Verified Train Controllers for the Federal Railroad Administration Train Kinematics Model: Balancing Competing Brake and Track Forces

Aditi Kabra Stefan Mitsch André Platzer

Computer Science Department, Carnegie Mellon University

INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE 2022

Supported by FRA contract number 693JJ620C000025

Train Control: Complicated

End of movement authority: the train must stop by this point

Proof: 🗸 All goals closed

Provable(==> end()-trainPos>(vel-min<< ._1 < ._2&.</pre> reChangeRate()*vel)^(1/2)))/pressureChangeRate())*(because of the second s &._0=-._1|._1>=0&._0=._1 >>(((b0()-maxSlope()-0)^2-2> essureChangeRate(),(b0()-maxSlope()-0-abs<< ._1 < 0&</pre> 0=._1|._1>=._2&._0=._2 >>((Apb()-0)/pressureChangeRa 6*pressureChangeRate()*min<< ._1 < ._2&._0=._1|._1>= ()*vel)^(1/2)))/pressureChangeRate())^3&(a0()>0&b0()) ainPos (Rmin()<=curvature(trainPos)&curvature(trainPos)</pre> ((slopeAcc(x))'<=maxVertCur()*x'&-(slopeAcc(x))'<=max</pre> Pos>(vel+(a0()+min<< ._1 < ._2&._0=._1|._1>=._2&._0= Der()*(vel+(a0()+maxSlope())*T())*T(),0))*T()-min<</pre> 2-2*pressureChangeRate()*(vel+(a0()+min<< ._1 < ._2& rvature(trainPos)+crvDer()*(vel+(a0()+maxSlope())*T(sureChangeRate(),(b0()-maxSlope()-0-abs<< ._1 < 0&._</pre> rtCur()*T()*(vel+(a0()+maxSlope())*T()),maxSlope())+r (2*

Infinitely many possibilities checked once and for all

[1] J. Brosseau and B. M. Ede, "Development of an adaptive predicti Administration, 2009. Generalizable

Approach: Impact

Overview

- Introduction
- Techniques
- Evaluation
- Summary

with $a_l \in [-b_{\max}, a_{\max}], a_a = max(a_b, a_{b\max})$

Rate of change of train velocity is acceleration J L L P $a_s(p) + a_r(v) + a_c(p), a_b' = m_b$ $p' = v, v' = a_l + a_a$ with $a_l \in [-b_{\max}, a_{\max}], a_a = max(a_b, a_{b\max})$ Rate of change of train position is velocity

$p' = v, v' = a_l + a_a + a_s(p) + a_r(v) + a_c(p), a'_b = m_b$

 $p' = v, v' = a_l + a_a + a_s(p) + a_r(v) + a_c(p), a'_b = m_b$

$$p' = v, v' = a_l + a_a + a_s(p) + a_r(v) + a_c(p), a'_b = m_b$$

Use worst case value ...

Other Techniques

Circular Dependencies

Problem: Circular dependence while estimating worst case values.

Taylor Polynomial

Problem: Davis resistance integrates poorly.

$$\frac{\left(\sqrt{4(a_l+m_s)a_2-a_1^2}\right)}{\tan\left(t\frac{\sqrt{4(a_l+m_s)a_2-a_1^2}}{2}+\tan^{-1}\left(\frac{a_1+2a_2v_0}{\sqrt{4(a_l+m_s)a_2-a_1^2}}\right)\right)-a_1}{2a_2}$$

Solution: Taylor polynomial approximation.

Ghost Trains

Problem: Intermediate reasoning steps transcendental.

Solution: Reason about as ODE (here represents dynamics of a "ghost" train).

Overview

- Introduction
- Techniques
- Evaluation
- Summary

Limiting Undershoot while Maintaining Safety

Limiting Undershoot while Maintaining Safety

13

Limiting Undershoot while Maintaining Safety

Summary

Verified controller for full FRA model dynamics. KeYmaera X proofs available online

Generalizable Techniques

- Dealing with unknown functions
- Circular dependencies
- Taylor polynomials
- Ghost dynamics

Verified Model Generalizability

- Abstraction of physical details
- Nondeterministic controller

Experiments Controller limits undershoot while maintaining safety

