
International Journal on Software Tools for Technology Transfer (2018) 20:615–643
DOI 10.1007/s10009-018-0502-9

Tactical Contract Composition for
Hybrid System Component Verification

Andreas Müller1, Stefan Mitsch2, Werner Retschitzegger1, Wieland Schwinger1, André Platzer2?

1 Department of Cooperative Information Systems
Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria
e-mail: {andreas.mueller,wieland.schwinger,werner.retschitzegger}@jku.at

2 Computer Science Department
Carnegie Mellon University, Pittsburgh PA 15213, USA
e-mail: {smitsch,aplatzer}@cs.cmu.edu

Published online: 14 August 2018
c© The Author(s) 2018

Abstract We present an approach for hybrid systems
that combines the advantages of component-based mod-
eling (e.g., reduced model complexity) with the advan-
tages of formal verification (e.g., guaranteed contract
compliance). Component-based modeling can be used
to split large models into multiple component models
with local responsibilities to reduce modeling complex-
ity. Yet, this only helps the analysis if verification pro-
ceeds one component at a time. In order to benefit from
the decomposition of a system into components for both
modeling and verification purposes, we prove that the
safety of compatible components implies safety of the
composed system. We implement our composition the-
orem as a tactic in the KeYmaera X theorem prover,
allowing automatic generation of a KeYmaera X proof
for the composite system from proofs for the components
without soundness-critical changes to KeYmaera X.

Our approach supports component contracts (i. e., in-
put assumptions and output guarantees for each compo-
nent) that characterize the magnitude and rate of change
of values exchanged between components. These con-
tracts can take into account what has changed between
two components in a given amount of time since the last
exchange of information.

Key words: component-based development – hybrid
systems – component-based verification

1 Introduction

Cyber-physical systems (CPS) feature discrete dynamics
(e. g., autopilots in airplanes, controllers in self-driving

? This material is based on research sponsored by DARPA under
agreement DARPA FA8750-12-2-0291, AFOSR FA9550-16-1-0288,
and by the Austrian Science Fund (FWF) P28187-N31.

cars) as well as continuous dynamics (e. g., motion of
airplanes or cars) and are increasingly used in safety-
critical areas. Models of such CPS (i. e., hybrid system
models, e. g., hybrid automata [13], hybrid processes [6],
hybrid programs [32]) are used to capture properties of
these CPS as a basis to analyze their behavior and ensure
safe operation with formal verification methods.

However, as the complexity of these systems increases,
monolithic models and analysis techniques become un-
necessarily challenging. As already established for dis-
crete software, decomposition into subsystems with con-
tracts is essential in taming the complexity of larger
systems. We, thus, explore compositional modeling and
verification techniques for hybrid systems that conclude
safety of the entire system from separate isolated safety
arguments about its subsystems and their interaction
with the environment.

As a basis for our approach, we use differential dy-
namic logic dL [29,33,36], which is a hybrid systems spec-
ification and verification logic that is already composi-
tional for each of its operators. Reasoning in dL splits
models along the dL operators into smaller pieces. In this
article we add a notion of components with interfaces
and explain how to make hybrid system theorem prov-
ing modular on a component level. This achieves another
layer of compositionality of larger granularity. We ex-
ploit the special structure of components and their con-
tracts to compose verified components and their safety
proofs to a verified CPS. Under certain precisely for-
malized compatibility conditions on how components are
connected, we ensure that their compositions directly in-
herit safety from the safety of the components.

Component-based hybrid systems verification is chal-
lenging because both local component behavior (e. g., de-
cisions and motion of a robot) and inherently global phe-
nomena (e. g., time) co-occur, as components can inter-
act virtually (e. g., robots communicate) and physically
(e. g., a robot manipulates an object), and because their

http://dx.doi.org/10.1007/s10009-018-0502-9

2 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

Table 1: Hybrid Programs (HPs)

Statement Meaning
α;β Sequentially composes β after α
α ∪ β Executes either α or β, nondeterministically
α∗ Repeats α zero or more times
x := θ Assigns value of term θ to x
x := ∗ Assigns an arbitrary real value to x
x′ = θ&Q Continuous evolution1

?Q Aborts run if formula Q is not true

interaction is subject to communication delays, measure-
ment uncertainty, and actuation disturbance.

The key step is to represent the abstract behavior of
a component in its interfaces phrased as contracts on the
input assumptions and output guarantees. In addition to
the precise contracts describing computations of discrete
programs, continuous time and continuous dynamics in
hybrid systems call for techniques to faithfully charac-
terize the discrete-time observations that other compo-
nents make about continuous phenomena. Our contracts,
therefore, emphasize the externally observable nature
of component behavior: they specify the magnitude of
change between two observations (e. g., current speed
is at most twice the previously observed speed) and also
capture the rate of change (e. g., current speed is at most
previous speed increased by accelerating for some time).
Such contracts abstract the hybrid (continuous-time) be-
havior of one component to discrete-time observations
available to other components. The isolated hybrid be-
havior of a component in question is, thus, analyzed with
respect to a hybrid model in the own component but sim-
pler discrete-time abstractions for all other components
in the system. This reduction is important to ensure that
not all details of all behaviors of all components need to
be understood at the same time.

This article extends our previous work [25,27] with
improved techniques for system composition: we exploit
information encapsulation [28] to define parallel compo-
sition in an associative manner, introduce proof tactics
to automatically check assumptions and generate safety
proofs from component proofs, and reflect practical con-
siderations of composition properly in proof obligations
(e. g., observation with sensors, and glue code to bridge
slight discrepancies between component interfaces).

2 Preliminaries: Differential Dynamic Logic

Syntax. For specifying and verifying correctness state-
ments about hybrid systems, we use differential dynamic
logic (dL) [29,33,36], which supports hybrid programs as

1 A continuous evolution along the differential equation system
x′ = θ for an arbitrary real duration within the region described
by formula Q.

a program notation for hybrid systems. The syntax and
informal semantics of hybrid programs is summarized in
Table 1. The sequential composition α;β expresses that
β starts after α finishes. The nondeterministic choice
α∪β follows either α or β. The nondeterministic repeti-
tion operator α∗ repeats α zero or more times. Discrete
assignment x := θ instantaneously assigns the value of
the term θ to the variable x, while x := ∗ assigns an
arbitrary value to x. The ODE {x′ = θ & Q} describes
a continuous evolution of x, where x′ denotes deriva-
tion with respect to time within the evolution domain
Q. The test ?Q checks that a condition expressed by
property Q holds, and aborts if it does not. A typical
pattern x := ∗; ?a ≤ x ≤ b, which involves assignment
and tests, is to limit the assignment of arbitrary val-
ues to known bounds. Other control flow statements can
be expressed with these primitives (e. g., if (Q) α else β
can be expressed as ?Q;α∪?¬Q;β) [30]. A no-operation
statement skip is the test ?true that always holds.

For example, a time-triggered program

(y := ∗; ?y ≤ z; t := 0; {x′ = y, t′ = 1 & t ≤ 10})∗ (1)

picks any real value for y that does not exceed z, resets
time t to zero, and then in the ODE continuously evolves
the value of x according to the fixed slope y while simul-
taneously increasing the value of t with constant slope 1.
The ODE stops nondeterministically at any time, but at
the latest before t ≤ 10 becomes false; then the program
repeats by the ∗ operator.

Semantics. The semantics of dL [29,33,36] is a Kripke
semantics in which the states of the Kripke model are
the states of the hybrid system. Let R denote the set
of real numbers and V denote the set of variables. A
state is a map ν : V → R assigning a real value ν(x) to
each variable x ∈ V. We write ν |= φ if formula φ is
true at state ν. The real value of term θ at state ν is
denoted ν[[θ]]. The semantics of a hybrid program α is a
relation [[α]] between initial and final states. For example
ν |= [α]φ iff ω |= φ for all (ν, ω) ∈ [[α]]. We write α ≡ β to
mean [[α]] = [[β]]. For details on the semantics of hybrid
programs see [29,33,36] and Appendix A.

Safety Properties. To specify safety properties about hy-
brid programs, dL provides modal operator [α]. When φ
is a dL formula describing a state and α is a hybrid pro-
gram, then the dL formula [α]φ expresses that all states
reachable by α satisfy φ. The set of dL formulas relevant
in this article is generated by the following EBNF gram-
mar (θ1, θ2 are arithmetic expressions in +,−, ·, / over
the reals and where ∼ ∈ {<,≤,=,≥, >}):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ |
∀xφ | ∃xφ | [α]φ

For example, φ→ [α]ψ says that formula ψ holds in
all states reachable by program α from starting states

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 3

that satisfy formula φ. Proofs for properties of nonde-
terministic repetitions often use invariants, representing
properties that hold before and after each repetition.
Even though there is no unified approach for invariant
generation, if a safety property including a nondetermin-
istic repetition is valid, an invariant exists [32].

In component compatibility it will be important to
keep track of which component reads or changes which
variables. FV(·) is used as an operator on terms, for-
mulas and hybrid programs returning the free variables,
i. e., the ones that are read, whereas BV(·) is an opera-
tor returning the bound variables, i. e., those written in
assignments or ODEs [36]. For example, the free vari-
ables in program (1) are {t, x, y, z}, whereas the bound
variables are {t, x, y} since z is not written. Similarly,
V(·) = FV(·) ∪ BV(·) returns all variables occurring in
terms, formulas and hybrid programs, whether read or
written. In definitions and formulas, we use dL to denote
the set of all dL formulas, and HP to denote the set of
all hybrid programs. We use “7→” to define functions.
f = (a 7→ b) means that the (partial) function f maps
argument a to result b and is solely defined for a.

Program Independence. The order of independent pro-
grams without information flow between them is irrel-
evant, see Lemma 1. This insight will become impor-
tant when establishing commutativity and associativity
of our component composition operators, and in KeY-
maera X in general when using lemmas to close proof
obligations whose shape slightly differs syntactically from
the lemma conclusion.

Lemma 1 (Program independence). Let ψ be a dL for-
mula and α, β be independent hybrid programs without
information flow between them, i. e., BV(α) ∩ V(β) = ∅
and BV(β) ∩V(α) = ∅. Then this dL formula is valid:

[α;β]ψ ↔ [β;α]ψ

Proof. Follows directly from the semantics of dL, see Ap-
pendix C.

3 Component-based Modeling

In this section, we describe the fundamentals and steps
of component-based modeling for component-based ver-
ification of CPS.

3.1 Components and Interfaces

We adopt common component notions (e. g., [12,44])
that consider a component as a superposition of a be-
havior model and an interaction model as illustrated
schematically in Fig. 1: the behavior model describes the
dynamic behavior of the component, while the interac-
tion model defines the component ports and their prop-
erties that determine how one component interacts with
others.

…

Input ports 𝐼𝑛𝑖 with

requirements 𝜋𝑖
𝑖𝑛

accepting values 𝑥𝑖

Component
(behavior model) …

Output ports 𝑂𝑢𝑡𝑗
with guarantees 𝜋𝑗

𝑜𝑢𝑡

providing values 𝑦𝑗

Interface (interaction model)

𝐼𝑛1

𝐼𝑛𝑛

𝑂𝑢𝑡1

𝑂𝑢𝑡𝑚

𝜋1
𝑖𝑛

𝜋𝑛
𝑖𝑛

𝑥1

𝑥𝑛

𝑦1

𝑦𝑚

𝜋1
𝑜𝑢𝑡

𝜋𝑚
𝑜𝑢𝑡

Figure 1: Structure of a component and its interface:
The internal behavior of a component is encapsulated by
the interface, which specifies interaction with the com-
ponent through (arbitrarily many) input ports Ini and
output ports Outj . The ports transfer external values
xi to the encapsulated component and emit values yj
from it. If two ports should be connected, the key (i. e.,
output guarantee πoutj) must fit into the respective lock

(i. e., input assumption πini).

In the context of CPS, components consist of their
discrete computations controlling continuous physical dy-
namics, which together represent the component’s in-
ternal behavior. Interfaces describe a component’s ex-
ternally observable behavior and interaction capabilities.
Interaction between components occurs through their in-
terfaces: input ports receive external input from other
components, output ports pass on component output
to other components. Discrete time information shar-
ing through ports requires that the involved components
agree on the values allowed for transfer. Interface con-
tracts specify input requirements and provide output
guarantees with logical formulas characterizing the prop-
erties of values accepted on input ports and provided
through output ports.

Ports can be vector-valued, i. e., transfer values of
multiple variables at once, which are characterized through
a common input requirement or output guarantee that
allows relating their values (e. g., a+ b ≤ 1).

3.2 Composition and Compatibility

Components do not share variables. Each component has
a set of local variables, which is exclusively accessed in
this component’s internal behavior and through ports.
They may, however, share global unmodifiable constants,
for example system parameters such as a legal maximum
speed.2

2 A set of globally shared constants is useful as a modeling con-
struct. For implementation, global constants can be realized, e. g.,
through shared memory or simply as local constants with uniform
values across components.

4 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

To build hybrid system models from components, a
composition operation connects compatible components
through their ports. A composition operation can be for-
malized as an binary operation, taking two components
with their interfaces and additional information about
their interactions, and returning a composed component
and interface [12]. In order to provably derive system
properties from component guarantees, we need a formal
model of components, composition, and their meaning,
which we obtain from the semantics of dL by specifying
a syntactic composition operation on a syntactic compo-
nent notion in hybrid programs. We use the operators of
hybrid programs, to define a composition operation for
components: on the level of operations, hybrid programs
can be composed sequentially by using the sequential
composition operator “;”. Parallel composition is sup-
ported for differential equations in hybrid programs, but
gives rise to issues of interleaving and synchronization [5]
in the discrete fragment. Since components do not share
variables and interaction between components occurs af-
ter controller execution through ports as synchroniza-
tion points, controllers are independent by Lemma 1 and,
therefore, can be arranged in any sequential order. Thus,
we need no interleaving of the internal discrete com-
putations, but it suffices to choose a single sequential
composition of controllers. Only the externally observ-
able continuous physical dynamics of multiple compo-
nents evolves in parallel. As a result, parallel compo-
nent composition (see Def. 6 later) arranges controllers
sequentially in arbitrary order, followed by parallel com-
position of continuous dynamics in differential equations,
followed by communication programs transferring val-
ues between connected ports (i. e., communication takes
place at a discrete point in time).

Ports are connected by composing components, which
requires that their contracts are compatible since safety
can only follow compositionally if all components are
connected in ways that do not violate their assump-
tions about one another. An input port and an output
port are compatible, if the output port’s guarantees im-
ply the input port’s assumptions and the dimensions of
vector-valued ports match. Fig. 2 shows compatible and
non-compatible ports when composing two components
through their interfaces. If the output guarantees πout

are at least as strong as the input assumptions πin, i. e.,
the implication πout → πin is valid, then a value emitted
from the output port will always fulfill the input assump-
tion of the input port and can thus be received on the
input port. For example, an output port that guarantees
πout ≡ x ≤ 5 can be connected to an input port requir-
ing πin ≡ x ≤ 10, but not to an input port requiring
x ≤ 2 because that requirement is not guaranteed to be
met when x ≤ 5.

Not all ports of a component need to be connected to
the ports of a single other component. Ports may remain
unconnected after composition and might be connected
to other components later on.

Formalizing Contracts. A contract is a formally verified
agreement about the behavior of a component, including
its input and output behavior as described by its inter-
face. It specifies the assumptions under which a compo-
nent may be used, as well as the guarantees it warrants
under such correct use [3,42]. We formalize contracts in
dL with safety properties of the form

φ→ [α]ψ

where φ is an initial state description, α is a hybrid pro-
gram of either a single component or a system that is
already composed of other components, and ψ is a post-
condition that must hold after all runs of the hybrid
program α.

In a monolithic system, interactions between subsys-
tems are baked into the model itself. When building
systems from components, however, the isolated com-
ponents and their contracts abstract from interaction.
Thus, the local component contracts must include in-
teraction properties that capture assumptions and guar-
antees about the communication and interaction with
other components. For example, a contract might re-
strict a vehicle’s movement to prevent it from moving
too fast, or specify the acceptable degree of input sensor
uncertainty. The following contract restricts the distance
between position x of a vehicle moving with maximum
speed S for a duration of t and its previous position x−:

S ≥ 0 ∧ x = x− ∧ t = 0→
[x− := x; {x′ = S, t′ = 1}]

∣∣x− x−
∣∣ ≤ t · S

In hybrid system verification, whose complexity heav-
ily depends on the dimension of the analyzed system and
the fidelity of differential equation models, it is beneficial
to reduce complexity by abstracting from the internal
behavior of components [26], see Fig. 3.

Global contracts restrict values to globally known (sym-
bolic) regions. For instance, a robot might be confined
in a known, fixed area, e. g., the robot’s position x
must always be in a fixed range R describing a room
(e. g., −R ≤ x ≤ R, where R ∈ R is a fixed global
design constant).

Change contracts restrict the magnitude of change re-
gardless of how much time passed between measure-
ments (e. g., relate a previously communicated value
with the current value). For instance, a robot might
guarantee to stay close to its previous position x−

(e. g., −R ≤ x− x− ≤ R).
Rate contracts restrict the rate of change by keeping

track of time. For instance, a robot may guarantee
to change its position according to its speed s, so the
current position x and the previous position x− are
related by duration t (e. g., −s · t ≤ x− x− ≤ s · t).

Communication and interaction between components
can be subject to information loss and delay [26], see
Fig. 4.

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 5

Interface 𝐼1

Interface 𝐼2Interface 𝐼3

𝑂𝑢𝑡2

𝑂𝑢𝑡3

𝑂𝑢𝑡4

𝑂𝑢𝑡5

𝐼𝑛2

𝐼𝑛3

𝐼𝑛4

𝐼𝑛5

𝑂𝑢𝑡1
Interface 𝐼4

𝐼𝑛1

Component 𝐶1

Component 𝐶3

Component 𝐶4

Component 𝐶2

𝜋1
𝑜𝑢𝑡 ↔ 𝜋1

𝑖𝑛

𝜋3
𝑜𝑢𝑡 → 𝜋2

𝑖𝑛

𝜋5
𝑜𝑢𝑡 ↔ 𝜋5

𝑖𝑛

𝜋4
𝑜𝑢𝑡 ↛ 𝜋3

𝑖𝑛

Figure 2: Composition: The output port Out3 in the interface I1 of component C1 is compatible with the input port
In2 in the interface I2 of component C2, since πout3 → πin2 , even though it is not a perfect match. Ports Out4 and In3

are not compatible and thus, a connection is not allowed between these ports. Output port Out2 and input port In4

are not connected yet and remain open. Input port In5 of I2 can be connected to a different component’s interface
I3, as long as the respective ports In5 and Out5 are compatible. Similarly, output port Out1 of I1 can be connected
to a different component’s interface I4, as long as the respective ports Out1 and In1 are compatible.

𝑥 𝑡

𝑋

𝑡
Static region partition

𝑥 𝑡

𝑡
Magnitude of change

𝑥 𝑡

𝑡
Rate of change

Figure 3: Abstractions from continuous dynamics with
contracts [26].

Lossy communication is used when real-world environ-
ments ports are subject to information loss or sensor
uncertainty and thus, provide slightly off approxima-
tions of the actual values. Even though the actual er-
ror might be unknown, maximum error bounds might
be available (e. g., according to a sensor specifica-
tion). Lossy communication, for instance modeled as
λ := ∗; ? |λ| ≤ Λ; x̂ := x + λ, uses a nondetermin-
istically chosen error value λ (λ := ∗ nondeterminis-
tically assigns any real value to λ), bounded by the
maximum error Λ (the test ? |λ| ≤ Λ ensures that the
value of λ is between −Λ and Λ), which distorts the
communicated value x̂.

Delayed communication results in an accumulated er-
ror, e. g., when a distance sensor in a car reports
slightly outdated distances the error to the true dis-
tance grows with speed and measurement delay.

Instantaneous, lossless communication is often used
as a first approximation of sensing and communication

Lo
ss
y

Lo
ss
le
ss

Instantaneous Delayed

Figure 4: Dimensions of Communication: Communica-
tion can be subject to information loss and delay [26].

and can be modeled by a direct assignment of variables
x̂ := x, i. e., the true position x is passed on to the mea-
sured position x̂. If the system is not safe under perfect
knowledge it is never safe.

In this article, we define change and rate contracts
supporting generic (e. g., lossless and lossy) communica-
tion according to these categories.

3.3 Compose Verified Components to Verified Systems

We adapt the steps of our prior decomposition-focused
approach for component-based verification with global
contracts [25] to system composition from verified com-
ponents, see Fig. 5. After the appropriate components
and interfaces are identified (1), system initial conditions
and safety property can be derived from the respective
initial conditions and guarantees of the components (2).
Identification of suitable components, interfaces and lo-
cal safety properties is a crucial design task; automa-

6 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

C
o
n
tr

a
ct

D
efi

n
it

io
n

a
n
d

V
er

ifi
ca

ti
o
n

(1) identify components and interfaces
(C1, I1) and (C2, I2)

(2) specify initial system state A and safety
property B from local initial states ai and

local safety responsibilities bi such that
A →

∧
i ai and

∧
i bi → B

(3) check local contract compliance
ai → [Ci]bi

(4) compose and check compatibility
(C1, I1)‖(C2, I2)

|= A→ [C1‖C2]B

Figure 5: Verified system composition from verified com-
ponents

tion support for it is not our focus here. Each interface
comes with a contract and a contract compliance proof
(3) witnessing that the component alone complies with
its interface contract. Finally, the system safety proof
is constructed from the individual contract compliance
proofs; it also discharges the compatibility proof obliga-
tions generated upon composition (4). In Section 5 we
present a tactic to construct such a proof automatically.

The main result of this process is that the compo-
nent proofs—performed for compatible components in
isolation—transfer to safety of an arbitrarily large sys-
tem built by instantiating and composing these compo-
nents. This enables the safe composition of safe compo-
nents, where compatible proofs will be constructed (by
a tactic) as evidence for the composition meeting the
required compatibility conditions.

4 Hybrid Components with Change and Rate
Contracts

In this section, we formalize the notion of components
as hybrid programs and define their interfaces as dL for-
mulas, which identify assumptions about component in-
puts and guarantees about component outputs phrased
in terms of magnitude and rate of change. We define
what it means for a component to comply with its con-
tract by a dL formula expressing local safety responsibili-
ties and compliance with its interface. We also define the
compatibility of component connections rigorously as dL
formulas. These notions make it possible to give mean-
ing to and prove rigorously what safety responsibility
and compatibility of a component really means and rig-
orously prove safety of the composition.

The main result of this section is a proof showing
that contract compliance of components and connection
compatibility ensure system safety: Users only provide

a specification of components, interfaces, and how the
components are connected, and verify proof obligations
about individual component contract compliance and
compatibility; safety of the whole system follows auto-
matically from these component verification results.

4.1 Running Example: Tele-Operated Robot with
Collision Avoidance

To illustrate the concepts, we use a running example of a
tele-operated robot with collision avoidance inspired by
[21], see Fig. 6. The overall system objective is to keep
the robot from actively colliding with an obstacle. The
system consists of three components:
1. The remote control (RC) component occasionally is-

sues a new speed advisory d on its output port.
2. The obstacle component moves with arbitrary speed
so limited to at most S and sends its current posi-
tion po on its single output port. Obstacles include
both stationary elements (e. g., a wall with S = 0) or
moving entities (e. g., a person).

3. The robot component reads speed advice from the re-
mote control component on input port d̂ and follows
that speed advice if the obstacle position measured
on input port p̂o is at a safe distance.
The system safety property (no collision while driv-

ing) can be expressed as ψsafe
sys ≡ sr > 0→ po 6= pr.

Two consecutive speed advisories from the RC should
require a speed change of at most D (i. e., |d− d−| ≤
D). The RC issues speed advice to the robot, but has
no physical dynamics. The obstacle chooses a new non-
negative speed but at most S and moves according to its
plant. The robot measures the obstacle’s position. If the
distance is safe, the robot chooses the speed suggested
by the RC; otherwise, the robot stops.

Formal definitions of these three components, their
interfaces, and their contracts, will be introduced step
by step as a running example along the definitions in
subsequent sections.

4.2 Specification: Components and Interfaces

Components and interfaces specify what a component
assumes about the magnitude and rate of change at each
of its inputs, and what it guarantees about the magni-
tude and rate of change of its outputs. To make such con-
ditions expressible, every component will use additional
port memory variables to store both the current and the
previous value communicated along a port. These vari-
ables can be used to model jumps in discrete control,
and for discrete-time measurements of continuous phys-
ical behavior.

Naming conventions. We use variable names x to refer
to the internal state and output port of a component (if
it has x as output), x− or explicitly old(x) to refer to

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 7

Calculate next
speed advice

Remote Control
Component Target

speed
Move
freely

Obstacle
Component

Obstacle
position

Move with advised speed, but
avoid collisions with the obstacle

Robot
Component

Obstacle
position

Target
speed

Obstacle position

Target speed

C
o

m
p

o
n

en
t

Li
b

ra
ry

R
ea

l-
w

o
rl

d

Sy
st

em
C

o
m

p
o

se
d

M

o
d

el

𝑑 𝑝𝑜

Ƹ𝑝𝑜

መ𝑑

𝑑
መ𝑑

Ƹ𝑝𝑜
𝑝𝑜

Figure 6: Running Example: Robot receives speed advice and obstacle position, and has to avoid crashes.

the previous value received last before the current value
x. We use x̂ to disambiguate an input port that reads x
from another component.

4.2.1 Components

Components consist of discrete control computations and
a continuous plant, as will be defined in Def. 1. The con-
trol computations and plant are composed with inputs
and outputs to a hybrid program describing the entire
component behavior later in Def. 5. To build systems
with arbitrarily many components by nested binary com-
position, we compose components hierarchically from
sub-components, so components include glue code for
the internally connected ports of sub-components.

Definition 1 (Component). A component

C = (ctrl , plant , cp)

consists of the following:
– ctrl are the discrete computations of the component

without differential equations,
– plant is a differential equation with an evolution do-

main constraint Q (x′1 = θ1, . . . , x
′
n = θn&Q) for n ∈

N,
– cp is the internal glue code connecting ports of nested

sub-components,

– V (C)
def
= V (ctrl) ∪ V (plant) ∪ V (cp),

– BV(C)
def
= BV(ctrl) ∪ BV(plant) ∪ BV(cp), and

– FV(C)
def
= FV(ctrl) ∪ FV(plant) ∪ FV(cp).

The content of cp depends on the type of composition
used for the sub-components (e. g., lossless composition,
lossy composition) and will be detailed in Section 4.4.2.
For example, base components have cp ≡ skip (state-
ment of no effect), whereas components with lossless in-
stantaneous composition have a list of assignments x̂ :=

x from output port x to the input port x̂ that it is con-
nected to (e. g., d̂ := d; p̂o := po for Fig. 6). The vari-
ables of a component are the variables of its controller,
plant, and all its sub-components. In order to get compo-
nents that can be analyzed in isolation and arranged in
arbitrary sequential order by Lemma 1, components can-
not share variables and must communicate solely through
ports. Otherwise, they break component abstraction. To
make up for this restriction, global shared constants (read-
only and thus not used for communication purposes)
are included for convenience to share common knowl-
edge about system parameters among all components in
a single place.

Definition 2 (Global constants). Global constants
V global shared among components Ci are read-only, i. e.,
V global ∩BV(Ci) = ∅. No other variables are shared, i. e.,
V (Ci) ∩ V (Cj) ⊆ V global for components Ci 6= Cj .

Assumptions about system parameters are available
to any component and invariant throughout the system
execution, since they mention only global constants.

4.2.2 Example: Components

Consider the robot collision avoidance system. Its global
variables V global = {S,D} are the maximum obstacle
speed S and the maximum difference D between two
speed advisories, since they are not changed by any com-
ponent. Both are non-negative (S ≥ 0 ∧D ≥ 0).

Example 1 RC Component

Crc = (d := ∗; ?
∣∣d− d−

∣∣ ≤ D︸ ︷︷ ︸
ctrlrc

, skip︸ ︷︷ ︸
plantrc

, skip︸ ︷︷ ︸
cprc

)

8 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

𝑺 ⋅ 𝜺

ෝ𝒑𝒐

𝒅 ⋅ 𝜺

𝒑𝒓

ෝ𝒑𝒐 − 𝒑𝒓
𝑺 ⋅ 𝜺𝒅 ⋅ 𝜺

𝒑𝒓

ෝ𝒑𝒐 − 𝒑𝒓

ෝ𝒑𝒐

Figure 7: The robot only accepts speed advice if it is safe:
The left green circle represents the area that the robot
might reach until the next controller run (i. e., within ε

time units) with the received speed advice d̂. The right
red circle represents the area that the obstacle might
reach during the same interval ε with maximum speed S.

Example 1 describes the RC component. Its controller
ctrlrc picks a new speed advice and ensures that it is not
too far from the previous speed advice to avoid sudden
spikes in speed. Since the RC is an atomic component
without physical dynamics, plantrc and cprc are empty.

The obstacle component Co in Example 2 moves with
arbitrary but limited speed (systems with infinite speed
obstacles are inherently unsafe), so the obstacle con-
troller ctrlo chooses any new non-negative speed so lim-
ited by the maximum speed S. The obstacle plant adapts

Example 2 Obstacle Component

Co = (so := ∗; ?
(
0 ≤ so ≤ S

)
︸ ︷︷ ︸

ctrlo

, p′o = so︸ ︷︷ ︸
planto

, skip︸ ︷︷ ︸
cpo

)

the obstacle position according to the chosen speed (i. e.,
the obstacle moves along ODE p′o = so). The internally
connected ports cpo are empty, since the obstacle is an
atomic component.

The robot component Cr in Example 3 should follow
speed advice from the RC and measures the position of
the obstacle to avoid collisions. It has a control cycle

Example 3 Robot Component

Cr = (ctrlr , plantr , cpr)

ctrlr ≡ if (far) sr := d̂ else sr := 0 (2)

plantr ≡ p′r = sr & t− t− ≤ ε (3)

cpr ≡ skip (4)

far ≡ p̂o − pr > (d̂+ S) · ε (5)

time of ε, which restricts how long the robot can drive
without receiving control input. This ensures that the
robot’s controller runs regularly. The robot controller

first chooses a new speed. If the obstacle is far enough
away, i. e., the distance (p̂o − pr) between obstacle and
robot is greater than the maximum distance (S · ε) that

the obstacle can move, plus the maximum distance (d̂ ·ε)
the robot itself can move with the new desired speed,
the robot follows the speed advice of the RC, see (2), (5)
and Fig. 7. Otherwise, the robot stops to avoid imminent
collision, as indicated by overlapping areas of motion in
Fig. 7. The robot’s plant (3) adapts the robot’s position
according to the chosen speed (i. e., the robot moves).
The robot does not have internal connections, so cpr ≡
skip (4).

4.2.3 Time and Rate of Change

In a combined ODE p′r = sr, p
′
o = so both objects move

for the same duration. But the point of components is to
decompose for the sake of reducing complexity, at which
point the now separate ODEs p′r = sr and p′o = so in the
respective components loose synchronization in time.

From the viewpoint of a single component, all other
plants reduce to discrete abstractions through input as-
sumptions on ports, which is an important step to re-
duce verification complexity. These input assumptions
are phrased in terms of worst-case behavior (e. g., from
the viewpoint of the robot, the obstacle may “jump” at
most distance S · ε between measurements because it
lost a precise model of obstacle motion). If the robot’s
ODE (nondeterministically) runs for a shorter amount
of time, the measurements and the continuous behavior
of the robot drift as robot and obstacle think they move
for different durations. To prevent this, we introduce rate
contracts as a way of ensuring that changes are consis-
tent with the actual time that passes in a component.

To unify the timing for all components of a system,
we introduce a globally synchronized time t to measure
the duration t−t− of plant executions. Both t and t− are
special global variables, which cannot be changed by the
user, see Def. 3, but only change at designated locations
in the composition infrastructure as we will see later.

Definition 3 (System time). System time t changes
with constant rate t′ = 1 from plant start time t− to
measure plant duration t − t− and can be read but not
written by components Ci, i. e., {t, t−} ∩BV (Ci) = ∅.

System time enables interfaces to specify the assumed
rate of change on input ports and guaranteed rate of
change on output ports.

4.2.4 Interfaces

An interface defines how a component may interact with
other components through its ports, what assumptions
the component makes about its inputs, and what guar-
antees it provides for its outputs, see Def. 4. It defines
what other components can rely on when using its out-
puts but also lists requirements on inputs. Similar to

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 9

combining controllers in arbitrary sequential order, we
want to read from input ports in any arbitrary order.
Hence, input assumptions are local to their port, i. e., no
input formula can mention input variables of other ports.
To support change and rate contracts, we introduce a
port memory to recall previous port values in input as-
sumptions and output guarantees. We want to guarantee
safety for recursive components in a uniform way with
safety for systems composed from multiple components,
and, therefore, prevent leaking information outside their
official interfaces by requiring that input formulas do not
mention output variables.

Definition 4 (Interface). An interface I for a compo-
nent C is a tuple

I =
(
V in , πin , V out , πout , V −

)

with
– read-only input port variables V in ⊆ V (C) with V in∩

BV(C) = ∅ and disjoint writable output port vari-
ables V out ⊆ V (C), i. e., V in ∩ V out = ∅,

– satisfiable input assumptions πin : V in → dL disjoint
across ports: V (πin(v)) ⊆

(
V (C) \

(
V in ∪ V out

))
∪

{v} for all v ∈ V in ,
– output guarantees πout : V out → dL,
– V − ⊆ V (C) with V − ∩ BV(C) = ∅ are read-only

port memory variables storing the previous values
of some ports, disjoint from other interface variables
V − ∩ (V in ∪ V out) = ∅; we use the notational con-
vention x− to refer to the port memory of variable x
or explicitly old(x).

The definition is accordingly for vector-valued ports
that share multiple variables along a single port, pro-
vided that each variable is part of at most one vectorial
port for proper data abstraction.

4.2.5 Example: Interfaces

We continue the remote-controlled robot example from
Fig. 6 by defining interfaces for the three components:
the RC interface Irc , the obstacle interface Io , and the
robot interface Ir . Recall that the robot’s collision avoid-
ance also assumes the remote control to not request sud-
den speed changes and that the obstacle does not move
too fast.

The RC interface in Example 4 has no input ports, so
V in
rc (6) and πin

rc (7) are empty. The single output port d
(8) provides the current speed advice, which, by output
guarantee πout

rc (9), is never further away than D from
the previous advice d− (10).

The obstacle interface in Example 5 has no input
ports, see (11)–(12). The single output port provides the
current obstacle position po (13), where output guaran-
tee πout

o (14) restricts the position to an interval of size
S · (t− t−) centered at the obstacle’s previous position
p−o (15). This captures the rate of change between the

Example 4 Remote Control Interface

Irc =
(
V in
rc , π

in
rc , V

out
rc , πout

rc , V −rc
)

V in
rc = {} (6)

πin
rc = () (7)

V out
rc = {d} (8)

πout
rc =

(
d 7→

∣∣d− d−
∣∣ ≤ D

)
(9)

V −rc = {d−} (10)

Example 5 Obstacle Interface

Io =
(
V in
o , πin

o , V
out
o , πout

o , V −o
)

V in
o = {} (11)

πin
o = () (12)

V out
o = {po} (13)

πout
o =

(
po 7→

∣∣po − p−o
∣∣ ≤ S ·

(
t− t−

))
(14)

V −o = {p−o } (15)

previous value p−o and the current value po, tied together
by plant duration t− t−.

The robot interface in Example 6 specifies two input
ports (16)-(17). On input port d̂ it receives a speed ad-
vice, which is assumed to be close to the previous value
d̂−, so describes the magnitude of change in speed ad-
vice. On input port p̂o it receives the obstacle’s current
position, which is assumed to be close to the obstacle’s
previous position p̂−o . This input assumption describes
the rate of change of the obstacle position. Thus, a global
contract as in [25] would not suffice here. The robot has
no output ports, see (18)-(19). The previous values p̂−o
and d̂− (20) of both input ports are stored for access in
the contract.

Example 6 Robot Interface

Ir =
(
V in
r , πin

r , V
out
r , πout

r , V −r
)

V in
r = {p̂o, d̂} (16)

πin
r =

(
p̂o 7→

∣∣p̂o − p̂−o
∣∣ ≤ S ·

(
t− t−

)
,

d̂ 7→
∣∣∣d̂− d̂−

∣∣∣ ≤ D
)

(17)

V out
r = {} (18)

πout
r = () (19)

V −r = {p̂−o , d̂−} (20)

In summary, the remote control is responsible for ask-
ing only manageable speed changes and the obstacle is

10 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

responsible for changing its position not too suddenly.
The robot will rely on these guarantees to ensure in
turn that it does not drive too close to the obstacle.
Interfaces are a powerful tool to separate responsibili-
ties. Next we guarantee that components also deliver on
these promises.

4.3 Proof Obligations: Change and Rate Contract

Contract compliance ties together components and in-
terfaces by showing that a component guarantees the
output changes that its interface specifies under the in-
put assumptions made in the interface. Contract compli-
ance additionally establishes a component’s responsibil-
ities with respect to how it contributes to system safety.

For example, the safety responsibilities of a robot
might require that the robot will not drive too close
to the last measurement of the position of the obsta-
cle. Together with the obstacle’s output guarantee of
not moving too far from its previous position, the local
safety responsibilities imply a system-wide safety prop-
erty (e. g., robot and obstacle will not collide), since we
know that a measurement previously reflected the real
position. The subtle but important consequence of our
composition and contract compliance notion is that the
components are locally responsible with respect to their
inputs (e. g., the robot is locally responsible with respect
to position measurements), but system safety follows for
the true values (e. g., true robot and obstacle position do
not coincide).

In order to make guarantees about the behavior of
a composed system, we use the system time t to mea-
sure the duration (t− t−) between controller runs in rate
contract compliance proof obligations.

Definition 5 (Contract compliance). Let C be a
component with its interface I (Def. 4), including out-
put guarantees Πout ≡ ∧v∈V out πout(v). Let formula φ

describe initial states and formula ψsafe local safety re-
sponsibilities of C, both over the component variables
V (C). Formula Ω with V(Ω) ⊆ V global specifies facts
about design parameters of the system. We abbreviate
(vectorial) nondeterministic assignments to input ports
satisfying input assumptions πin(v)

in
def≡
(
v := ∗; ?πin(v)

)
sequentially for all v ∈ V in ,

and (vectorial) assignments storing previous values of
port variables in port memory:

∆
def≡ v− := v sequentially for all v− ∈ V − .

Change contract compliance CCC(C, I) of C with I is
defined as validity of the dL formula:

CCC(C, I)
def≡

(Ω ∧ φ)→ [(∆; ctrl ; plant ; in; cp)
∗
]
(
ψsafe ∧Πout

)
.

Rate contract compliance RCC(C, I) is defined as valid-
ity of the dL formula:

RCC(C, I)
def≡
(
t = t− ∧Ω ∧ φ

)
→

[(
∆; ctrl ; t− := t;

{t′ = 1, plant} ; in; cp
)∗] (

ψsafe ∧Πout
)
.

Contract compliance can be verified using KeYmaera X [10].
The order of the assignments in both in and ∆ is

irrelevant because the assignments are over disjoint vari-
ables and πin(v) are local to their port per Def. 4. The
variables v− can be used in a component’s ctrl and plant
to access the initial values of ports, e. g., while the vari-
able vi ∈ V in holds the newly transmitted value of a
port, v−i can be used to access its previous value.

In this notion of contracts, input ports are read at
the end of the component, after the run of plant . While
reading from input ports at the beginning of a compo-
nent’s loop body (i. e., before the controller runs, e. g.,
as in [25]) may seem intuitive, it would require severe
restrictions to a component’s plant in order to make in-
puts and plant agree on duration. Thus, we prepare the
next loop iteration at the end of the loop body (i. e.,
after plant), so that the actual plant duration can be
considered for computing the next input values.

4.3.1 Example: Contract Compliance

We continue the collision avoidance example by proving
contract compliance for the remote control, obstacle, and
robot component. The remote control from Fig. 6 issues
speed advice in a purely discrete manner and therefore a
change contract according to Def. 5 is sufficient to relate
the current advice d to the previous advice d−. The pre-
condition (21) for the RC bootstraps the output port’s
previous value d− from the current speed advice d. Here,
ψrc comprises only the output guarantees (22) of the RC,
since the RC has no local safety responsibilities. In sum-
mary, the RC guarantees that consecutive speed advice
are at most D apart. The bounds on D ≥ 0 are specified
globally for all components.

φrc ≡ d = d− (21)

ψrc ≡
∣∣d− d−

∣∣ ≤ D (22)

The resulting change contract per Def. 5 for the RC
was verified using KeYmaera X:

(D ≥ 0 ∧ φrc)→[(

∆rc︷ ︸︸ ︷
d− := d;

ctrlrc︷ ︸︸ ︷
d := ∗; ?

∣∣d− d−
∣∣ ≤ D;

plantrc︷ ︸︸ ︷
skip ;

skip︸ ︷︷ ︸
inrc

; skip︸ ︷︷ ︸
cprc

)∗]ψrc

We thus know that the component is safe and com-
plies with its interface. Compared to contracts with fixed

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 11

ranges as in approaches [4,25], we do not have to assume
a global limit for speed advice d, but consider the previ-
ous advice d− as a reference value when calculating the
next speed advice.

Obstacles move and, therefore, obstacle positions po
are related by how much time passes in the obstacle’s
ODE planto ≡ p′o = so. Hence, we follow Def. 5 to ab-
stract the obstacle’s motion to its rate of change in po-
sition (24). The precondition φo (23) for the obstacle
bootstraps the output port’s previous value p−o from the
position po and initializes the obstacle speed to 0, which
is also subject to a maximum speed system parameter
S ≥ 0. Formula ψo (24) gives only the output port guar-
antees of the obstacle, since our liberal notion of obsta-
cles should not assume obstacles to cooperate for safety.
Such an abstraction can be found by solving the plant
ODE or from differential invariants [34].

φo ≡ po = p−o ∧ so = 0 (23)

ψo ≡
∣∣po − p−o

∣∣ ≤ S ·
(
t− t−

)
(24)

The resulting rate contract per Def. 5 for the obstacle
was verified using KeYmaera X:

(t = t− ∧ S ≥ 0 ∧ φo)→

[
(

∆o︷ ︸︸ ︷
p−o := po;

ctrlo︷ ︸︸ ︷
so := ∗; ?(0 ≤ so ≤ S);

t− := t; {t′ = 1, p′o = so︸ ︷︷ ︸
planto

}; skip︸ ︷︷ ︸
ino

; skip︸ ︷︷ ︸
cpo

)∗]ψo

The proof guarantees that the obstacle moves at most
distance S · (t− t−) between measurements po and p−o
taken (t− t−) apart.

Finally, we turn to the rate contract of the robot.
The precondition (25) bootstraps the input ports’ pre-

vious values p̂−o and d̂− from p̂o and d̂, initializes the
robot’s speed to 0 and ensures a positive control cycle
time (i. e. maximum plant runtime ε). The robot also
gets to assume the system parameter bounds S ≥ 0 and
D ≥ 0. The robot guarantees ψr (26) that its own posi-
tion and the measured obstacle position never coincide,
unless the robot is stopped.

φr ≡ p̂o = p̂−o ∧ d̂ = d̂− ∧ sr = 0 ∧ ε > 0 (25)

ψr ≡ sr > 0→ p̂o 6= pr (26)

The resulting rate contract per Def. 5 for the robot
was verified using KeYmaera X:

(t = t− ∧ S ≥ 0 ∧D ≥ 0 ∧ φr)→ [(

∆r︷ ︸︸ ︷
p̂−o := p̂o; d̂

− := d̂;

ctrlr︷ ︸︸ ︷
if (far) sr := d̂ else sr := 0; t− := t; {t′ = 1,

plantr︷ ︸︸ ︷
p′r = sr};

p̂o := ∗; ?πin
r (p̂o); d̂ := ∗; ?πin

r (d̂)︸ ︷︷ ︸
inr

; skip︸ ︷︷ ︸
cpr

)∗]ψr

The proof guarantees that the robot does not drive
too close to the measured obstacle position.

4.4 Proof Obligations: Compatible Composition

From components with verified contract compliance, we
now compose systems such that the safety of the com-
posed system can be guaranteed from the safety results
about the individual components. Not all naive compo-
sitions of components would be safe. But we show that
those that respect the interface compatibilities are.

4.4.1 Parallel Composition of Components

Parallel composition of components requires parallel com-
position of their controllers as well as of their plants,
and connections between their ports, see Section 3.2. Un-
like plants, which are ODEs and have a native parallel
composition operator in dL, truly parallel composition
of controllers would require enumerating all possible in-
terleavings of controller statements and result in a po-
tentially vast proof effort. Instead, we rely on the strict
variable separation between components to introduce a
quasi-parallel composition: the discrete ctrl computa-
tions of the components are executed sequentially, while
the continuous plant dynamics run in parallel. Which
exact sequential execution order of ctrl blocks is cho-
sen is irrelevant by Lemma 1, since the ctrl computa-
tions of different components are independent according
to Def. 2 (i. e., programs having disjoint free and bound
variables) and the communication between components
happens after all their combined ctrl computations. Sim-
ilarly, the internally connected ports cp of the compo-
nents are independent and thus composed sequentially
in any order.

Such a definition is natural in dL, since time only
passes during continuous evolution in hybrid programs,
while the discrete actions of a program do not consume
time and, thus, happen instantaneously at a single real
point in time, but in a specific order.

Fundamental ingredients for parallel composition of
two components are their connections that specify how
output values from one component are passed on to in-
puts of the other component.

The connections X are parametric in a communica-
tion program con that defines how values are passed be-
tween connected ports. For example, an instantaneous,
lossless communication can be modeled with a deter-
ministic assignment x := X (x) directly transferring the
value of the source output port X (x) to its connected
input port x. Parallel composition uses connections X
to wire components and merge unconnected ports into
a composed interface. Connections must satisfy the fol-
lowing conditions.

Remark 1 (Connections). Connections X
X :

(
V in
1 ∪ V in

2

)
⇀ (V out

1 ∪ V out
2) ,

provided X (v) /∈ V out
i for all v ∈ V in

i , are specified with
a partial (i. e., not every input must be mapped), injec-

12 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

tive (i. e., every output is only mapped to at most one in-
put) function, connecting some inputs to some outputs,
with domain IX = {x ∈ V in

i | X (x) is defined} and im-
age OX = {y ∈ V out

i | y = X (x) for some x ∈ V in
j }.

The connection program con : IX → HP models the
connection using a discrete program without ODEs per
connected input port to read values from the connected
source output port, such that

– each con(v) sets only its input port, for all v ∈ IX
and all Ci: BV(con(v)) ∩ (V (Ci) ∪ V global) = {v},

– each con(v) only reads the connected ports and global
variables: (V (con(v)) ∩ V (Ci)) ⊆ (V global∪{v,X (v)})
for all v ∈ IX and Ci ,

– connections bind disjoint inputs, for all vk 6= vl ∈ IX :
BV(con(vk)) ∩ BV(con(vl)) = ∅.

Any communication program that satisfies the con-
ditions in Remark 1 can be used for parallel composition
per Def. 6 below.

Definition 6 (Parallel composition). Let

Ci = (ctrl i, plant i, cpi) for i ∈ {1, 2}

denote two components with their interfaces

Ii =
(
V in
i , πin

i , V
out
i , πout

i , V −i
)
,

sharing only V global and system time: V (C1) ∩ V (C2) ⊆
V global∪{t, t−}. The composition (C1, I1)‖

X ,con
(C2, I2) of two

components and their interfaces according to connec-
tions X and communication programs con is defined as:
– sequential controllers ctrl ≡ ctrl1; ctrl2,
– parallel plants inside both evolution domains

plant ≡

component C1︷ ︸︸ ︷
x
(1)′
1 = θ

(1)
1 , . . . , x

(k)′
1 = θ

(k)
1 , . . . ,

x
(1)′
2 = θ

(1)
2 , . . . , x

(m)′
2 = θ

(m)
2︸ ︷︷ ︸

component C2

& Q1 ∧Q2 ,

– connected ports cp1; cp2 are extended with new con-
nections con(vk), . . . , con(vl) for {vk, . . . , vl} = IX

cp
def≡ cp1; cp2; con(vk); . . . ; con(vl)︸ ︷︷ ︸

newly connected inputs

,

– previous values V −
def
= V −1 ∪ V −2 are merged,

– unconnected inputs V in =
(
V in
1 ∪ V in

2

)
\IX and un-

connected outputs V out = (V out
1 ∪ V out

2) \ OX are
merged and their assumptions/guarantees preserved

πin(v) ≡
{
πin
1 (v) if v ∈ V in

1 \ IX
πin
2 (v) if v ∈ V in

2 \ IX

πout(v) ≡
{
πout
1 (v) if v ∈ V out

1 \ OX
πout
2 (v) if v ∈ V out

2 \ OX .

Note that by moving connected ports x ∈ IX from
the composed V in into the connected ports cp, the com-
munication programs con replace the nondeterministic
assignments to open inputs of Def. 5. The order of con is
irrelevant because their bound variables are disjoint per
Remark 1. A communication program con may introduce
and bind new local variables, as long as they are not part
of any other component. However, con cannot use dif-
ferential equations, as time passes only in the plants of
components. Merged πin and πout remain disjoint since
V −i , V in

i and V out
i are disjoint between components by

Def. 2. It follows that the set of variables of the composed
component V (C) is the union of both variable sets, i. e.,
V (C) = V (C1) ∪ V (C2).

The user provides component specifications (Ci, Ii), a
communication function con to transfer values between
connected ports, and connections X that define which
output is connected to which input. The composed sys-
tem of parallel components is defined syntactically in
Def. 6.

Remark 2. Since V − = V −1 ∪ V −2 , the current and pre-
vious values of ports can still be used internally in the
composed system, even when the ports are no longer
exposed through its external interface.

Associativity and Commutativity. The above composi-
tion operation is commutative and associative, and can,
thus, be lifted to any number of components.

Proposition 1 (Parallel composition is commuta-
tive). Let Ci for i ∈ {1, 2} be components with in-
terfaces Ii, and let X : I → O be connections with
O ⊆ V out

1 , I ⊆ V in
2 . Then

(C1, I1)‖
X ,con

(C2, I2) ≡ (C2, I2)‖
X ,con

(C1, I1)

Proof. We have to show that ctrl , plant and cp, as well
as port memory variables V −, unconnected inputs (i. e.,
input ports V in and input assumptions πin), and un-
connected outputs (i. e., output ports V out and output
guarantees πout) are equal on both sides.

– Controllers ctrl1; ctrl2 ≡ ctrl2; ctrl1 are commuta-
tive because sequential composition “;” of indepen-
dent (i. e., those that do not bind any variables the
other component reads) hybrid programs is commu-
tative by Lemma 1.

– plant1, plant2 ≡ plant2, plant1 because composition
“,” of differential equations is commutative.

– For port connections cp1; cp2; con ≡ cp2; cp1; con,
commutativity also follows by Lemma 1.

– Unions of variable sets are commutative by commu-
tativity of set union ∪: previous values are merged

V −
def
= V −1 ∪ V −2 .

– Sets of unconnected input ports are merged and com-
mutative by commutativity of set union ∪, that is,

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 13

V in =
(
V in
1 ∪ V in

2

)
\ IX . Input assumptions are pre-

served and the order of merging is irrelevant.

πin(v) ≡
{
πin
1 (v) if v ∈ V in

1 \ IX
πin
2 (v) if v ∈ V in

2 \ IX .

Similarly for unconnected output ports.

Proposition 2 (Parallel composition is associative).
Let Ci for i ∈ {1, 2, 3} be components with interfaces Ii,
and let X : IX 7→ OX and Y : IY 7→ OY be connections
with OX ⊆ V out

1 , IX ⊆ V in
2 , OY ⊆ V out

2 and IY ⊆ V in
3 .

Then

(
(C1, I1)‖

X ,conX
(C2, I2)

)
‖

Y,conY
(C3, I3) ≡ (C1, I1)‖

X ,conX

(
(C2, I2)‖

Y,conY
(C3, I3)

)

Proof. We have to show that ctrl , plant and cp, port
memory variables V −, unconnected inputs (i. e., input
ports V in and input assumptions πin), and unconnected
outputs (i. e., output ports V out and output guarantees
πout) are equivalent on both sides and satisfy Def. 6.

– (ctrl1; ctrl2) ; ctrl3 ≡ ctrl1; (ctrl2; ctrl3) because se-
quential composition “;” of hybrid programs is asso-
ciative.

– (plant1, plant2), plant3 ≡ plant1, (plant2, plant3) be-
cause composition “,” of differential equations is as-
sociative.

– For port connections cp, we have to show that

(cp1; cp2; conX) ; cp3; conY ≡
cp1; (cp2; cp3; conY) ; conX

where

conX ≡ con(vk), . . . , con(vl) for {vk, . . . , vl} = IX

conY ≡ con(vr), . . . , con(vs) for {vr, . . . , vs} = IY

represent the new port connections. Sequential com-
position “;” is associative, and since all communica-
tion programs con bind disjoint variables and do not
read variables bound in other con (see Def. 6), their
order is irrelevant and can be commuted by Lemma 1.

– Unions of variable sets are associative by associa-

tivity of set union ∪: V −
def
= (V −1 ∪ V −2) ∪ V −3 =

V −1 ∪ (V −2 ∪ V −3).
– Sets of unconnected input ports are merged and asso-

ciative by associativity of set union ∪: V in = (V in
1 ∪

V in
2 ∪ V in

3) \
(
IX ∪ IY

)
. Input assumptions are pre-

served and the order of merging is irrelevant.

πin(v) ≡

πin
1 (v) if v ∈ V in

1 \
(
IX ∪ IY

)

πin
2 (v) if v ∈ V in

2 \
(
IX ∪ IY

)

πin
3 (v) if v ∈ V in

3 \
(
IX ∪ IY

)

Similarly for unconnected output ports.

4.4.2 Communication

The composition operation in Def. 6 can be parametrized
with communication programs con satisfying Remark 1.
In this section, we formalize lossless and lossy commu-
nication (recall Section 3.2) as introduced in [26], and a
unit conversion communication program.

Instantaneous, lossless communication. Instantaneous,
lossless interaction between components is a useful model
for direct communication between components and a
first approximation for sensor measurements. Instanta-
neous, lossless communication con ll(vi) can be modeled
with a deterministic assignment from output port X (vi)
(X as in Def. 6) to the connected input port vi as follows:

con ll(vi) ≡ vi :=X (vi) .

Instantaneous, lossy communication. Lossy communi-
cation can be used when transmission of exact values
cannot be guaranteed, e. g., to model sensor uncertainty.
We model lossy communication con ly(vi) with a deter-
ministic assignment distorted with a bounded error as
follows:

con ly(vi) ≡ λ := ∗; ? |λ| ≤ Λ; vi :=X (vi) + λ .

The variable Λ ∈ V global is an error bound on the actual
error λ, which can vary with every transmission. While
the error variable λ must be local to each pair of con-
nected ports, the same error bound Λ can be shared be-
tween multiple connections. Lossy communication with
Λ = 0 is equivalent to lossless communication.

Unit conversion. Communication programs act as glue
code between components that can perform computa-
tions on the transferred values. A typical example is
conversion of units. Consider a sensor measuring the dis-
tance to an obstacle in feet, whereas a control component
may perform computations in meters internally. A unit
conversion program conuc(vi) transforms the distance
information and thus allows connecting ports without
changing the original components, e. g.,

conuc(vi) ≡ vi :=X (vi) · U ,

where U is a constant factor used for unit conversion
(e. g., U = 0.3048 for conversion from feet to meters).

4.4.3 Example: Parallel Composition

Returning to our running example of Fig. 6, after con-
tract compliance is checked for each component sepa-
rately, we compose the components to form the over-
all collision avoidance system: the remote control gives
speed advice to the robot, which measures obstacle po-
sitions to decide whether to follow the advice or stop to
avoid collision with the obstacle. The connections X and
Y connect the output ports of the RC and the obstacle

14 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

with the respective input ports of the robot: the robot
measures the obstacle position p̂o from the true position
po and receives the speed advice d̂ from the true d (27).

X =
(
p̂o 7→ po

)
, Y =

(
d̂ 7→ d

)
(27)

The component Csys in (28) and interface Isys in (29)
result from parallel composition of the RC, the robot,
and the obstacle, using the connection mapping (27).

Csys =
(

ctrlsys︷ ︸︸ ︷
(ctrlrc ; ctrlr ; ctrlo),

plantsys︷ ︸︸ ︷
(plantr , planto),

(
con ll(p̂o); con ll(d̂)

)

︸ ︷︷ ︸
cpsys

)
(28)

Isys =
(
{}︸︷︷︸
V in

, ()︸︷︷︸
πin

, {}︸︷︷︸
V out

, ()︸︷︷︸
πout

, {p−o , d−, p̂−o , d̂−}︸ ︷︷ ︸
V −

)
(29)

The robot’s input ports are connected to the RC’s
and obstacle’s output ports. How values are transmitted
between robot, obstacle and RC is specified by con ll(p̂o)

and con ll(d̂):

con ll(p̂o) ≡ p̂o := po

con ll(d̂) ≡ d̂ := d

Here, we connect two pairs of ports, transferring (i) the
obstacle position from the obstacle to the robot, and
(ii) the speed advice from the RC to the robot. The
robot might measure the position of the obstacle using a
sensor, which is subject to sensor uncertainty. This can
be modeled using lossy communication as follows (Λp
represents the maximum measurement error, according
to the sensor’s specification):

con ly(p̂o) ≡ λp := ∗; ? |λp| ≤ Λp; p̂o := po + λp

4.4.4 Connection Compatibility

During composition, the tests guarding the input ports
of an interface are replaced with a hybrid program mod-
eling the port connections of the components. That is
only correct if the respective output guarantees and in-
put assumptions match. Hence, in addition to contract
compliance, users have to show connection compatibility.

Compatibility links the output guarantees of an out-
put port to the input assumptions of its connected input
port via a specific communication program. We summa-
rize the behavior of the communication program con as
a communication guarantee as follows.

Definition 7 (Communication guarantee). Let port
connection con satisfy Remark 1 and transfer values from
output port vout to input port vin. We say connection
con provides a communication guarantee ζ(vin, vout) if
the following dL formulas are valid:

[con(vin)]ζ(vin, vout) (30)

〈con(vin)〉true . (31)

Each communication program con requires a suitable
communication guarantee ζ(vin, vout) and user-provided
proofs of (30) and (31). The communication guarantee
can for instance be derived from the communication pro-
gram using ModelPlex [22]. The communication guaran-
tees of lossless and lossy communication are straightfor-
ward. Lossless communication directly assigns values, so
the communication guarantee (32) unambiguously char-
acterizes the communication program by ensuring that
the values of the connected ports are equal.

ζll(vin, vout) ≡ vin = vout (32)

Lossy communication allows for a measurement error,
which is reflected in the communication guarantee (33).

ζly(vin, vout) ≡ |λ| ≤ Λ ∧ vin = vout + λ (33)

Definition 8 (Compatible connection). A parallel
composition ((C1, I1)‖(C2, I2))X is compatible iff dL for-
mula

CPO(X)
def≡ ζ(old(v), old(X (v)))→

[con(v)]
(
πout
j (X (v))→ πin

i (v)
)

is valid over (vectorial) equalities and assignments for
input ports v ∈ IX . Formula ζ(old(v), old(X (v)) is the
communication guarantee. Facts about global constants
V global can be used in the proof. We call CPO(X) the
compatibility proof obligation for the connection X be-
tween interfaces I1 and I2 and say the interfaces I1 and
I2 are compatible with respect to X if CPO(X) is valid.

Compatibility ensures that the output guarantees are
strong enough to satisfy the input assumptions of con-
nected ports under a certain communication program
and its communication guarantee. This is important to
preserve the input assumptions in the composed system,
which lacks the explicit tests of the isolated components.
To achieve local compatibility checks for pairs of con-
nected ports, instead of global checks over entire com-
ponent models, Def. 4 restricts input assumptions to only
mention variables of the associated ports. Note that even
though Def. 4 does not restrict output guarantees, com-
patibility proofs will only succeed if output guarantee
also only mention variables of the associated ports.

4.4.5 Example: Compatibility

In our example, we have to ensure compatibility of the
components with respect to X and Y (27). Since we
have two connected ports, we discharge two compati-

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 15

bility proof obligations (34) and (35), one for each port.

CPO(Y) ≡
(
(d− = d̂−) ∧ (S ≥ 0 ∧D ≥ 0)

)
→

[d̂ := d]
(∣∣d− d−

∣∣ ≤ D →
∣∣∣d̂− d̂−

∣∣∣ ≤ D
)

(34)

CPO(X) ≡
((
p−o = p̂−o

)
∧ (S ≥ 0 ∧D ≥ 0)

)
→

[p̂o := po]
(∣∣po − p−o

∣∣ ≤ S ·
(
t− t−

)
→

∣∣p̂o − p̂−o
∣∣ ≤ S ·

(
t− t−

))
(35)

Formulas (34) and (35) can be proved automatically
using KeYmaera X, i. e., connections X and Y are com-
patible.

Compatibility for lossy communication. With lossy com-
munication between robot and obstacle, we can no longer
verify the compatibility proof obligation, because the
input port presently requires exact measurements, see
(17). Incompatibility indicates that either the robot or
the obstacle interface made incompatible assumptions
about its environment and requires change. In (36) be-
low, we opt for changing the robot to allow sensor uncer-
tainty in its input assumptions, which in turn requires
change to the robot controller to re-establish contract
compliance. Formula (36) uses the communication in-
variant and the communication program for lossy com-
position, and additionally changes the robot’s input as-
sumption to consider the possible loss of precision.

CPO(X) ≡ |λp| ≤ Λp ∧ p−o = p̂−o + λp|λp| ≤ Λp ∧ p−o = p̂−o + λp|λp| ≤ Λp ∧ p−o = p̂−o + λp ∧ S ≥ 0 ∧D ≥ 0

→ [λp := ∗; ? |λp| ≤ Λp; p̂o := po + λpλp := ∗; ? |λp| ≤ Λp; p̂o := po + λpλp := ∗; ? |λp| ≤ Λp; p̂o := po + λp]((∣∣po − p−o
∣∣ ≤ S ·

(
t− t−

)
→

∣∣p̂o − p̂−o
∣∣ ≤ S ·

(
t− t−

)
+ 2Λp+ 2Λp+ 2Λp

))

(36)

4.5 Transferring Component Safety to System Safety

From contract compliance and compatibility proofs, The-
orem 1 below transfers the local safety responsibilities in
component contracts to safety of the composed system.
As a result, showing safety of the composed system no
longer requires a monolithic proof, but is inferred from
local component and compatibility proofs. The proof of
Theorem 1 can be found in Section 5 as part of our im-
plementation.

Theorem 1 (Composition contract retention). Let C1

and C2 be components with interfaces I1 and I2 that
are rate contract compliant per Def. 5 and compatible
with respect to X per Def. 8. Assume the communica-
tion guarantee ζ per Def. 7 holds initially to start from
consistent connected ports. Then the parallel composition
(C1, I1)‖

X
(C2, I2) satisfies the following contract with Ω

specifying global system parameters over V global and in,
cp, ctrl, and plant according to Def. 6:

� (t = t− ∧Ω ∧ φ1 ∧ φ2 ∧ ζ)→
[(∆; ctrl; t− := t; {t′ = 1,plant} ; in; cp)∗]
(
ψsafe
1 ∧Πout

1 ∧ ψsafe
2 ∧Πout

2

)
.

Theorem 1 provides strong safety guarantees about
the whole system from local component and compatibil-
ity proofs, but requires that the assumptions made in
Def. 5, Def. 6, Def. 7, and Def. 8 are carefully checked on
every use. The tactic in Section 5 will do so automati-
cally from the axioms of dL.

Remark 3. Because of the precondition ζ and because
cp is executed after every execution of the main loop
per Def. 5, we know that the values of connected input
and output ports behave as indicated by their communi-
cation guarantee, as one would expect. This is useful to
deduce system safety properties about true values from
guarantees about measured values. With lossless com-
munication, for instance, the local safety responsibility
of the robot |pr − p̂o| > 0 phrased over measured ob-
stacle position p̂o guarantees safety over true obstacle
positions |pr − po| > 0.

5 Proof Automation

Proof automation for Theorem 1 can be achieved in the
hybrid systems theorem prover KeYmaera X [10] in dif-
ferent ways: (i) Theorem 1 could be added directly to
the prover core as a new proof rule, which is efficient
but requires a complicated soundness-critical algorithm
that checks all its nontrivial side conditions and, thereby,
significantly increases the complexity of the algorithms
that are responsible for the correctness of the verification
results; (ii) as a proof tactic outside the small soundness-
critical core to automatically derive a proof for each
composite system instance from individual component
and compatibility proofs, with all side conditions veri-
fied in the core for free as part of the proof construction.
We follow the tactic-based approach since it preserves
soundness and is able to handle user-defined component
behavior.

The main idea behind the proof construction tactic,
as illustrated for the robot and remote control in Fig. 8,
is to adapt the program shape of the composed system
to match the shape of its components, so that compo-
nent proofs fill in most proof obligations directly. The
proof reuse mechanism of KeYmaera X closes proof obli-
gations from lemmas whose conclusion is syntactically
equal to the open proof obligation. This requires addi-
tional systematic proof steps to adapt the shape of an
open proof obligation to exactly the shape of the lemma
conclusion. Therefore, the tactic adapts the shape of the
system contract per Def. 6 to the shapes of component
and compatibility proofs with the following steps:

16 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

Robot Cr

ϕr →
[

p̂−o := p̂o; d̂
− := d̂;(

(?Drive; sr := d̂) ∪ (?¬Drive; sr := 0)
)
;

t− := t; {t′ = 1, p′r = sr};
p̂o := ∗; ?πin

r (p̂o);

d̂ := ∗; ?πin
r (d̂);

skip; skip]
ϕr

R
e
m
o
te

c
o
n
tr
o
l
C

rc
..
.

Robot with parallel remote control Cr‖
X ,con

Crc

ϕr ∧ ϕrc →
[

p̂−o := p̂o; d̂
− := d̂; ���

�
d− := d;(

(?Drive; sr := d̂) ∪ (?¬Drive; sr := 0)
)
;

((((
((((

((
d := ∗; ? |d− d−| ≤ D;

t− := t; {t′ = 1, p′r = sr};
p̂o := ∗; ?πin

r (p̂o); ���skip;
skip; skip ((((

((skip; skip;

d̂ := d]
(ϕr ∧ ϕrc)

S
1:

sp
li
t

co
n
tr
ac
ts

S
2:

re
or
d
er

S
4+

S
5:

d
is
co
n
n
ec
t+

te
st

p
or
t

S6: drop

S6: drop

S3: disconnect
S6: drop

Figure 8: Proof sketch to decompose the composition of
robot and remote control into isolated components

S1 splits the proof along component contracts (proves
that the composed system preserves the component
contracts)

S2 reorders communication programs to match the or-
der in the corresponding component (Lemma 1)

S3 disconnects outputs by dropping all communication
programs that are irrelevant for the current contract
(Lemma 2)

S4 re-introduces tests for input assumptions after com-
munication programs to prepare disconnecting inputs
(Lemmas 5 and 6)

S5 disconnects inputs by replacing communication pro-
grams with nondeterministic assignments to resemble
port behavior of unconnected components (Lemma 4)

S6 drops plants and controllers that are irrelevant for
the current contract (Lemmas 2 and 3)

The lemmas and tactic details in the following sub-
sections illustrate the details of the system proof con-
struction and also serve as an example of proof reuse in
KeYmaera X.

5.1 Automation for Program Shape Adaptation

In this section, we introduce lemmas for program shape
adaptation that are used in proving system safety from
component and compatibility proofs following the above
proof sketch. The proofs for Lemmas 2, 3, 5, and 6 follow
our prior work [25]. A detailed proof for the newly intro-
duced Lemma 1 can be found in Appendix C, and helpful

implementation Corollaries in Appendix D. Throughout
the section, we use the proof rules and axioms listed in
Appendix B.

Drop Control. We use Lemma 2 below to simplify pro-
grams to only the relevant statements that influence the
safety property.

Lemma 2 (Drop control). Let A be a dL formula and
α, β be hybrid programs. Program β has no influence over
A, i. e., FV(A)∩BV(β) = ∅ and there is no information
flow from β to α, i. e., FV(α) ∩ BV(β) = ∅. Then these
formulas are valid:

[α]A→ [β][α]A and [α]A→ [α][β]A

Since Lemma 2 makes crucial assumptions about the
intersection of free and bound variables of program con-
stants α and β, it is not expressible as an axiom in
KeYmaera X. However, when implemented as a tactic
that operates on concrete programs α and β, their free
and bound variables can be computed (e. g., the HP
x := y has bound variable x and free variable y) and
the assumptions checked. Uniform substitution [36] in
the KeYmaera X kernel will fail the tactic if it operates
on programs that violate the assumptions.

Drop Plant. Lemma 3 simplifies systems of ODEs to only
those differential equations that are relevant for the safety
property.

Lemma 3 (Drop plant). Let θ and η be terms possibly
mentioning x and y, respectively, where x and y are vec-
tors of disjoint variables. Let A be a dL formula over x
and H,Q be formulas over x and y, respectively. Then

[{x′ = θ & H}]A→ [{x′ = θ, y′ = η & H ∧Q}]A

is valid.

Similarly to Lemma 2, we implement Lemma 3 as a
tactic that operates on concrete programs and relies on
uniform substitution for soundness.

Nondeterministic Program Overapproximation. Instead
of proving a safety property about a hybrid program, we
can replace it with a proof for nondeterministic assign-
ments to the variables bound in the program. This is use-
ful for generalizing proofs: instead of proving a property
about a specific program, we prove this property about a
more abstract family of programs, which makes the proof
reusable. Lemma 4 will be used to drop connections by
replacing communication programs with nondeterminis-
tic assignments that represent unconnected input ports.

Lemma 4 (Overapproximate program). Let x = BV(α)
be the bound variables of program α, and A be a dL for-
mula potentially mentioning x. Then this is valid:

[x := ∗]A→ [α]A

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 17

∗
(40)t = t− ∧ φ3 ` ϕ3

 (Fig. 10)
ϕ3 ` [∆3; ctrl3; t− := t; {t′ = 1, plant3 } ; in3; cp3]ϕ3

∗
(42)ϕ3 `

(
ψsafe
3 ∧Πout

3

)

ind t = t− ∧ φ3 `
[
(∆3; ctrl3; t− := t; {t′ = 1, plant3} ; in3; cp3)

∗] (
ψsafe
3 ∧Πout

3

)

→r ` t = t− ∧ φ3 →
[
(∆3; ctrl3; t− := t; {t′ = 1, plant3} ; in3; cp3)

∗] (
ψsafe
3 ∧Πout

3

)

Figure 9: Loop induction on the system contract using the composite loop invariant.

¯ (Fig. 11)
ϕ1, ϕ2, ζ ` [. . .]ϕ1

similar to ¯ (Fig. 11)
ϕ1, ϕ2, ζ ` [. . .]ϕ2

∗
V ϕ1, ϕ2, ζ ` [. . .][in3; cp1; cp2]true

(30)ϕ1, ϕ2, ζ ` [. . .][in3; cp1; cp2; con]ζ
defϕ1, ϕ2, ζ ` [. . .][in3; cp3]ζ

[]∧,∧r ϕ1, ϕ2, ζ ` [∆3][ctrl3][t− := t][{t′ = 1, plant3}][in3; cp3] (ϕ1 ∧ ϕ2 ∧ ζ)
[;] ϕ1, ϕ2, ζ ` [∆3; ctrl3; t− := t; {t′ = 1, plant3} ; in3; cp3] (ϕ1 ∧ ϕ2 ∧ ζ)
∧l ϕ1 ∧ ϕ2 ∧ ζ ` [∆3; ctrl3; t− := t; {t′ = 1, plant3} ; in3; cp3] (ϕ1 ∧ ϕ2 ∧ ζ)
def ϕ3 ` [∆3; ctrl3; t− := t; {t′ = 1, plant3} ; in3; cp3]ϕ3

 (Fig. 9) continued

Figure 10: Prove component loop invariants and communication guarantee separately

Test Introduction. Program overapproximation with
Lemma 4 discards all knowledge about the computations
of the abstracted programs. Lemma 5 allows summariz-
ing the relevant characteristics of these computations as
tests before overapproximation.

Lemma 5 (Introduce test). Let A and F be formulas,
and α be a hybrid program. Then this is valid:

[α]F →
(
[α; ?F]A↔ [α]A

)

Test Weakening. The following Lemma 6 allows us to
weaken test conditions that are unnecessarily strong.

Lemma 6 (Weaken test). Let A, F , and G be formulas.
Then this is valid:

(
(F → G) ∧ [?G]A

)
→ [?F]A

5.2 Automation for System Safety Proofs

Now that we have created the necessary prerequisites in
the form of provably correct program shape adaptations,
we implement the proof sketch as a KeYmaera X tactic,
which automatically derives a system safety proof from
component and compatibility proofs.

Users provide component proofs that witness con-
tract compliance, i. e., formula (37) is valid (accordingly
for component C2).

RCC(C1, I1)
Def. 5≡ t = t− ∧ φ1 → [

(
∆1; ctrl1; t− := t;

{t′ = 1, plant1} ; in1; cp1

)∗
]
(
ψsafe
1 ∧Πout

1

)
(37)

Users also provide compatibility proofs that witness
compatible connections, i. e., formulas (38) (one for each
connection) are valid.

CPO(X)
Def. 8≡

(
ζ(old(v), old(X (v))) ∧Ω

)
→

[con(v)]
(
πout
j (X (v))→ πin

i (v)
) (38)

In summary, from component proofs (37) and com-
patibility proofs (38), we prove system safety (39) of the

parallel composition (C3, I3)
def≡ (C1, I1)‖

X ,con
(C2, I2), that is:

RCC(C3, I3)
Def. 5≡ t = t− ∧ φ3 → [

(
∆3; ctrl3; t− := t;

{t′ = 1, plant3} ; in3; cp3

)∗
]
(
ψsafe
3 ∧Πout

3

)
(39)

where the items of the parallel composition follow from
Def. 6 and invariants, input assumptions, and output
guarantees are read off the component proofs:

ctrl3
def≡ ctrl1; ctrl2

plant3
def≡ plant1, plant2

φ3
def≡ φ1 ∧ φ2 ∧ ζ

ψsafe
3

def≡ ψsafe
1 ∧ ψsafe

2

Πout
3

def≡ Πout
1 ∧Πout

2

For space reasons, we elide facts about global con-
stants. They are invariant throughout the proof, so avail-
able everywhere.

The tactic has to verify that the contract (39) of the
parallel composition RCC(C3, I3) is valid. We know that

18 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

∗
(41) ϕ1 ` [∆1][ctrl1][t− := t][{t′ = 1, plant1}][in1][cp1]ϕ1
Wl ϕ1, ϕ2 ` [∆1][ctrl1][t− := t][{t′ = 1, plant1}][in1][cp1]ϕ1

14.,L. 2 ϕ1, ϕ2 ` [∆1;∆2][ctrl1; ctrl2][t− := t][{t′ = 1, plant1}][in1][cp1]ϕ1
13.,def,L. 1 ϕ1, ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant1}][in1][cp1]ϕ1
12.,L. 3 ϕ1, ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant1, plant2}][in1][cp1]ϕ1

def ϕ1, ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in1][cp1]ϕ1
11. ϕ1, ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1][vj := ∗][?πin

1 (vj)][con∗][cp1]ϕ1
10.,L. 4 ϕ1, ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1][con(vj)][?π

in
1 (vj)][con∗][cp1]ϕ1 . . .² (Fig. 13)

9.,L. 6 ϕ1, ϕ2, ζ ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1][con(vj)][?π
out
2 (X (vj))][con∗][cp1]ϕ1

8.,L. 1 ϕ1, ϕ2, ζ ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][?πout
2 (X (vj))][in

∗
1][con(vj)][con∗][cp1]ϕ1

7.,L. 5 ϕ1, ϕ2, ζ, F
out
2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1][con(vj)][con∗][cp1]ϕ1

6.,def ϕ1, ϕ2, ζ, F
out
2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1; con; cp1]ϕ1

5.,L. 2 ϕ1, ϕ2, ζ, F
out
2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1; con; in∗2; cp1]ϕ1

4.,L. 2 ϕ1, ϕ2, ζ, F
out
2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1; con; in∗2; cp1; cp2]ϕ1

3.,L. 1 ϕ1, ϕ2, ζ, F
out
2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1; in∗2; cp1; cp2; con]ϕ1

2.,def,L. 1 ϕ1, ϕ2, ζ, F
out
2 ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in3; cp3]ϕ1 . . .± (Fig. 12)

1.,cut ϕ1, ϕ2, ζ ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in3; cp3]ϕ1

¯ (Fig. 10) continued

Figure 11: Disassemble system into components: adapt program order and disconnect ports

formula (37) is valid, hence we can read off invariant ϕ1

from the contract compliance proof of component C1

(accordingly for component C2) such that:

|= t = t− ∧ φ1 → ϕ1 (40)

|= ϕ1 → [∆1; ctrl1; t− := t; {t′ = 1, plant1} ; in1; cp1]ϕ1

(41)

|= ϕ1 →
(
ψsafe
1 ∧Πout

1

)
(42)

Formula ϕ1 is an inductive loop invariant for the
component C1, so FV(ϕ1) ⊆ V (C1) ∪ V global ∪ {t, t−}.

The system proof construction in Fig. 9 is a sequent
proof: horizontal lines separate the premises of a proof
step from its conclusion; from proven premises (above
the line), the axioms and proof rules that are annotated
to the left of the horizontal lines then justify the conclu-
sion (below the line).

The proof uses loop induction for the system con-
tract, using ϕ3 ≡ ϕ1 ∧ ϕ2 ∧ ζ as a loop invariant, i. e.,
the conjunction of the two component loop invariants ϕ1

and ϕ2, and the communication guarantee ζ.
The tactic transforms each branch individually until

we get formulas that correspond to (40), (41) and (42).
To prove the induction base case and use case, the tactic
applies a series of simple propositional steps (see Fig. 17
and Fig. 18 in Appendix C for details) to transform each
branch until it can be closed from formulas (40), (42)
(hold correspondingly for ϕ2 of the component C2), or
from the communication guarantee ζ.

The induction step follows the steps S1–S6 of the
proof sketch and is described in detail below.

S1: Split along contracts. In the induction step Fig. 10,
after a few simple structural steps the tactic proves in-
variance of ϕ1, ϕ2, and ζ separately on three branches:
branch ¯ to prove invariance of ϕ1 and accordingly for
ϕ2, as well as preservation of the communication guar-
antee ζ. For communication guarantees we know that
[con]ζ holds by Def. 7 (30), which together with cp3 ≡
cp1; cp2; con per Def. 6 closes branch [. . .][in3; cp3]ζ im-
mediately.

The remaining goal of the tactic is to transform ¯ un-
til it matches the shape of formula (41) to close the sys-
tem proof from the component proofs. The proof steps
are summarized in Fig. 11. The tactic explanation below
follows the proof sketch and uses the same step num-
bers as in the sequent proof in Fig. 11. Large parts of
the tactic operate on the connections without touching
port memory, controllers, or plant; these passive parts of
the proof are grayed out.

We abbreviate

F out2

def≡ ϕ2 →[∆3][ctrl1; ctrl2][t− := t]

[{t′ = 1, plant1, plant2}]Πout
2 .

1. We simplify the side condition proof of Lemma 5 by
an initial cut to provide F out2 as an assumption that
will be used throughout the proof. The side condition
itself is verified in ± (Fig. 12) from the component
induction step (41) of component C2, as described
below.
A Plant plant1, port memory ∆1, and control ctrl1

of component C1 are irrelevant in the side con-
dition since their bound variables do not overlap

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 19

∗
id Πout

2 ` Πout
2¬r ` ¬Πout
2 , Πout

2
C,V ` [in2; cp2]¬Πout

2 , Πout
2

〈·〉,¬l〈in2; cp2〉Πout
2 ` Πout

2

∗
(41) ` ϕ2 → [∆2; ctrl2; t− := t; {t′ = 1, plant2} ; in2; cp2]ϕ2
[;] ` ϕ2 → [∆2][ctrl2][t− := t][{t′ = 1, plant2}][in2; cp2]ϕ2

E,(42) ` ϕ2 → [∆2][ctrl2][t− := t][{t′ = 1, plant2}][in2; cp2]Πout
2

D,[·]→〈·〉 ` ϕ2 → [∆2][ctrl2][t− := t][{t′ = 1, plant2}]〈in2; cp2〉Πout
2

B,MR ` ϕ2 → [∆2][ctrl2][t− := t][{t′ = 1, plant2}]Πout
2

A,L. 2 ` ϕ2 → [∆1;∆2][ctrl2][t− := t][{t′ = 1, plant2}]Πout
2

A,L. 2 ` ϕ2 → [∆1;∆2][ctrl1; ctrl2][t− := t][{t′ = 1, plant2}]Πout
2

def ` ϕ2 → [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant2}]Πout
2

A,L. 3 ` ϕ2 → [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant1, plant2}]Πout
2

def ` F out2
Wl,Wr ϕ1, ϕ2, ζ ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant1, plant2}]ϕ1, F

out
2

± (Fig. 11) continued

Figure 12: Justify F out2 .

the free variables of F out2 and are dropped using
Lemmas 2 and 3.

B With rule MR we generalize the postcondition to
introduce inputs and connections 〈in2; cp2〉Πout

2

of component C2 to adapt towards the shape of
formula (41).

C We use 〈·〉 to turn the assumption 〈in2; cp2〉Πout
2

into a proof obligation [in2; cp2]¬Πout
2 whose dy-

namics can then be abstracted with V, because
FV(Πout

2) ∩ BV(in2; cp2) = ∅.
D We know 〈in2; cp2〉true since all input assump-

tions πin
2 in in2 are satisfiable per Def. 4 and all

the connection programs con(vin) in ports2 can
run (|= 〈con(vin)〉true per Def. 7). Using derived
axiom [·]→〈·〉 (i. e., 〈α〉true → [α]P → 〈α〉P),
this turns the liveness obligation 〈in2; cp2〉Πout

2

into a safety obligation [in2; cp2]Πout
2 .

E The use case proof of (42) of component C2 al-
lows strengthening Πout

2 to ϕ2 by rule MR, which
then concludes the side condition proof from the
induction step proof (41) of component C2.

S2: Reorder ports and communication programs. This
step adapts the order of ports and communication pro-
grams so that subsequent steps meet their requirements
on bound and free variables.

2. We use Lemma 1 to reorder the subprograms within
in3 and cp3 such that the input ports of C1 precede
the ones of C2. The KeYmaera X prover kernel will
fail Lemma 1 if the conditions on variable binding in
open ports as well as communication programs are
violated, i. e., if variables other than the respective
input ports are modified.

3. Next, we use Lemma 1 to move the external connec-
tions con directly after the open input ports in∗1 in
preparation of disconnecting inputs, so that later ex-
ternal communication programs can be moved easily

into the unconnected input ports in∗1 to rebuild the
isolated in1.

S3: Disconnect outputs. Next, we work towards isolat-
ing C1: we disconnect the outputs of component C1 from
the inputs of component C2 and drop all open inputs of
component C2.

4. Lemma 2 removes all internal connections cp2 of com-

ponent C2, where α
def≡ cp1, β

def≡ cp2 and A
def≡ ϕ1.

Lemma 2 is applicable, because there is no informa-
tion flow from program β to α (FV(α) ∩ BV(β) =
∅) and formula A is not influenced by program β
(FV(A) ∩ BV(β) = ∅). We know that there is no in-
formation flow from β to α since FV(cp1) ⊆ V (C1)
are disjoint from BV(cp2)∩ (V (C1)∪ V (C2)) ⊆ V in

2 ,
and therefore in turn also disjoint from BV(cp2) ∩
(V (C1)∪ V (C2)) ⊆ V (C2) \

(
V global ∪ {t, t−}

)
). For-

mulaA is not influenced by program β since FV(ϕ1) ⊆
V (C1) and V (C1) ∩ V (C2) \

(
V global ∪ {t, t−}

)
= ∅

by Def. 2.
5. Similarly, Lemma 2 removes unconnected ports in∗2

of component C2, where α
def≡ in∗1, β

def≡ in∗2 and A
def≡

[cp1]ϕ1. Again, there is no flow from β to α (FV(α)∩
BV(β) = ∅) since FV(in∗1) ⊆ V (C1) and BV(in∗2) ⊆
V in
2 (and thus BV(cp2) ⊆ V (C2)\

(
V global ∪ {t, t−}

)
)

are disjoint. Furthermore, property A is not influ-
enced by program β (FV(A) ∩ BV(β) = ∅) since
FV([cp1]ϕ1)∩(V (C1)∪V (C2)) ⊆ V (C1) and V (C1)∩
V (C2) ⊆

(
V global ∪ {t, t−}

)
.

S4: Re-introduce input assumptions. Next, we prepare
for disconnecting inputs by introducing tests that check
the input assumptions guaranteed by communication pro-
grams. Steps 6–9 are repeated for each communication
program con(vj).

20 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

∗
∧l,id ϕ1, ϕ2,

∧
v∈IX ζ(v,X (v)) ` ζ(vj ,X (vj))

V ϕ1, ϕ2,
∧
v∈IX ζ(v,X (v)) ` [. . . ;(((((((((

old(X (vj)) :=X (vj); . . . ;((((((old(vj) := vj ; . . .]ζ(vj ,X (vj))
C,[:=]ϕ1, ϕ2,

∧
v∈IX ζ(v,X (v)) ` [. . . ; old(X (vj)) :=X (vj); . . . ; old(vj) := vj ; . . .]ζ(old(vj), old(X (vj)))

def ϕ1, ϕ2, ζ ` [∆1;∆2]ζ(old(vj), old(X (vj)))
def ϕ1, ϕ2, ζ ` [∆3]ζ(old(vj), old(X (vj)))

B,L. 2 ϕ1, ϕ2, ζ ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1]ζ(old(vj), old(X (vj)))
A,(46) ϕ1, ϕ2, ζ ` [∆3][ctrl1; ctrl2][t− := t][{t′ = 1, plant3}][in∗1][con(vj)]

(
πout
2 (X (vj))→ πin

1 (vj)
)

² (Fig. 11) continued

Figure 13: Use connection compatibility to verify the side condition of Lemma 6.

6. The tactic extracts the leftmost communication pro-
gram con(vj) from con. The program con∗ denotes
the remaining communication programs.

7. Lemma 5 uses F out2 to insert a test ?πout
2 (X (vj)).

8. Lemma 1 then sorts the new test ?πout
2 (X (vj)) af-

ter the communication program con(vj). The lemma
is applicable because in∗1 and con(vj) write only in-
put variables from C1, while πout

2 (X (vj)) reads only
variables from C2, so altogether BV(in∗1; con(vj)) ∩
FV(πout

2 (X (vj))) = ∅.
9. Lemma 6 then relaxes the test of output guarantees

to the potentially weaker input assumptions ?πin
1 (vj)

of the communication program, which will allow us to
later disconnect the port. The condition of Lemma 6
that F → G is valid is justified from the compatibil-
ity proof (38) by the steps in Fig. 13.
A The compatibility proof for (38) simplifies com-

patibility πout
2 (X (vj)) → πin

1 (vj) of communica-
tion program con(vj) to the communication guar-
antee ζ(old(vj), old(X (vj)).

B The communication guarantee is now phrased over
initial old(X (vj)) ∈ V −2 and old(vj) ∈ V −1 that
are written neither in controllers nor plants, since
Def. 4 requires that port memory storage V − is
not modified (BV(ctrl) ∪ BV(plant) ∪ BV(cp)) ∩
V − = ∅. Therefore, Lemma 2 allows us to drop
all controllers and plants except the port mem-
ory ∆3.

C The condition closes from straightforward assign-
ments by axiom [:=] of the port memory ∆3 and
V.

S5: Disconnect inputs. This step disconnects the com-
ponent inputs by replacing communication programs with
a nondeterministic overapproximation.

10. Now that the input assumptions ?πin
1 (vj) are in place,

Lemma 4 disconnects the input by replacing the com-
munication program con(vj) with a nondeterministic
assignment vj := ∗.

11. The input with its assumptions is now appended to
in∗1. We repeat steps 10 and 11 for every connected

port vj . Afterwards, we use Lemma 1 to adjust the
order of input assignments until we get the shape
in1; cp1.

S6: Drop plants and controllers. Now that the compo-
nent C1 is disconnected, we drop all other components.

12. Lemma 3 drops the plant plant2 of component C2,
since it no longer influences component C1, i. e.,
FV([in1][cp1]ϕ1) ∩ BV(plant2) = ∅.

13. Lemma 1 sorts the port memories∆3 such that mem-
ories ∆1 of C1 precede the memories ∆2 of C2.

14. Finally, Lemma 2 removes the controller ctrl2 and
port memory ∆2 of component C2 to get the shape
(41), which concludes the induction step of compo-
nent C1.

The tactic for the induction step of component C2 works
in a similar manner, using ϕ2 in place of ϕ1.

Throughout the proof, the assignments in vector-
valued ports are kept together; the dimension of a vector-
valued port indicates how many programs to move simul-
taneously.

6 Case Studies

To evaluate our approach3, we use the running exam-
ple of a remote-controlled robot (RC robot) and revisit
prior case studies on the European Train Control System
(ETCS) [37], two-component robot collision avoidance
(Robix) [21], and adaptive cruise control (LLC) [17], see
Fig. 14. In ETCS, a radio-block controller (RBC) com-
municates speed limits to a train, i.e., it requires the
train to have at most speed d after some point m. The
RBC vector-valued change contract relates distancesm,m−

and demanded speeds d, d− in input assumptions/output

guarantees of the form d ≥ 0 ∧ (d−)
2 − d2 ≤ 2b(m −

m−)∧ state = drive, thus avoiding physically impossible
maneuvers.

3 Implementation and full models available online at
http://www.cs.cmu.edu/~smitsch/resource/components

http://www.cs.cmu.edu/~smitsch/resource/components

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 21

RBC
Calculate speed

limits

Train
Move according
to parameters

control parameters
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠𝑝𝑒𝑒𝑑, 𝑠𝑡𝑎𝑡𝑒

Robot
Move on a plane,

avoid obstacle

Obstacle
Move arbitrary

on a plane

obstacle position
(𝑥/𝑦)

Follower
Follow lead car

Leader
Move along single

highway lane

leader speed and position
𝑣, 𝑥

Figure 14: Case Studies: Components and communica-
tion

In Robix, a robot measures the position of a moving
obstacle with a maximum speed S. The obstacle guar-
antees to not move further than S ·(t− t−) in either axis
between measurements, using a rate contract.

In LLC, a follower car measures both speed vl and
position xl of a leader car, with maximum acceleration
A and braking capabilities B. Hence, we use a vector-
valued port rate contract with properties of the form
2 · (xl−x−l) ≥ vl+v−l · t∧0 ≤ vl∧−B · t ≤ vl−v−l ≤ A · t
tying together speed change and position progress.

6.1 Results

Table 2 summarizes the experimental results of the com-
ponent-based approach in comparison to monolithic mod-
els in terms of duration and degree of proof automation.
The column Contract describes the kind of contract used
in the case study (i. e., vector-valued ports, rate con-
tract or change contract), as well as whether or not the
models use non-linear differential equations. The column
Automation indicates fully automated proofs with check-
marks; it indicates the number of built-in tactics com-
posed to form a proof script when user input is required.
The column Duration compares the proof duration, us-
ing Z3 [23] as a back-end decision procedure to discharge
arithmetic. Note that the runtime of proofs where user
input was required is highly dependent on the used proof
script. For comparable numbers, all proof scripts were
created by a single user in a similar style. The column
Sum sums up the proof durations for the components
(columns C1 and C2) and Theorem 1 (column Th. 1, i. e.,
checking compatibility and the execution of our compo-
sition proof). Checking the composition proof is fully
automated, following the proof steps of Theorem 1. All
measurements were conducted on an Intel i7-6700HQ
CPU@2.6 GHz with 16GB memory.

In summary, we observe that component-based veri-
fication uses less tedious interactive proving (see Robix
and LLC) and may even improve proof checking per-
formance to some extent, since it can help reduce the

combinatorial explosion that may occur in monolithic
models when nondeterministic choices are composed se-
quentially (see ETCS).

6.2 Discussion

Tele-operated Robot (RC Robot). The tele-operated ro-
bot, which was used as a running example throughout
this article, uses rate contracts and was—due to its triv-
ial models—solved automatically. The proof for the mono-
lithic system took more than 10 times longer than for the
component-based version using our approach.

European Train Control System (ETCS). The ETCS
used a vector-valued change contract, which was verified
automatically using KeYmaera X. Even though the train
component C2 took much longer than the controller com-
ponent C1, the whole proof duration of our component-
based approach is almost 20 times shorter than for the
monolithic approach.

Robot Collision Avoidance (Robix). The case study used
rate contracts and required the use of non-linear ODEs
to model the robot’s motion. Here both versions—the
component-based version (i. e., the robot component)
and the monolithic version—required manual guidance
to complete the proof. While the proofs for the obstacle
component and the theorem (including side conditions)
finished automatically, the proof for the robot used 31
manual tactic applications. The monolithic proof used
more than three times as many manual steps. Besides
reducing tedious manual work, the decomposition effect
is also reflected in reduced proof checking duration.

Adaptive Cruise Control (LLC). LLC used a vector-
valued rate contract, where neither the follower com-
ponent nor the monolithic system were verified auto-
matically. The number of manual proof steps for the
monolithic approach is reduced to less than 50% in the
component-based approach. Note that the proof dura-
tion for the component-based case is about 30% higher
than for the monolithic case. This is caused by several
factors: (i) As the monolithic model is rather small, there
is no significant dimension reduction when using the
component-based case; on the contrary, our approach
introduces additional variables (e. g., plant start time).
(ii) The monolithic approach uses tricks to reduce the
variable number, which are not applicable in the com-
ponent-based case.

Summary. In summary, the results indicate that our
approach verification can lead to performance improve-
ments and smaller user-provided proof scripts. As long
as proof automation of KeYmaera X was able to ver-
ify the contracts, our component-based approach out-
performed the monolithic approach, see RC Robot and

22 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

Table 2: Experimental results for case studies

Contract Automation Duration [s]

M
u

lt
i

C
h

an
g
e

R
at

e

N
o
n

-
li

n
ea

r

C1 C2 Th. 1
Mono-
lithic C1 C2 Th. 1 Sum

Mono-
lithic

RC Robot X X X X X 32 101 56 189 1934
ETCS [37] X X X X X X 127 608 179 873 15306
Robix [21] X X (31) X X (96) 469 117 132 718 902
LLC [17] X X X (50) X (131) 135 351 267 753 568

ETCS. As soon as manual proof steps (i. e., manual ap-
plication of tactics) are required, the proof duration of
the component-based approach and the monolithic ap-
proach are almost equal. However, the number of manual
steps needed to verify the contracts is reduced when us-
ing our component-based approach.

7 Related Work

We group related work into hybrid automata, hybrid
process algebras, and hybrid programs.

Hybrid Automata and Assume-Guarantee Reasoning.
Parallel composition of hybrid automata leads to an ex-
ponential product automaton because the associated ver-
ification procedure for its safety properties is not com-
positional [1]. Thus, for a hybrid automaton it is not suf-
ficient to establish a property about its parts in order to
establish a property about the automaton. We, instead,
decompose verification into local proofs and get system
safety automatically. Hybrid I/O automata [19] extend
hybrid automata with a notion of external behavior. The
associated implementation relation (i. e., if automaton A
implements automaton B, properties verified for B also
hold for A) is respected by their composition operation
in the sense that if A1 implements A2, then the composi-
tion of A1 and B implements the composition of A2 and
B. Similarly, approximate bi-simulation allows abstrac-
tion of models and is compositional for a synchronous
composition operator [11]. Hybrid (I/O) automata are
mainly verified using reachability analysis.

Therefore, techniques to prevent state-space explo-
sion are needed, such as assume-guarantee reasoning (AGR,
e. g., [4,9,14]), which was developed to decompose a ver-
ification task into subtasks. Timed transition systems
are used to approximate a component’s behavior by dis-
cretization [9]. These abstractions are then used in place
of the more complicated automata to verify refinement
properties, but the implementation is limited to linear
hybrid automata. In analogy, we discretize plants to rate
contracts; however, in our approach, contracts completely
replace components and do not need to retain simplified
transition systems.

A similar AGR rule is presented in [14], where the ap-
proximation drops continuous behaviors of single com-
ponents entirely. As a result, the approach only works
when the continuous behavior is irrelevant to the veri-
fied property, which rarely happens in CPS. Our change
and rate contracts still preserve knowledge about con-
tinuous behavior.

The AGR approach of [4] uses contracts consisting
of input assumptions and output guarantees to verify
properties about single components: a component is an
abstraction of another component if it has a stricter con-
tract. The approach is restricted to constant intervals,
i. e., static global contracts as in [25].

In [7], a component-based design framework for con-
trollers of hybrid systems with linear dynamics based on
hybrid automata is presented. It focuses on checking in-
terconnections of components: alarms propagated by an
out-port must be handled by the connected in-ports. We,
too, check component compatibility, but for contracts,
and focus on transferring proofs from components to the
system level. We provide parallel composition, while [7]
uses sequential composition.

The compositional verification approach in [2] bases
on linear hybrid automata using invariants to over-ap-
proximate component behavior and interactions. How-
ever, interactions between components are restricted to
synchronization (i. e., no variable state can be trans-
ferred between components).

In summary, aforementioned approaches are limited
to linear dynamics [7] or linear hybrid automata [2], use
global contracts [4], focus on sequential composition [7]
or rely on reachability analysis, over-approximation and
model checking [4,9,14]. We, in contrast, focus on the-
orem proving in dL, using change and rate contracts
and handle non-linear dynamics and parallel composi-
tion. Most crucially, we transfer local safety responsibil-
ities from components to safety of whole systems using
tactics without needing soundness-critical prover exten-
sions, whereas related approaches require safety-critical
extensions and work on the complementary question of
property transfer between different levels of abstraction
[4,9,14] (which dL handles by refinement [16]).

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 23

Hybrid Process Algebras. Hybrid process algebras are
compositional modeling formalisms for the description
of behavior and interaction of processes, based on alge-
braic equations. Examples are Hybrid χ [39], HyPA [6]
or the Φ-Calculus [40]. Although the modeling is compo-
sitional, for verification purposes the models are again
analyzed using simulation or reachability analysis in a
non-compositional fashion (e. g., Hybrid χ using PHAVer
[45], HyPA using HyTech [20], Φ-Calculus using SPHIN
[43]), while we focus on exploiting compositionality in
the proof.

Hybrid Programs. Quantified hybrid programs enable a
compositional verification of hybrid systems with an ar-
bitrary number of components [31] of a homogeneous
structure (e. g., many cars, or many robots). They were
used to split monolithic hybrid program models into
smaller parts to show that adaptive cruise control pre-
vents collisions for an arbitrary number of cars on a high-
way [17]. We focus on components of different shapes.
Similarly, the approach in [24] presents a component-
based approach limited to traffic flow and global con-
tracts.

Our approach extends prior work [25], which was re-
stricted to contracts over constant ranges. Such global
contracts are well-suited for certain use cases, where the
change of a port’s value does not matter for safety, such
as the traffic flow models of [24]. However, for systems
such as the remote-controlled robot obstacle avoidance
from our running example (cf. Section 4.1), which require
knowledge about the change of certain values, global
contracts only work for considerably more conservative
models (e. g., robot and obstacle must stay in fixed glob-
ally known regions, since the obstacle’s last position is
unknown). Change and rate contracts allow more liberal
component interaction.

Focusing on architectural properties, [41] proposes a
component-based modeling approach for hybrid-systems.
Although they do not transfer verification results from
components to composites, their component definitions
have inspired our own definitions.

Alternative parallel composition operations for dL
[18] use nondeterministic choices between all controllers
and the parallel plants, which is a good fit if all con-
trol operations are nondeterministic. Such a composi-
tion operation gets commutativity and associativity for
free from the underlying dL operator for nondeterminis-
tic choice, but requires careful user modeling to respect
variable restrictions and preserve controller executability
after composition, which we get by design of the com-
position operation. Furthermore, their approach aims at
composition of contracts with restrictions on variables,
but does not consider compatibility of ports. We, on the
other hand, use interfaces to explicitly designate inputs
and outputs together with their behavior, which facili-
tates reuse of components and allows a notion of compat-
ibility. Most crucially, for safety verification [18] intro-

duces new proof rules for the parallel composition oper-
ator, which must be trusted for soundness. Our tactic to
produce system safety proofs, in contrast, is a syntactic
decomposition on the shape of programs and therefore
inherits soundness for free from the KeYmaera X prover
kernel.

8 Conclusion

Component-based modeling makes sense for complicated
systems, but only really pays off if accompanied by com-
ponent-based verification. Just as component-based mod-
eling splits big systems into smaller components, com-
ponent-based verification splits monolithic system verifi-
cation into proofs about components with local respon-
sibilities. This is especially useful if the safety of the
composed system follows directly from the safety of the
individual components, which is what we identify corre-
sponding sufficient conditions for in this article. The dL
basis that we use already provides compositionality for
each of its operators, but we now add compositionality
at the larger granularity of components.

Our component-based verification leverages compo-
nent contracts. Change contracts relate a port’s previ-
ous value to its current value (i. e., the change since the
last port transmission), while rate contracts additionally
relate to the time passed between measurements. Rate
contracts allow the verification of a broader range of sys-
tems, but need more time variables. As the number of
variables can be crucial for formal verification, change
contracts are favorable if applicable.

The safety properties of components that are de-
scribed by component contracts and verified using KeY-
maera X transfer to the composed system without re-
verification of the entire system. We have shown the ap-
plicability of our approach on a running example and
three existing case studies, which furthermore demon-
strated the potential reduction of verification effort com-
pared to proving monolithic models. We implemented
our approach as a KeYmaera X tactic that automati-
cally verifies composite systems from verified component
contracts without increasing the trusted prover core.

Our experiments have demonstrated an impact on
either the time it took KeYmaera X’s proof automation
to find a proof, or the size of the user-supplied tactic.
We used existing case studies for monolithic systems as a
basis. The biggest remaining litmus test for component-
based verification is the empirical question of whether it
is easier or harder for people to start with a component-
based design compared to a monolithic model.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.:
Hybrid automata: An algorithmic approach to the speci-
fication and verification of hybrid systems. In: Grossman,

24 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid
Systems. pp. 209–229. Lecture Notes in Computer Sci-
ence, Springer (1993)

2. Aştefanoaei, L., Bensalem, S., Bozga, M.: A composi-
tional approach to the verification of hybrid systems. In:
Ábrahám, E., Bonsangue, M., Johnsen, B.E. (eds.) Theory
and Practice of Formal Methods, vol. 9660, pp. 88–103.
Springer (2016)

3. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L.,
Passerone, R., Sofronis, C.: Multiple viewpoint contract-
based specification and design. In: Boer, F.S.d., Bon-
sangue, M.M., Graf, S., Roever, W.P.d. (eds.) Formal
Methods for Components and Objects, 6th International
Symposium. pp. 200–225. Lecture Notes in Computer Sci-
ence, Springer (2007)

4. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A.,
Geretti, L., Villa, T.: Assume–guarantee verification of
nonlinear hybrid systems with Ariadne. Int. J. Robust
Nonlinear Control 24(4), 699–724 (2014)

5. Bornot, S., Sifakis, J.: On the composition of hybrid
systems. In: Henzinger, T.A., Sastry, S. (eds.) Hybrid
Systems: Computation and Control, First International
Workshop, Proceedings. pp. 49–63. Lecture Notes in Com-
puter Science, Springer (1998)

6. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra.
J. Log. Algebr. Program. 62(2), 191–245 (2005)

7. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: To-
wards component based design of hybrid systems: Safety
and stability. In: Manna, Z., Peled, D.A. (eds.) Time
for Verification, Essays in Memory of Amir Pnueli, Lec-
ture Notes in Computer Science, vol. 6200, pp. 96–143.
Springer (2010)

8. Felty, A., Middeldorp, A. (eds.): International Conference
on Automated Deduction, CADE’15, Berlin, Germany,
Proceedings, LNCS, vol. 9195. Springer, Berlin (2015)

9. Frehse, G., Zhi Han, Krogh, B.: Assume-guarantee rea-
soning for hybrid I/O-automata by over-approximation of
continuous interaction. In: 43rd IEEE Conference on De-
cision and Control, CDC. vol. 1, pp. 479–484 Vol.1 (2004)

10. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer,
A.: KeYmaera X: An axiomatic tactical theorem prover
for hybrid systems. In: Felty and Middeldorp [8], pp. 527–
538

11. Girard, A., Pappas, G.J.: Approximation metrics for
discrete and continuous systems. IEEE Trans. Automat.
Contr. 52(5), 782–798 (2007)

12. Gößler, G., Sifakis, J.: Composition for component-based
modeling. Sci. Comput. Program. 55(1-3), 161–183 (2005)

13. Henzinger, T.A.: The theory of hybrid automata. In:
Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science. pp. 278–292. IEEE Computer Society
(1996)

14. Henzinger, T.A., Minea, M., Prabhu, V.S.: Assume-
guarantee reasoning for hierarchical hybrid systems. In:
Di Benedetto, Maria Domenica, Sangiovanni-Vincentelli,
A.L. (eds.) Hybrid Systems: Computation and Control,
4th International Workshop, Proceedings. Lecture Notes
in Computer Science, vol. 2034, pp. 275–290. Springer
(2001)

15. Logic in Computer Science (LICS), 2012 27th Annual
IEEE Symposium on. IEEE, Los Alamitos (2012)

16. Loos, S.M., Platzer, A.: Differential refinement logic. In:
Grohe, M., Koskinen, E., Shankar, N. (eds.) LICS. pp.
505–514. ACM, New York (2016)

17. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise con-
trol: Hybrid, distributed, and now formally verified. In:
Butler, M., Schulte, W. (eds.) FM. LNCS, vol. 6664, pp.
42–56. Springer, Berlin (2011)

18. Lunel, S., Boyer, B., Talpin, J.P.: Compositional proofs
in differential dynamic logic dL. In: 17th International
Conference on Application of Concurrency to System De-
sign, Proceedings. pp. 19–28. IEEE Computer Society
(2017)

19. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O
automata. Inf. Comput. 185(1), 105–157 (2003)

20. Man, K.L., Reniers, M.A., Cuijpers, P.J.L.: Case studies
in the hybrid process algebra Hypa. Int. J. Software Eng.
Knowl. Eng. 15(2), 299–306 (2005)

21. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.:
Formal verification of obstacle avoidance and navigation
of ground robots. I. J. Robotics Res. 36(12), 1312–1340
(2017)

22. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime val-
idation of verified cyber-physical system models. Form.
Methods Syst. Des. 49(1-2), 33–74 (2016), special issue of
selected papers from RV’14

23. Moura, L.M.d., Bjørner, N.: Z3: An efficient SMT solver.
In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems,
14th International Conference, Proceedings. pp. 337–340.
Lecture Notes in Computer Science, Springer (2008)

24. Müller, A., Mitsch, S., Platzer, A.: Verified traffic net-
works: Component-based verification of cyber-physical
flow systems. In: 18th International Conference on Intel-
ligent Transportation Systems. pp. 757–764 (2015)

25. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger,
W., Platzer, A.: A component-based approach to hybrid
systems safety verification. In: Abraham, E., Huisman, M.
(eds.) IFM. LNCS, vol. 9681, pp. 441–456. Springer (2016)

26. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger,
W., Platzer, A.: A benchmark for component-based hy-
brid systems safety verification. In: Frehse, G., Althoff,
M. (eds.) 4th International Workshop on Applied Verifi-
cation of Continuous and Hybrid Systems. EPiC Series in
Computing, vol. 48, pp. 65–74. EasyChair (2017)

27. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger,
W., Platzer, A.: Change and delay contracts for hybrid
system component verification. In: Huisman, M., Rubin,
J. (eds.) FASE. LNCS, vol. 10202, pp. 134–151. Springer
(2017)

28. Parnas, D.L.: On the criteria to be used in decomposing
systems into modules. Commun. ACM 15(12), 1053–1058
(1972)

29. Platzer, A.: Differential dynamic logic for hybrid sys-
tems. J. Autom. Reas. 41(2), 143–189 (2008)

30. Platzer, A.: Differential-algebraic dynamic logic for
differential-algebraic programs. J. Log. Comput. 20(1),
309–352 (2010)

31. Platzer, A.: A complete axiomatization of quantified dif-
ferential dynamic logic for distributed hybrid systems.
Log. Meth. Comput. Sci. 8(4:17), 1–44 (2012), special is-
sue for selected papers from CSL’10

32. Platzer, A.: The complete proof theory of hybrid systems.
In: LICS [15], pp. 541–550

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 25

33. Platzer, A.: Logics of dynamical systems. In: LICS [15],
pp. 13–24

34. Platzer, A.: The structure of differential invariants and
differential cut elimination. Log. Meth. Comput. Sci.
8(4:16), 1–38 (2012)

35. Platzer, A.: A uniform substitution calculus for differ-
ential dynamic logic. In: Felty and Middeldorp [8], pp.
467–481

36. Platzer, A.: A complete uniform substitution calculus for
differential dynamic logic. J. Autom. Reas. 59(2), 219–265
(2017)

37. Platzer, A., Quesel, J.D.: European Train Control Sys-
tem: A case study in formal verification. In: Breitman,
K., Cavalcanti, A. (eds.) ICFEM. LNCS, vol. 5885, pp.
246–265. Springer, Berlin (2009)

38. Platzer, A., Tan, Y.K.: Differential equation axiomati-
zation: The impressive power of differential ghosts. In:
Dawar, A., Grädel, E. (eds.) LICS. pp. 819–828. ACM,
New York (2018)

39. Ramon R. H. Schiffelers, D. A. van Beek, Man, K.L., Re-
niers, M.A., Rooda, J.E.: Formal semantics of Hybrid Chi.
In: Larsen, K.G., Niebert, P. (eds.) Formal Modeling and
Analysis of Timed Systems: First International Workshop.
pp. 151–165. Lecture Notes in Computer Science, Springer
(2003)

40. Rounds, W.C., Song, H.: The Phi-Calculus: A language
for distributed control of reconfigurable embedded sys-
tems. In: Maler, O., Pnueli, A. (eds.) 6th International
Workshop on Hybrid Systems: Computation and Control.
pp. 435–449. Lecture Notes in Computer Science, Springer
(2003)

41. Ruchkin, I., Schmerl, B., Garlan, D.: Architectural ab-
stractions for hybrid programs. In: Kruchten, P., Becker,
S., Schneider, J. (eds.) Proceedings of the 18th Interna-
tional Symposium on Component-Based Software Engi-
neering. pp. 65–74. CBSE’15, ACM (2015)

42. Schreiter, L., Bresolin, D., Capiluppi, M., Raczkowsky,
J., Fiorini, P., Wörn, H.: Application of contract-based
verification techniques for hybrid automata to surgical
robotic systems. In: European Control Conference, ECC
2014. pp. 2310–2315. IEEE (2014)

43. Song, H., Compton, K.J., Rounds, W.C.: SPHIN: A
model checker for reconfigurable hybrid systems based on
SPIN. Electr. Notes Theor. Comput. Sci. 145, 167–183
(2006)

44. UML Revision Task Force: OMG unified modeling lan-
guage specification, version 2.5: OMG document number:
formal/15-03-01, http://www.omg.org/spec/UML/2.5/

45. Xinyu, C., Huiqun, Y., Xin, X.: Verification of Hybrid
Chi model for cyber-physical systems using PHAVer. In:
Barolli, L., You, I., Xhafa, F., Leu, F.Y., Chen, H.C. (eds.)
Seventh International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing. pp. 122–
128. IEEE Computer Society (2013)

http://www.omg.org/spec/UML/2.5/

26 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

A Formal Semantics

The semantics of hybrid programs α is expressed as a
transition relation between states (Def. 9). A differential
equation x′ = θ&Q can transition between any pair of
states connected by a continuous flow ϕ that respects the
differential equations and evolution domain. The set of
all states is denoted by Sta(V). We write ϕ |= x′ = θ&Q
to mean that ϕ is a flow of the differential equation x′ =
θ contained within the region Q, see [33,36,29] for full
details.

Definition 9 (Transition semantics of hybrid pro-
grams). The transition relation [[α]] specifies which states
ω are reachable from a state ν by operations of α. It is
defined as follows:

1. (ν, ω) ∈ [[x := θ]] iff ω(x) = ν[[θ]], and for all other-
variables z 6= x, ω(z) = ν(z)

2. (ν, ω) ∈ [[x := ∗]] iff ω(z) = ν(z) for all variables z 6= x
3. (ν, ω) ∈ [[?Q]] iff ν = ω and ν |= Q
4. (ν, ω) ∈ [[x′ = θ&Q]] iff exists solution ϕ:[0, r]→ Sta(V)

for r ≥ 0 with ϕ(0) = ν, ϕ(r) = ω, and ϕ |= x′ = θ&Q
5. [[α ∪ β]] = [[α]] ∪ [[β]]
6. [[α;β]] = {(ν, ω) : (ν, µ) ∈ [[α]], (µ, ω) ∈ [[β]], exists µ}
7. [[α∗]] = [[α]]

∗
, the transitive, reflexive closure of [[α]]

Definition 10 (Interpretation of dL formulas). Truth
of dL formula φ in state ν, written ν |= φ, is defined as
follows:

1. ν |= θ1 ∼ θ2 iff ν[[θ1]] ∼ ν[[θ2]] for ∼ ∈ {=,≤, <,≥, >}
2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, so on for ¬,∨,→,↔
3. ν |= ∀xφ iff ω |= φ for all states ω that agree with ν

except for the value (in R) of x
4. ν |= ∃xφ iff ω |= φ for some state ω that agrees with ν

except for the value (in R) of x
5. ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ [[α]]
6. ν |= 〈α〉φ iff ω |= φ for some ωwith (ν, ω) ∈ [[α]]

We denote validity as � φ, i.e., ν |= φ for all states ν.

B Proof Rules

Throughout the article, we use the dL proof rules and
axioms listed in Fig. 16, for more details see [36]. Note
that casing of formula names is significant: in the nonde-
terministic choice axiom [a ∪ b]P ↔ [a]P ∧ [b]P the for-
mula P is allowed to mention any variable (even bound
variables of programs a and b), whereas in the V axiom
p→ [a]p the free variables of formula p must be disjoint
from the bound variables of program α. In the nonde-
terministic assignment axiom [x := ∗]p(x)↔ ∀x p(x) the
formula p(x) means that x may occur free in p(x) even
though it is bound in program x := ∗. Throughout our
proofs, we use congruence reasoning with CE [36] to ap-
ply lemmas in the context of other formulas.

µ ν

ω µ̃

ν̃µ

β

on BV(β){

β

on BV(β){

⊇ V(α)

α

on BV(α){

on BV(β){

⊇ V(α)
(coincidence)

αon BV(α){

⊇ V(β)

on BV(α){

⊇ V(β)
(coincidence)

α

on BV(α){

on
BV(α){

and
BV(β){

Figure 15: Proof sketch of Lemma 1

C Proofs

Proof of Lemma 1. This proof uses the reachability se-
mantics of dL and shows [α;β]ψ ↔ [β;α]ψ by duality
from 〈α;β〉ψ ↔ 〈β;α〉ψ.

〈α;β〉ψ → 〈β;α〉ψ Assume (ω, µ) ∈ [[α]] and (µ, ν) ∈
[[β]], i. e., ω

α→ µ
β→ ν. We have to show that there

exists ν̃ = ν with (ω, µ̃) ∈ [[β]] and (µ̃, ν̃) ∈ [[α]], i. e.,

ω
β→ µ̃

α→ ν̃. Fig. 15 illustrates the proof steps. Note
that BV(α){ ⊇ V(β) since BV(α) ∩ V(β) = ∅, and
BV(β){ ⊇ V(α) since BV(β) ∩V(α) = ∅.
Since (µ, ν) ∈ [[β]] by assumption and ω = µ on

BV(α){ ⊇ V(β) by the bound effect lemma (cf. [35,
Lem. 9]), there exists (ω, µ̃) ∈ [[β]] such that µ̃ = ν
on BV(β) by the coincidence lemma ([35, Lem. 12])
and µ̃ = ω on BV(β){ by the bound effect lemma.
Since (ω, µ) ∈ [[α]] by assumption, there exists (µ̃, ν̃) ∈
[[α]] such that ν̃ = µ on BV(β){ ⊇ V(α) by the coin-
cidence lemma.
Now ν̃ = µ̃ = ν on BV(α){ and also ν̃ = µ = ν on
BV(β){ and hence we conclude ν̃ = ν.

〈β;α〉ψ → 〈α;β〉ψ Follows accordingly.

[α;β]ψ ↔ [β;α]ψ follows from 〈α;β〉ψ ↔ 〈β;α〉ψ by
¬[a]¬P ↔ 〈a〉P .

Proof of Lemma 2. We first show that [α]A → [β][α]A
follows immediately from V (i. e., φ → [γ]φ, if FV(φ) ∩
BV(γ) = ∅) with φ = [α]A and γ = β, since we know
that FV(A) ∩ BV(β) = ∅ and FV(α) ∩ BV(β) = ∅.

∗
id [α]A ` [α]A
V [α]A ` [β][α]A
→r ` [α]A→ [β][α]A

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 27

([;]) [a; b]P ↔ [a][b]P

([∪]) [a ∪ b]P ↔ [a]P ∧ [b]P

([:=]) [x := e]p(x)↔ p(e)

([?]) [?Q]P ↔ (Q→ P)

([:∗]) [x := ∗]p(x)↔ ∀x p(x)

(〈·〉) ¬[a]¬P ↔ 〈a〉P

(V) p→ [a]p

(K) [a](P → Q)→ ([a]P → [a]Q)

(MP) P ∧ (P → Q)→ Q

([·]→〈·〉) 〈a〉> → ([a]P → 〈a〉P)

([]∧) [a](P ∧Q)↔ [a]P ∧ [a]Q

(∀i) (∀x p(x))→ p(e)

(↔r)
Γ, φ ` ψ,∆ Γ, ψ ` φ,∆

Γ ` φ↔ ψ,∆

(→r)
Γ, φ ` ψ,∆
Γ ` φ→ ψ,∆

(→l)
Γ ` φ,∆ Γ, ψ ` ∆

Γ, φ→ ψ ` ∆

(∧r)
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆

(∧l)
Γ, φ, ψ ` ∆
Γ, φ ∧ ψ ` ∆

(¬r)
Γ, φ ` ∆
Γ ` ¬φ,∆

(¬l)
Γ ` φ,∆
Γ,¬φ ` ∆

(Wr)
Γ ` ∆
Γ ` φ,∆

(Wl)
Γ ` ∆
Γ, φ ` ∆

(ind)
Γ ` φ,∆ φ ` [α]φ φ ` ψ

Γ ` [α∗]ψ,∆

(cut)
Γ ` C,∆ Γ,C ` ∆

Γ ` ∆

(id)
Γ, P ` P,∆

(M[])
Q ` P

[a]Q ` [a]P

(MR)
Γ ` [a]Q,∆ Q ` P

Γ ` [a]P,∆

(CER)
Γ ` C (Q) , ∆ P ↔ Q

Γ ` C (P) , ∆

(CEL)
Γ,C (Q) ` ∆ P ↔ Q

Γ,C (P) ` ∆

(CE)
p (x̄)↔ q (x̄)

C (p (x̄))↔ C (q (x̄))

(GVR)
Γconst ` P,∆const

Γ ` [a]P,∆

(DR) [x′ = f(x)&q(x)]r(x)→
(
[x′ = f(x)&r(x)]p(x)→ [x′ = f(x)&q(x)]p(x)

)

(DG) [x′ = f(x)&q(x)]p(x)↔ ∀y [x′ = f(x), y′ = a(x)y + b(x)&q(x)]p(x)

Figure 16: Proof Rules, see [36]

Formula [α]A→ [α][β]A follows in a similar manner
from monotonicity M[] and V since FV(A)∩BV(β) = ∅.

∗
id A ` A
V A ` [β]A
M[][α]A ` [α][β]A
→r ` [α]A→ [α][β]A

Proof of Lemma 3. The first step uses differential refine-
ment (DR) [38] to remove Q from the evolution domain.
Then the tactic checks each differential equation indi-
vidually and drops the ones in y′ = η one by one, by
introducing a universal quantifier (∀i) for the respective
y and applying the differential ghost axiom4 in the un-
usual inverse direction (DG). This step by step removal
is necessary until vectorial x′ = θ are introduced into
KeYmaera X.

∗
id [{x′ = θ & H}]A ` [{x′ = θ & H}]A
DG[{x′ = θ & H}]A ` ∀y [{x′ = θ, y′ = η & H}]A
∀i [{x′ = θ & H}]A ` [{x′ = θ, y′ = η & H}]A
DR[{x′ = θ & H}]A ` [{x′ = θ, y′ = η & H ∧Q}]A

4 Axiom DG is usually used to augment an ODE for the sake of
proving invariants with additional differential equations whose so-
lutions exist long enough. We use it to drop differential equations.

The DR axiom requires the verification of an addi-
tional side condition

` [{x′ = θ, y′ = η & H ∧Q}]H

which closes immediately, since H holds throughout the
continuous evolution and thus also after the evolution
has stopped.

Proof of Lemma 4. The proof rule GVR abstracts a hy-
brid program by universally quantifying all bound vari-
ables.

∗
id A(x) ` A(x)
∀i ∀xA(x) ` A(x)

GVR ∀xA(x) ` [α]A(x)
[:∗] [x := ∗]A(x) ` [α]A(x)
→r ` [x := ∗]A(x)→ [α]A(x)

Proof of Lemma 5. We prove both directions of the equiv-
alence independently.

. . . ¯ . . . °
∧r [α]F ` ([α; ?F]A→ [α]A) ∧ ([α]A→ [α; ?F]A)
↔r [α]F ` [α; ?F]A↔ [α]A
→r ` [α]F → ([α; ?F]A↔ [α]A)

The direction [α; ?F]A→ [α]A follows from K, mono-
tonicity M[], and modus ponens MP.

28 Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification

∗
MPF, F → A ` A
→r F ` (F → A)→ A
M[] [α]F ` [α] ((F → A)→ A)
K [α]F ` [α] (F → A)→ [α]A
[?] [α]F ` [α][?F]A→ [α]A
[;] [α]F ` [α; ?F]A→ [α]A

¯ continued

The direction [α]A→ [α; ?F]A takes similar steps.
∗

id F,A ` A
→r F ` A→ (F → A)
M[][α]F ` [α] (A→ (F → A))
K [α]F ` [α]A→ [α] (F → A)
[?] [α]F ` [α]A→ [α][?F]A
[;] [α]F ` [α]A→ [α; ?F]A

° continued

Proof of Lemma 6. The lemma is verified as a derived
axiom in KeYmaera X. Since the formulas F , G and
A, and the program constant α are not restricted to
specific variables, the tactic simplifies to propositional
transitivity.

∗
F → G,G→ A ` F → A

[?] F → G, [?G]A ` [?F]A
∧l (F → G) ∧ [?G]A ` [?F]A
→r `

(
(F → G) ∧ [?G]A

)
→ [?F]A

D Corollaries for Implementation Purposes

For tactic implementation purposes, the following corol-
laries to Lemma 1 and Lemma 6 are useful since they are
implementable as derived axioms in KeYmaera X and
therefore faster to use than their more general tactics
counterparts.

Corollary 1 (Reorder Specific Programs). Let x, y
be variables, s, t be terms not mentioning x, y, and F,G
be dL formulas, A(x, y) a dL formula that is allowed to
mention x, y free, and p be a dL formula not mentioning
x, y free. Then the following formulas are valid:

[x := s; y := t]A(x, y)↔ [y := t;x := s]A(x, y) (43)

[x := ∗; y := ∗]A(x, y)↔ [y := ∗;x := ∗]A(x, y) (44)

[x := ∗; y := t]A(x, y)↔ [y := t;x := ∗]A(x, y) (45)

[x := ∗; ?p]A(x)↔ [?p;x := ∗]A(x) (46)

[x := s; ?p]A(x)↔ [?p;x := s]A(x) (47)

[?F ; ?G]A↔ [?G; ?F]A (48)

Proof. These formulas can be proved as derived axioms
in KeYmaera X. For instance, (43) below is proved using
the tactic below:

∗
A(s, t) ` A(s, t)

[;],[:=],[:=][x := s; y := t]A(x, y) ` [y := t;x := s]A(x, y)
→r ` (43)

The tactics for all other formulas work accordingly,
i. e., perform all assignments, tests and nondeterministic
assignments with according instantiations of the result-
ing all-quantifiers.

Corollary 2 (Weaken Test in Context). Let A, F
and G be arbitrary dL formulas and let α be an arbitrary
program. Then this is valid:

((
[α][?G]A

)
∧
(
[α] (F → G)

))
→ [α][?F]A (49)

Corollary 2 is a consequence of Lemma 6 and allows
weakening of a test preceded by an arbitrary program.

Proof. To verify Corollary 2 as derived axioms in KeY-
maera X, the tactic uses []∧ in the inverse direction fol-
lowed by M[] to remove the enclosing program α, which
then allows application of Lemma 6.

∗
L. 6 ([?G]A) ∧ (F → G) ` [?F]A
M[] [α] ([?G]A ∧ (F → G)) ` [α][?F]A
[]∧ [α][?G]A ∧ [α] (F → G) ` [α][?F]A
→r ` (49)

Andreas Müller et al.: Tactical Contract Composition for Hybrid System Component Verification 29

∗
(40) t = t−, φ1 ` ϕ1
Wl t = t−, φ1, φ2, ζ ` ϕ1

∗
(40) t = t−, φ2 ` ϕ2
Wl t = t−, φ1, φ2, ζ ` ϕ2

∗
id ζ ` ζ
Wlt = t−, φ1, φ2, ζ ` ζ

∧l,∧r t = t− ∧ φ1 ∧ φ2 ∧ ζ ` ϕ1 ∧ ϕ2 ∧ ζ
def t = t− ∧ φ3 ` ϕ3

Base case Fig. 9 continued

Figure 17: Proof steps: Verify induction base case

def

∧l

∧r

Wl

(42)
∗

ϕ1 ` ψsafe
1 ∧Πout

1

ϕ1, ϕ2, ζ ` ψsafe
1 ∧Πout

1

Wl

(42)
∗

ϕ2 ` ψsafe
2 ∧Πout

2

ϕ1, ϕ2, ζ ` ψsafe
2 ∧Πout

2

ϕ1, ϕ2, ζ `
(
ψsafe
1 Πout

1

)
∧
(
ψsafe
2 ∧Πout

2

)

ϕ1 ∧ ϕ2 ∧ ζ `
(
ψsafe
1 ∧Πout

1

)
∧
(
ψsafe
2 ∧Πout

2

)

ϕ3 `
(
ψsafe
3 ∧Πout

3

)

Use case Fig. 9 continued

Figure 18: Proof steps: Verify induction use case

	Introduction
	Preliminaries: Differential Dynamic Logic
	Component-based Modeling
	Hybrid Components with Change and Rate Contracts
	Proof Automation
	Case Studies
	Related Work
	Conclusion
	Formal Semantics
	Proof Rules
	Proofs
	Corollaries for Implementation Purposes

