_i denotes the time derivative $\frac{dx_i}{dt}$ and f_i are continuous functions.

We write x' = f(x). The vector field $f : \mathbb{R}^n \to \mathbb{R}^n$ gives the direction of motion at each point in space.

Preliminaries: Systems of ODEs

An autonomous *n*-dimensional system of ODEs has the general form:

$$\begin{aligned} x_1' &= f_1(x_1, \dots, x_n), \\ &\vdots \\ x_n' &= f_n(x_1, \dots, x_n), \end{aligned}$$

where x'_i denotes the time derivative $\frac{dx_i}{dt}$ and f_i are continuous functions.

We write x' = f(x). The vector field $f : \mathbb{R}^n \to \mathbb{R}^n$ gives the direction of motion at each point in space.

A solution $x(x_0, t) : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ exactly describes the motion of a particle x_0 under the influence of the vector field.

Example: Van der Pol oscillator

The Van der Pol system oscillator evolves according to the following ODEs:

$$x'_1 = x_2,$$

 $x'_2 = (1 - x_1^2)x_2 - x_2$

Example: Van der Pol oscillator

The Van der Pol system oscillator evolves according to the following ODEs:

$$x'_1 = x_2,$$

 $x'_2 = (1 - x_1^2)x_2 - x_2$

Example: Van der Pol oscillator

The Van der Pol system oscillator evolves according to the following ODEs:

$$x'_1 = x_2,$$

 $x'_2 = (1 - x_1^2)x_2 - x_2$

Barrier certificates

Lyapunov-like safety verification method, due to Prajna & Jadbabaie (2004).

<u>MAIN IDEA</u>: Find a differentiable function $B : \mathbb{R}^n \to \mathbb{R}$ such that

- B(x) > 0 holds for every $x \in$ Unsafe,
- For all $x_0 \in \text{Init}$, $B(x(x_0, t)) \leq 0$ holds for all future t.

Barrier certificates

Lyapunov-like safety verification method, due to Prajna & Jadbabaie (2004).

<u>MAIN IDEA</u>: Find a differentiable function $B : \mathbb{R}^n \to \mathbb{R}$ such that

- B(x) > 0 holds for every $x \in$ Unsafe,
- For all $x_0 \in \text{Init}$, $B(x(x_0, t)) \leq 0$ holds for all future t.

Barrier certificates

Lyapunov-like safety verification method, due to Prajna & Jadbabaie (2004).

<u>MAIN IDEA</u>: Find a differentiable function $B : \mathbb{R}^n \to \mathbb{R}$ such that

- B(x) > 0 holds for every $x \in$ Unsafe,
- For all $x_0 \in \text{Init}$, $B(x(x_0, t)) \leq 0$ holds for all future t.

Lemma (Safety with semantic barrier certificates)

Given :

• a system of n first-order ODEs x' = f(x),

Lemma (Safety with semantic barrier certificates)

Given :

- a system of n first-order ODEs x' = f(x),
- possibly an evolution constraint $Q \subseteq \mathbb{R}^n$,

Lemma (Safety with semantic barrier certificates)

Given :

- a system of n first-order ODEs x' = f(x),
- possibly an evolution constraint $Q \subseteq \mathbb{R}^n$,
- a set of initial states $Init \subseteq \mathbb{R}^n$,

Lemma (Safety with semantic barrier certificates)

Given :

- a system of n first-order ODEs x' = f(x),
- possibly an evolution constraint $Q \subseteq \mathbb{R}^n$,
- a set of initial states $Init \subseteq \mathbb{R}^n$,
- and a set of unsafe states $Unsafe \subseteq \mathbb{R}^n$,

Lemma (Safety with semantic barrier certificates)

Given :

- a system of n first-order ODEs x' = f(x),
- possibly an evolution constraint $Q \subseteq \mathbb{R}^n$,
- a set of initial states $Init \subseteq \mathbb{R}^n$,
- and a set of unsafe states $Unsafe \subseteq \mathbb{R}^n$,

if a differentiable (barrier) function $B : \mathbb{R}^n \to \mathbb{R}$ *satisfies the following conditions, then the system is* **safe***:*

1
$$\forall \boldsymbol{x} \in \text{Unsafe. } B(\boldsymbol{x}) > 0,$$

2 $\forall \boldsymbol{x}_0 \in \text{Init. } \forall t \ge 0. \Big((\forall \tau \in [0, t]. \, \boldsymbol{x}(\boldsymbol{x}_0, \tau) \in Q) \Rightarrow B(\boldsymbol{x}(\boldsymbol{x}_0, t)) \le 0 \Big).$

Recall the (semantic) conditions:

1 $\forall x \in \text{Unsafe. } B(x) > 0,$

I

2
$$\forall \boldsymbol{x}_0 \in \text{Init.} \forall t \ge 0. \left((\forall \tau \in [0, t]. \boldsymbol{x}(\boldsymbol{x}_0, \tau) \in Q) \Rightarrow B(\boldsymbol{x}(\boldsymbol{x}_0, t)) \le 0 \right).$$

Recall the (semantic) conditions:

1 $\forall x \in \text{Unsafe. } B(x) > 0,$

2
$$\forall \boldsymbol{x}_0 \in \text{Init.} \forall t \ge 0. \left((\forall \tau \in [0, t]. \boldsymbol{x}(\boldsymbol{x}_0, \tau) \in Q) \Rightarrow B(\boldsymbol{x}(\boldsymbol{x}_0, t)) \le 0 \right).$$

Several *direct* sufficient conditions have been proposed to ensure the last requirement. Observe that the solutions $x(x_0, t)$ are not explicit.

Convex (Prajna & Jadbabaie, 2004)	Exponential-type (Kong et al., 2013)	'General' (Dai et al., 2017)
$Q \to B' \le 0.$	$Q \to B' \le \lambda B.$	$\begin{array}{l} Q \rightarrow B' \leq \omega(B), \\ \forall t \geq 0. \ b(t) \leq 0, \\ b \ \text{is the solution to } b' = \omega(b). \end{array}$

Recall the (semantic) conditions:

1 $\forall x \in \text{Unsafe. } B(x) > 0,$

2
$$\forall \boldsymbol{x}_0 \in \text{Init.} \forall t \ge 0. \left((\forall \tau \in [0, t]. \boldsymbol{x}(\boldsymbol{x}_0, \tau) \in Q) \Rightarrow B(\boldsymbol{x}(\boldsymbol{x}_0, t)) \le 0 \right).$$

Several *direct* sufficient conditions have been proposed to ensure the last requirement. Observe that the solutions $x(x_0, t)$ are not explicit.

Convex (Prajna & Jadbabaie, 2004)	Exponential-type (Kong et al., 2013)	'General' (Dai et al., 2017)
$Q \to B' \leq 0.$	$Q \to B' \le \lambda B.$	$\begin{array}{l} Q \rightarrow B' \leq \omega(B), \\ \forall t \geq 0. \ b(t) \leq 0, \\ b \ \text{is the solution to } b' = \omega(b). \end{array}$

All these conditions are instantiations of the *comparison principle*.

Used by R. Conti (1956), F. Brauer, C. Corduneanu (1960s), many others. Not a new idea in applied mathematics; used in stability theory.

Used by R. Conti (1956), F. Brauer, C. Corduneanu (1960s), many others. Not a new idea in applied mathematics; used in stability theory.

<u>MAIN IDEA</u>: Given x' = f(x), if a positive definite differentiable function $V : \mathbb{R}^n \to \mathbb{R}$ satisfies the differential inequality

 $V' \le \omega(V),$

where $\omega : \mathbb{R} \to \mathbb{R}$ is an appropriate *scalar* function, **one may infer the** stability of x' = f(x) from the stability of the one-dimensional system

 $v' = \omega(v).$

Used by R. Conti (1956), F. Brauer, C. Corduneanu (1960s), many others. Not a new idea in applied mathematics; used in stability theory.

<u>MAIN IDEA</u>: Given x' = f(x), if a positive definite differentiable function $V : \mathbb{R}^n \to \mathbb{R}$ satisfies the differential inequality

 $V' \le \omega(V),$

where $\omega : \mathbb{R} \to \mathbb{R}$ is an appropriate *scalar* function, **one may infer the stability of** x' = f(x) **from the stability of the one-dimensional system**

$$v' = \omega(v).$$

One obtains an *abstraction* of the system by another *one-dimensional* system.

Comparison theorem (scalar majorization)

The comparison principle hinges on an appropriate *comparison theorem*.

Theorem (Scalar comparison theorem)

Let V(t) and v(t) be real valued functions differentiable on [0, T]. If

 $V' \leq \omega(V) \quad and \quad v' = \omega(v)$

holds on [0,T] for some locally Lipschitz continuous function ω and if V(0) = v(0), then for all $t \in [0,T]$ one has

 $V(t) \le v(t).$

Informally, Solutions to the ODE $v' = \omega(v)$ act as upper bounds (i.e. *majorize*) solutions to $V' \le \omega(V)$.

1. Introduce a fresh variable v (really a function of time v(t)),

- 1. Introduce a fresh variable v (really a function of time v(t)),
- 2. Replace the scalar differential inequality $V' \leq \omega(V)$ by an equality.

Comparison principle

- 1. Introduce a fresh variable v (really a function of time v(t)),
- 2. Replace the scalar differential inequality $V' \leq \omega(V)$ by an equality.

$$V' \leq \omega(V) \longrightarrow v' = \omega(v)$$

Comparison principle

- 1. Introduce a fresh variable v (really a function of time v(t)),
- 2. Replace the scalar differential inequality $V' \leq \omega(V)$ by an equality.

$$V' \leq \omega(V) \longrightarrow v' = \omega(v)$$

Obtain one-dimensional abstraction; 1-d systems are easy to study.

Recall the (semantic) conditions:

1 $\forall x \in \text{Unsafe. } B(x) > 0,$

2
$$\forall \boldsymbol{x}_0 \in \text{Init.} \forall t \ge 0. \left((\forall \tau \in [0, t]. \boldsymbol{x}(\boldsymbol{x}_0, \tau) \in Q) \Rightarrow B(\boldsymbol{x}(\boldsymbol{x}_0, t)) \le 0 \right).$$

Several *direct* sufficient conditions have been proposed to ensure the last requirement. Observe that the solutions $x(x_0, t)$ are not explicit.

Con (Praj	vex jna & Jadbabaie, 2004)	Exponential-type (Kong et al., 2013)	'General' (Dai et al., 2017)	
$Q \rightarrow$	$\Rightarrow B' \leq 0.$	$Q \to B' \le \lambda B.$	$\begin{split} Q &\to B' \leq \omega(B), \\ \forall t \geq 0, \ b(t) \leq 0, \\ b \text{ is the solution to } b' = \omega(b). \end{split}$	
	All these conditions are instantiations of the <i>comparison principle</i> .			

Convex barrier certificates (Prajna & Jadbabaie, 2004)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の (11/26

Exponential-type barrier certificates (Kong et al., 2013)

Differential inequality $B' \leq \lambda B$

Comparison system $b' = \lambda b$

General barrier certificates (Dai, et al., 2017)

Differential inequality $B' \leq \omega(B)$

Comparison system $b' = \omega(b)$

Scalar barrier certificates as comparison systems

Scalar barrier certificates as comparison systems

Can we leverage the comparison principle to go beyond the scalar case?

Vector comparison systems

R.E. Bellman introduced vector Lyapunov functions in 1962.

Vector comparison systems

R.E. Bellman introduced vector Lyapunov functions in 1962.

<u>MAIN IDEA</u>: Given x' = f(x), if a positive definite differentiable function $V : \mathbb{R}^n \to \mathbb{R}^m$ satisfies the differential inequality

 $V' \leq \omega(V),$

where $\omega : \mathbb{R}^m \to \mathbb{R}^m$ is an appropriate *vector* function, one may infer the stability of x' = f(x) from the stability of the m-dimensional system

 $v' = \omega(v).$

Vector comparison systems

R.E. Bellman introduced vector Lyapunov functions in 1962.

<u>MAIN IDEA</u>: Given x' = f(x), if a positive definite differentiable function $V : \mathbb{R}^n \to \mathbb{R}^m$ satisfies the differential inequality

 $V' \leq \omega(V),$

where $\omega : \mathbb{R}^m \to \mathbb{R}^m$ is an appropriate *vector* function, one may infer the stability of x' = f(x) from the stability of the m-dimensional system

 $v' = \omega(v).$

One obtains an *abstraction* of the system by another *m*-dimensional system.

Vector comparison systems

R.E. Bellman introduced vector Lyapunov functions in 1962.

<u>MAIN IDEA</u>: Given x' = f(x), if a positive definite differentiable function $V : \mathbb{R}^n \to \mathbb{R}^m$ satisfies the differential inequality

 $V' \leq \omega(V),$

where $\omega : \mathbb{R}^m \to \mathbb{R}^m$ is an appropriate *vector* function, one may infer the stability of x' = f(x) from the stability of the m-dimensional system

 $v' = \omega(v).$

One obtains an *abstraction* of the system by another *m*-dimensional system.

<u>III CAVEAT</u>: The vector function ω needs to be *quasi-monotone increasing*.

Definition

A function $\boldsymbol{\omega}:\mathbb{R}^m o \mathbb{R}^m$ is said to be quasi-monotone increasing if

$$\omega_i({m x}) \le \omega_i({m y})$$

for all i = 1, ..., m and all x, y such that $x_i = y_i$, and $x_k \le y_k$ for all $k \ne i$.

Definition

A function $\boldsymbol{\omega}:\mathbb{R}^m o \mathbb{R}^m$ is said to be quasi-monotone increasing if

$$\omega_i({m x}) \le \omega_i({m y})$$

for all i = 1, ..., m and all x, y such that $x_i = y_i$, and $x_k \le y_k$ for all $k \ne i$.

Every scalar function is (trivially) quasi-monotone increasing.

Definition

A function $\boldsymbol{\omega}:\mathbb{R}^m o \mathbb{R}^m$ is said to be quasi-monotone increasing if

$$\omega_i({m x}) \le \omega_i({m y})$$

for all i = 1, ..., m and all $\boldsymbol{x}, \boldsymbol{y}$ such that $x_i = y_i$, and $x_k \leq y_k$ for all $k \neq i$.

Every scalar function is (trivially) quasi-monotone increasing.

A linear function $\omega(x) = Ax$ is quasi-monotone increasing if and only if *A* is *essentially non-negative*, i.e. all off-diagonal entries of *A* are non-negative.

Definition

A function $\boldsymbol{\omega}:\mathbb{R}^m o \mathbb{R}^m$ is said to be quasi-monotone increasing if

$$\omega_i({m x}) \le \omega_i({m y})$$

for all i = 1, ..., m and all $\boldsymbol{x}, \boldsymbol{y}$ such that $x_i = y_i$, and $x_k \leq y_k$ for all $k \neq i$.

Every scalar function is (trivially) quasi-monotone increasing.

A linear function $\omega(x) = Ax$ is quasi-monotone increasing if and only if *A* is *essentially non-negative*, i.e. all off-diagonal entries of *A* are non-negative.

Matrices with this property are also known as Metzler matrices.

1. Introduce a fresh *vector* of variables v (*vector* function of time v(t)),

- 1. Introduce a fresh *vector* of variables v (*vector* function of time v(t)),
- 2. Replace the vector differential inequality $V' \leq \omega(V)$ by an equality.

- 1. Introduce a fresh *vector* of variables v (*vector* function of time v(t)),
- 2. Replace the vector differential inequality $V' \leq \omega(V)$ by an equality.

- 1. Introduce a fresh *vector* of variables v (*vector* function of time v(t)),
- 2. Replace the vector differential inequality $V' \leq \omega(V)$ by an equality.

Obtain an *m*-dimensional abstraction. More general than the scalar principle.

Vector comparison principle

Theorem (Linear vector comparison theorem)

For a given system of ODEs $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ and a Metzler matrix, $A \in \mathbb{R}^{m \times m}$, if $\mathbf{V} = (V_1, V_2, \dots, V_m)$ satisfies the system of differential inequalities

 $V' \leq AV,$

then for all $t \ge 0$ the inequality $V(t) \le v(t)$ holds component-wise, where v(t) is the solution to the comparison system v' = Av, and v(0) = V(0).

Vector comparison principle

Theorem (Linear vector comparison theorem)

For a given system of ODEs $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ and a Metzler matrix, $A \in \mathbb{R}^{m \times m}$, if $\mathbf{V} = (V_1, V_2, \dots, V_m)$ satisfies the system of differential inequalities

 $V' \leq AV,$

then for all $t \ge 0$ the inequality $V(t) \le v(t)$ holds component-wise, where v(t) is the solution to the comparison system v' = Av, and v(0) = V(0).

Metzler matrices have another important property:

Lemma

If $A \in \mathbb{R}^{m \times m}$ is a Metzler matrix, then for any $v_0 \leq 0$, the solution v(t) to the linear system v' = Av is such that $v(t) \leq 0$ for all $t \geq 0$.

Vector barrier certificates

Theorem

Given an *m*-vector of functions $\mathbf{B} = (B_1, B_2, \dots, B_m)$ and some essentially non-negative $m \times m$ matrix A, if the following conditions hold, then the system is safe:

$$\begin{split} & \textit{VBC}_{\wedge} \textbf{1.} \ \forall \textbf{x} \in \mathbb{R}^{n}. (\text{Init} \to \bigwedge_{i=1}^{m} B_{i} \leq 0), \\ & \textit{VBC}_{\wedge} \textbf{2.} \ \forall \textbf{x} \in \mathbb{R}^{n}. (\text{Unsafe} \to \bigvee_{i=1}^{m} B_{i} > 0), \\ & \textit{VBC}_{\wedge} \textbf{3.} \ \forall \textbf{x} \in \mathbb{R}^{n}. (Q \to \textbf{B}' \leq A\textbf{B}). \end{split}$$

Vector barrier certificates

Theorem

Given an *m*-vector of functions $\mathbf{B} = (B_1, B_2, ..., B_m)$ and some essentially non-negative $m \times m$ matrix A, if the following conditions hold, then the system is safe:

$$\begin{split} & \textit{VBC}_{\wedge} \textbf{1.} \ \forall \textbf{x} \in \mathbb{R}^{n}. (\text{Init} \to \bigwedge_{i=1}^{m} B_{i} \leq 0), \\ & \textit{VBC}_{\wedge} \textbf{2.} \ \forall \textbf{x} \in \mathbb{R}^{n}. (\text{Unsafe} \to \bigvee_{i=1}^{m} B_{i} > 0), \\ & \textit{VBC}_{\wedge} \textbf{3.} \ \forall \textbf{x} \in \mathbb{R}^{n}. (Q \to \textbf{B}' \leq A\textbf{B}). \end{split}$$

Generation?

Vector barrier certificates

Theorem

Given an *m*-vector of functions $\mathbf{B} = (B_1, B_2, \dots, B_m)$ and some essentially non-negative $m \times m$ matrix A, if the following conditions hold, then the system is safe:

$$\begin{split} & VBC_{\wedge}\mathbf{1}. \ \forall \, \boldsymbol{x} \in \mathbb{R}^{n}. \, (\text{Init} \to \bigwedge_{i=1}^{m} B_{i} \leq 0), \\ & VBC_{\wedge}\mathbf{2}. \ \forall \, \boldsymbol{x} \in \mathbb{R}^{n}. \, (\text{Unsafe} \to \bigvee_{i=1}^{m} B_{i} > 0), \\ & VBC_{\wedge}\mathbf{3}. \ \forall \, \boldsymbol{x} \in \mathbb{R}^{n}. \, (Q \to \boldsymbol{B}' \leq A\boldsymbol{B}). \end{split}$$

Generation?

- Unfortunately **VBC**[∧]**2** leads to non-convexity.
- Convexity enables the use of efficient **semidefinite solvers**.

Vector barrier certificate (convex)

Theorem

Given an m-vector of functions $\mathbf{B} = (B_1, B_2, ..., B_m)$ and some essentially non-negative $m \times m$ matrix A, if for some $i^* \in \{1, ..., m\}$ the following conditions hold, then the system is safe: $VBC 1. \quad \forall x \in \mathbb{R}^n. (Init \to \bigwedge_{i=1}^m B_i \leq 0),$ $VBC 2. \quad \forall x \in \mathbb{R}^n. (Unsafe \to B_{i^*} > 0),$ $VBC 3. \quad \forall x \in \mathbb{R}^n. (Q \to B' \leq AB).$

The above conditions define a **convex set**.

Generating vector barrier certificates using SDP

Solve a sum-of-squares optimization problem for size m vector barrier certificates B_1, B_2, \ldots, B_m , with $i^* \in \{1, \ldots, m\}$:

$$-B_i - \sum_{j=1}^a \sigma_{I_{i,j}} I_j \ge 0 \text{ for all } i = 1, 2, \dots, m$$
 (VBC 1)

$$B_{i^*} - \Sigma_{j=1}^b \sigma_{U_j} U_j - \epsilon \ge 0 \tag{VBC 2}$$

$$\sum_{j=1}^{m} A_{ij} B_j - B'_i - \sum_{j=1}^{c} \sigma_{Q_{i,j}} Q_j \ge 0 \text{ for all } i = 1, 2, \dots, m$$
 (VBC 3)

Possible using e.g. SOSTOOLS toolbox in Matlab, together with a semidefinite solve (e.g. SeDuMi).

Vector barrier certificates (deductive power)

Theorem

Polynomial convex or 'exponential-type' barrier certificates (trivially) satisfy the conditions VBC_{\wedge} **1-3** (or VBC 1-3). The converse is false.

Vector barrier certificates (deductive power)

Theorem

Polynomial convex or 'exponential-type' barrier certificates (trivially) satisfy the conditions VBC_{\wedge} **1-3** (or VBC 1-3). The converse is false.

There are vector barrier certificates for some safety properties where scalar barrier certificates do not exist.

Vector barrier certificates (deductive power)

Theorem

Polynomial convex or 'exponential-type' barrier certificates (trivially) satisfy the conditions VBC_{\wedge} **1-3** (or VBC 1-3). The converse is false.

There are vector barrier certificates for some safety properties where scalar barrier certificates do not exist.

Vector barrier certificates can also exist with *lower polynomial degrees* than is possible with scalar barrier certificates!

Vector barrier certificates (example)

$$\begin{aligned} x_1' &= x_2, \\ x_2' &= x_1, \end{aligned}$$

Vector barrier certificate $(B_1, B_2) = (x_1, x_2)$ satisfies $\binom{B'_1}{B'_2} \leq \binom{0 \ 1}{1 \ 0} \binom{B_1}{B_2}$ and has polynomial degree 1. No scalar barrier certificate of degree 1 exists.

The comparison principle is a powerful and fundamental abstraction mechanism for ODEs.

- The comparison principle is a powerful and fundamental abstraction mechanism for ODEs.
- Existing (scalar) notions of barrier certificates follow easily from this principle.

- The comparison principle is a powerful and fundamental abstraction mechanism for ODEs.
- Existing (scalar) notions of barrier certificates follow easily from this principle.
- A generalization of existing notions of barrier certificates is achieved, following Bellman's use of the vector comparison principle.

- The comparison principle is a powerful and fundamental abstraction mechanism for ODEs.
- Existing (scalar) notions of barrier certificates follow easily from this principle.
- A generalization of existing notions of barrier certificates is achieved, following Bellman's use of the vector comparison principle.
- Also possible to use time-dependent Metzler matrices, i.e. A(t). Work on this ongoing.

Limitations

• Choosing an appropriate Metzler matrix *A* for the comparison system is generally non-trivial.

Limitations

- Choosing an appropriate Metzler matrix *A* for the comparison system is generally non-trivial.
- Numerical inaccuracies in the results (to be expected with existing solvers).

Limitations

- Choosing an appropriate Metzler matrix *A* for the comparison system is generally non-trivial.
- Numerical inaccuracies in the results (to be expected with existing solvers).
- Trade-off: dimension of the comparison system vs degree of the barrier functions.

End

Questions?

Acknowledgments

This work was supported by the National Science Foundation under NSF CPS Award CNS-1739629 and by the AFOSR under grant number FA9550-16-1-0288; the third author was supported by the National Science Scholarship from A*STAR, Singapore.