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Markov Decision Processes

Markov Decision Processes

Definition [Markov Decision Process]

A (finite, state labeled) MDP, M, is a tuple 〈S ; si ;A; τ ; Λ;L〉 where:

S is a finite set of states with initial state si ;

A is a finite set of action names;

τ : S ×A → Dist(S) is a probabilistic transition function;

Λ is a set of propositions and L : S → 2Λ is a labeling function.
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Markov Decision Processes

How to choose actions?

¾ 
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Definition [Scheduler]

A memoryless scheduler for M, σ, is a function σ : S → Dist(S) s.t. for
each s ∈ S , σ(s) =

∑
a∈A ps,aτ(s, a) with

∑
a∈A ps,a = 1.

Schedulers “solve” the nondeterminism.
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Markov Decision Processes

Paths and Probabilities (Paths)

Definition [Path]

For M, σ, a path π is a sequence of states π1 · π2... s.t. ∀i , σ(πi )(πi+1) > 0.
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Markov Decision Processes

Paths and Probabilities

Proposition

Each σ induces a probability measure Psigma over the set of paths given by
Pσ({π0 · π1 · ... · πn · ∗ | ∗ is a path, π0 = si}) =

∏
0≤i<n σ(πi )(πi+1)
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Probabilisitic MC and Statistical MC

Bounded LTL

Syntax of BLTL

ϕ := λ | ¬ϕ | ϕ ∨ ϕ | F≤nϕ | G≤nϕ | ϕU≤nϕ where λ ∈ Λ.

Semantics of BLTL

π |= λ if λ ∈ L(π0)
π |= ¬ϕ if π 6|= ϕ
π |= ϕ1 ∨ ϕ2 if π |= ϕ1 or π |= ϕ2

π |= F≤nϕ if ∃i≤n : π|i |= ϕ
π |= G≤nϕ ∀i≤n : π|i |= ϕ
π |= ϕ1U≤nϕ2 ∃i≤n∀k≤i : π|k |= ϕ1 and π|i |= ϕ2

F≤n a

a 
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Probabilisitic MC and Statistical MC

Probabilistic BLTL

The decision problem of MC in fully probabilistic settings is finding out if,
for a given parameter θ,

Pσ({π : π |= ϕ}) ≤ θ

Proposition

This is a well posed problem.
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Probabilisitic MC and Statistical MC

We should be so lucky...

We may not have a scheduler, but we still want to guarantee properties...

We make claims that hold all for all schedulers, no matter how adversarial.

The (decision) problem for MC for MDPS is finding out if, for a given
parameter θ,

Pσ({π : π |= ϕ}) ≤ θ for all σ
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SMC for MDPs

SMC for MDPS

Basic idea

“Learn the most adversarial scheduler (or a good enough approximation)
by successively refining an initial guess”
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SMC for MDPs

Scheduler Evaluation

Same ideas as classical Statistical Model Checking

Fully Probabilistic System 

+ σ 

φ ≡ p1 U<12 (G<10 (¬ p3))  
BLTL formula 

θ 
Probability Treshold 

Evaluate 
Traces 

Sample 
Traces 

Hypothesis 
Testing 

Answer 

Sufficient 
Statistical 
Evidence 
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SMC for MDPs

Scheduler Evalutaion

Record whether state action pairs crossed by samples satisfied ϕ.

Empirical quality Q̂σ of a visited (s, a) is #(s,a) seen in satisfying traces
# times (s,a) was seen

Q̂σ(s, a)
#samples→∞−→ Qσ(s, a) ≡ P(π |= ϕ | (s, a) ∈ π)
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SMC for MDPs

Scheduler Improvement

New scheduler σ′ is obtained from σ by giving higher probability to
transitions with higher quality.

Update Rule

σ′(s, a) =
Q̂σ(s, a)∑

b∈A Q̂σ(s, b)
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SMC for MDPs

History and Greediness

What if we explore too little?

In case there are state action pairs such that Q̂(s, a) = 0, keep a history
parameter h and update instead

σ′(s, a) = hσ(s, a) + (1− h)
Q̂σ(s, a)∑

b∈A Q̂σ(s, b)

This avoids “blocking” transitions.
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SMC for MDPs

History and Greediness

What if we explore too much?

Keep a greediness parameter ε and give all probability to the best action
except for ε, which is distributed according to the update rule

This avoids slow updates.
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SMC for MDPs

History and Greediness

What if we explore too much?

Keep a greediness parameter ε and give all probability to the best action
except for ε, which is distributed according to the update rule

This avoids slow updates.

a 

b c 

σ’(s,a) = ε + 4/7 *(1-ε) 

σ’(s,b) = 0 *(1-ε) 
 

σ’(s,c) = 3/7 *(1-ε) 
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SMC for MDPs

If at first you don’t succeed...

If σ makes Pσ({π : π |= ϕ}) > θ, the property is surely false.

If not

We may be converging towards a local optimum;

The property may be true;
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SMC for MDPs

If at first you don’t succeed...

Algorithms like this are called “False-biased Monte Carlo Algorithms”

Algorithm Input 

False 

True 

We can trust 

We have to 
reconsider a 
couple of times 

Confidence increases exponentially with the number of times we restart.
Theorem
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Why does it work?

Summary

1 Markov Decision Processes

2 Probabilisitic MC and Statistical MC

3 SMC for MDPs

4 Why does it work?

5 Experimental Validation
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Why does it work?

Value

Definition [Value]

The Value of a state s under a scheduler σ is defined as

V σ(s) = P(π |= ϕ | (s, a) ∈ π, a ∈ A(s))

Notice that the MC problem can be reduced to finding V (σsi )

V σ(s) =
∑

a∈A(s)

σ(s, a)Qσ(s, a)
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Why does it work?

Value

Definition [Local Update]

Let σ and σ′ be two schedulers. The local update of σ by σ′ in s,
σ[σ(s)→ σ′(s)] is the scheduler the behaves like σ everywhere but in s,
where it behaves as σ′.

σ σ′

s s 

σ[σ(s → σ′(s))]
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Why does it work?

Value

Theorem [SB]

Let σ and σ′ be two schedulers and ∀s ∈ S : V σ[σ(s)→σ′(s)](s) ≥ V σ(s),
then

∀s ∈ S : V σ′
(s) ≥ V σ(s)

Corollary

Let σ be the input scheduler and σ′ be the output of Scheduler
Improvement. Then

∀s ∈ S : V σ′
(s) ≥ V σ(s)

and, in particular
V σ′

(si ) ≥ V σ(si )

Proof
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Experimental Validation

Summary

1 Markov Decision Processes

2 Probabilisitic MC and Statistical MC

3 SMC for MDPs

4 Why does it work?

5 Experimental Validation
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Experimental Validation

Experimental Validation

We divided models in three categories

Heavily structured models

Structured models

Unstructured models

Comparisons were made against PRISM, a state-of-the-art probabilistic
model checker
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Experimental Validation

Highly Structured Models

CSMA - Carrier Sense, Multiple Access protocol

WLAN - IEEE 802.11 wireless LAN protocol
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Experimental Validation

Highly Structured Models

CSMA

3 4

θ 0.5 0.8 0.85 0.9 0.95 PRISM

out F F F T T 0.86

t 1.7 11.5 35.9 115.7 111.9 136

CSMA

3 6

θ 0.3 0.4 0.45 0.5 0.8 PRISM

out F F F T T 0.48

t 2.5 9.4 18.8 133.9 119.3 2995

CSMA

4 4

θ 0.5 0.7 0.8 0.9 0.95 PRISM

out F F F F T 0.93

t 3.5 3.7 17.5 69.0 232.8 16244

CSMA

4 6

θ 0.5 0.7 0.8 0.9 0.95 PRISM

out F F F F F timeout

t 3.7 4.1 4.2 26.2 258.9 timeout

WLAN

5

θ 0.1 0.15 0.2 0.25 0.5 PRISM

out F F T T T 0.18

t 4.9 11.1 124.7 104.7 103.2 1.6

WLAN

6

θ 0.1 0.15 0.2 0.25 0.5 PRISM

out F F T T T 0.18

t 5.0 11.3 127.0 104.9 102.9 1.6
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Experimental Validation

Highly Structured Models

Takeaways

Symmetry makes the number of “meaningful” actions relatively small;

SMC works well in highly structured systems;

Exact methods still work best in most cases;
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Experimental Validation

Structured Models

Motion Planning - Two robots move around an n by n plant

P≤θ(
[
Safe1U

≤30
(
pickup1 ∧

[
Safe′1U

≤30RendezVous
])]

∧
[
Safe2U

≤30
(
pickup2 ∧

[
Safe′2U

≤30RendezVous
])]

)
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Experimental Validation

Structured Models

Robot
n = 50
r = 1

θ 0.9 0.95 0.99 PRISM
out F F F 0.999
t 23.4 27.5 40.8 1252.7

Robot
n = 50
r = 2

θ 0.9 0.95 0.99 PRISM
out F F F 0.999
t 71.7 73.9 250.4 3651.045

Robot
n = 75
r = 2

θ 0.95 0.97 0.99 PRISM
out F F F timeout

t 382.5 377.1 2676.9 timeout

Robot
n = 200
r = 3

θ 0.85 0.9 0.95 PRISM
out F F T timeout

t 903.1 1129.3 2302.8 timeout

David Henriques (CMU) SMC for MDPs QEST’12 32 / 37



Experimental Validation

Structured Models

Takeaways

Exact methods cannot exploit symmetry so much;

Number of really “meaningful” actions still relatively small;

SMC works very well in structured systems;
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Experimental Validation

Unstructured Models

Uniform random model - number of actions enabled follows uniform
distribution, number of targets per choice follows uniform
distribution, targets picked uniformly, probabilities of transitions
uniformely distributed. Objective: as little structure as possible.

Results very unpredictable and typically pretty bad.

< 0.3 probability gathered after a few hours with SMC.

Exact methods fail to produce answers.
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Experimental Validation

Unstructured Models

Takeaways

Lack of structure makes this problem very hard;

SMC cannot focus on “good” areas;

Symbolic methods cannot exploit symmetry when encoding the
system.
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Experimental Validation

Conclusions and Future Work

Conclusions

Statistical method for MC for probabilism + nondeterminism;

Empirically and theoretically validated;

Uses bounded memory;

Efficient for complex but structured models.

Future Work

Unbounded LTL;

Distributed systems;

Schedulers with memory;

...
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Experimental Validation
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Experimental Validation

False Biased Monte Carlo Algorithms

Since our algorithm is false biased (results of “false” are always accurate),
we can just run the algorithm again to exponentially increase confidence
on a “probably true” result.

Bounding theorem [BB]

If the probability of success of a single trial of a false biased algorithm is
greater than

p = 1− 2
log η
T

where T is the number of iterations of the algorithm, than we can ensure
a correcness level of 1− η, (0 < η < 1).

Back
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Experimental Validation

Proof of Improvement Theorem

V σ[σ(s)→σ′(s)(s)

=
∑

a∈A(s) pε(s, a)Qσ(s, a) + (1− ε) maxa∈A(s) Q
σ(s, a)

=
∑

a∈A(s) pε(s, a)Qσ(s, a) +
(∑

a∈A(s) σ(s, a)−
∑

a∈A(s) pε(s, a)
)

maxa∈A(s) Q
σ(s, a)

=
∑

a∈A(s) pε(s, a)Qσ(s, a) +
∑

a∈A(s) [σ(s, a)− pε(s, a)] maxa∈A(s) Q
σ(s, a)

=
∑

a∈A(s) pε(s, a)Qσ(s, a) +
∑

a∈A(s)

[
(σ(s, a)− pε(s, a)) maxa∈A(s) Q

σ(s, a)
]

≥
∑

a∈A(s) pε(s, a)Qσ(s, a) +
∑

a∈A [(σ(s, a)− pε(s, a))Qσ(s, a)]

=
∑

a∈A(s) pε(s, a)Qσ(s, a) +
∑

a∈A(s) σ(s, a)Qσ(s, a)−
∑

a∈A(s) pε(s, a)Qσ(s, a)

=
∑

a∈A(s) σ(s, a)Qσ(s, a) = V σ(s)

σ′(s, a) = (1− h)
[
I{a = arg maxa Qσ(s, a)}(1− ε) + ε

(
Qσ(s,a)∑
b Qσ(s,a)

)]
+ hσ(s, a)
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