Statistical Model Checking for Markov Decision Processes

David Henriques

Joint work with João Martins, Paolo Zuliani, André Platzer and Edmund M. Clarke

QEST, September 18th, 2012

Outline of this Presentation

- Probabilisitic MC and Statistical MC
- 3 SMC for MDPs
- Why does it work?
- 5 Experimental Validation

Summary

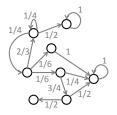
Markov Decision Processes

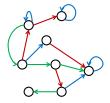
- 2 Probabilisitic MC and Statistical MC
- 3 SMC for MDPs
- Why does it work?
- 5 Experimental Validation

Common Settings in MC

Fully probabilistic systems

Non-deterministic systems

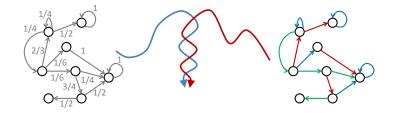




Common Settings in MC

Fully probabilistic systems

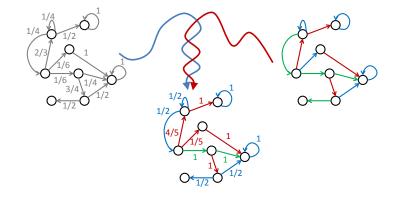
Non-deterministic systems



Common Settings in MC

Fully probabilistic systems

Non-deterministic systems

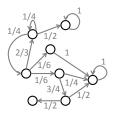


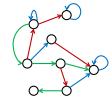
1/2

Common Settings in MC

Fully probabilistic systems

Non-deterministic systems

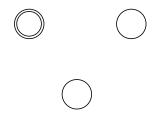




Non-deterministic Probabilistic Systems

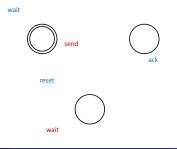
Definition [Markov Decision Process]

- S is a finite set of states with initial state s_i;
- \mathcal{A} is a finite set of action names;
- $\tau: S \times A \rightarrow Dist(S)$ is a probabilistic transition function;
- Λ is a set of propositions and $\mathcal{L}: S \to 2^{\Lambda}$ is a labeling function.



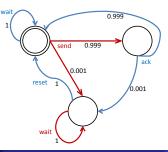
Definition [Markov Decision Process]

- *S* is a finite set of states with initial state *s_i*;
- A is a finite set of action names;
- $\tau: S \times A \rightarrow Dist(S)$ is a probabilistic transition function;
- Λ is a set of propositions and $\mathcal{L}: S \to 2^{\Lambda}$ is a labeling function.



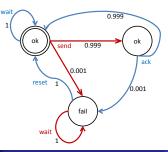
Definition [Markov Decision Process]

- *S* is a finite set of states with initial state *s_i*;
- A is a finite set of action names;
- $\tau: S \times A \rightarrow Dist(S)$ is a probabilistic transition function;
- Λ is a set of propositions and $\mathcal{L}: S \to 2^{\Lambda}$ is a labeling function.



Definition [Markov Decision Process]

- *S* is a finite set of states with initial state *s_i*;
- A is a finite set of action names;
- $\tau: S \times A \rightarrow Dist(S)$ is a probabilistic transition function;
- Λ is a set of propositions and $\mathcal{L}: S \to 2^{\Lambda}$ is a labeling function.



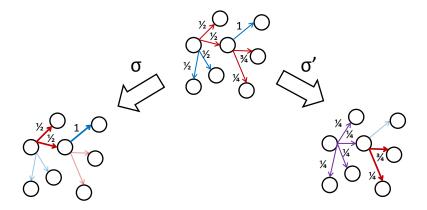
How to choose actions?

Definition [Scheduler]

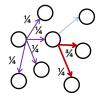
A memoryless scheduler for \mathcal{M} , σ , is a function $\sigma : S \to Dist(S)$ s.t. for each $s \in S$, $\sigma(s) = \sum_{a \in \mathcal{A}} p_{s,a}\tau(s, a)$ with $\sum_{a \in \mathcal{A}} p_{s,a} = 1$.

How to choose actions?

How to choose actions?

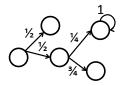


How to choose actions?



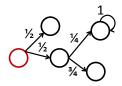
Paths and Probabilities (Paths)

Definition [Path]



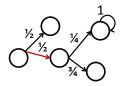
Paths and Probabilities (Paths)

Definition



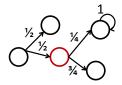
Paths and Probabilities (Paths)

Definition



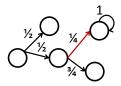
Paths and Probabilities (Paths)

Definition



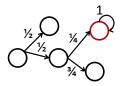
Paths and Probabilities (Paths)

Definition



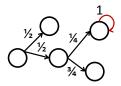
Paths and Probabilities (Paths)

Definition



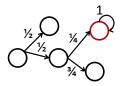
Paths and Probabilities (Paths)

Definition

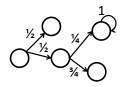


Paths and Probabilities (Paths)

Definition



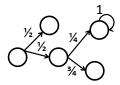
Paths and Probabilities



Paths and Probabilities (Probabilities)

Proposition

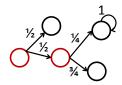
Each σ induces a probability measure P^{σ} over the set of paths given by $P^{\sigma}(\{\pi_0 \cdot \pi_1 \cdot \ldots \cdot \pi_n \cdot * | * \text{ is a path, } \pi_0 = s_i\}) = \prod_{0 \le i < n} \sigma(\pi_i)(\pi_{i+1})$



Paths and Probabilities (Probabilities)

Proposition

Each σ induces a probability measure P^{σ} over the set of paths given by $P^{\sigma}(\{\pi_0 \cdot \pi_1 \cdot \ldots \cdot \pi_n \cdot * | * \text{ is a path, } \pi_0 = s_i\}) = \prod_{0 \le i < n} \sigma(\pi_i)(\pi_{i+1})$

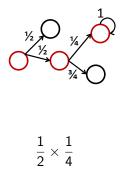


 $\frac{1}{2}$

Paths and Probabilities (Probabilities)

Proposition

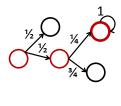
Each σ induces a probability measure P^{σ} over the set of paths given by $P^{\sigma}(\{\pi_0 \cdot \pi_1 \cdot \ldots \cdot \pi_n \cdot * \mid * \text{ is a path, } \pi_0 = s_i\}) = \prod_{0 \le i < n} \sigma(\pi_i)(\pi_{i+1})$



Paths and Probabilities (Probabilities)

Proposition

Each σ induces a probability measure P^{σ} over the set of paths given by $P^{\sigma}(\{\pi_0 \cdot \pi_1 \cdot \ldots \cdot \pi_n \cdot * \mid * \text{ is a path, } \pi_0 = s_i\}) = \prod_{0 \le i < n} \sigma(\pi_i)(\pi_{i+1})$



$$\frac{1}{2} \times \frac{1}{4} \times 1$$

Summary

2 Probabilisitic MC and Statistical MC

3 SMC for MDPs

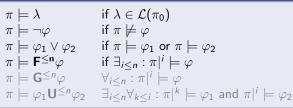
- Why does it work?
- 5 Experimental Validation

Syntax of BLTL

$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$

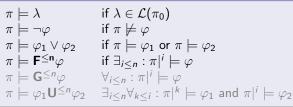
Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$



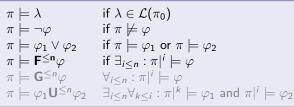
Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$



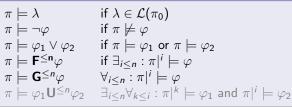
Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$



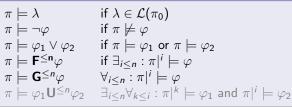
Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$



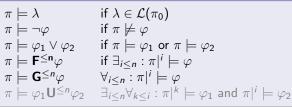
Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$



Syntax of BLTL

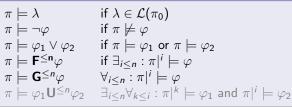
$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$



Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$

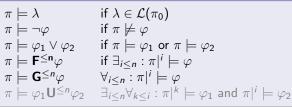
Semantics of BLTL



Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$

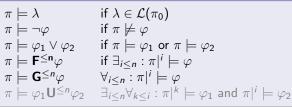
Semantics of BLTL



Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$

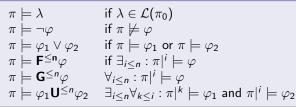
Semantics of BLTL



Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$

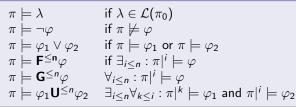
Semantics of BLTL



Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$

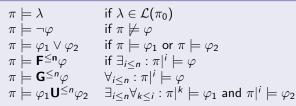
Semantics of BLTL



Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$

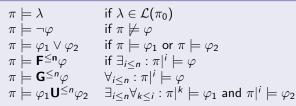
Semantics of BLTL



Syntax of BLTL

$$\varphi := \lambda \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{F}^{\leq \mathbf{n}} \varphi \mid \mathbf{G}^{\leq \mathbf{n}} \varphi \mid \varphi \mathbf{U}^{\leq \mathbf{n}} \varphi \text{ where } \lambda \in \Lambda.$$

Semantics of BLTL



Probabilistic BLTL

The decision problem of MC in fully probabilistic settings is finding out if, for a given parameter θ ,

 $P^{\sigma}(\{\pi:\pi\models\varphi\})\leq\theta$

Probabilistic BLTL

The decision problem of MC in fully probabilistic settings is finding out if, for a given parameter θ ,

$$P^{\sigma}(\{\pi:\pi\models\varphi\})\leq\theta$$

Proposition

This is a well posed problem.

We should be so lucky ...

We may not have a scheduler, but we still want to guarantee properties...

We should be so lucky ...

We may not have a scheduler, but we still want to guarantee properties...

We make claims that hold all for *all* schedulers, no matter how adversarial.

We should be so lucky ...

We may not have a scheduler, but we still want to guarantee properties...

We make claims that hold all for *all* schedulers, no matter how adversarial.

The (decision) problem for MC for MDPS is finding out if, for a given parameter θ ,

$$\mathsf{P}^{\sigma}(\{\pi:\pi\models\varphi\})\leq heta$$
 for all σ

Summary

- Markov Decision Processes
- 2 Probabilisitic MC and Statistical MC
- 3 SMC for MDPs
 - Why does it work?
 - 5 Experimental Validation

SMC for MDPS

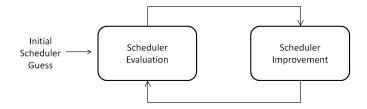
Basic idea

"Learn the most adversarial scheduler (or a good enough approximation) by successively refining an initial guess"

SMC for MDPS

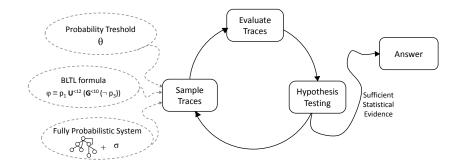
Basic idea

"Learn the most adversarial scheduler (or a good enough approximation) by successively refining an initial guess"



Same ideas as classical Statistical Model Checking

Same ideas as classical Statistical Model Checking



Record whether state action pairs crossed by samples satisfied φ .

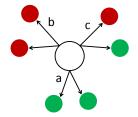
Record whether state action pairs crossed by samples satisfied φ .

Record whether state action pairs crossed by samples satisfied φ .

$$\hat{Q}^{\sigma}(s, a) \stackrel{\#samples o \infty}{\longrightarrow} Q^{\sigma}(s, a) \equiv P(\pi \models arphi \mid (s, a) \in \pi)$$

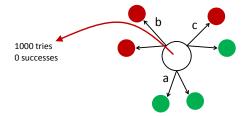
Record whether state action pairs crossed by samples satisfied φ .

$$\hat{Q}^{\sigma}(s,a) \stackrel{\#samples
ightarrow \infty}{\longrightarrow} Q^{\sigma}(s,a) \equiv P(\pi \models arphi \mid (s,a) \in \pi)$$



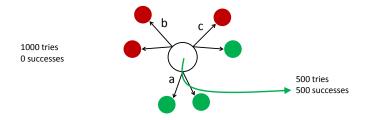
Record whether state action pairs crossed by samples satisfied φ .

$$\hat{Q}^{\sigma}(s,a) \stackrel{\#\mathsf{samples} o \infty}{\longrightarrow} Q^{\sigma}(s,a) \equiv P(\pi \models arphi \mid (s,a) \in \pi)$$



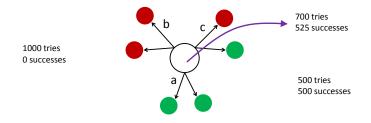
Record whether state action pairs crossed by samples satisfied φ .

$$\hat{Q}^{\sigma}(s,a) \stackrel{\#samples o \infty}{\longrightarrow} Q^{\sigma}(s,a) \equiv P(\pi \models \varphi \mid (s,a) \in \pi)$$



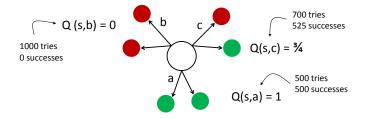
Record whether state action pairs crossed by samples satisfied φ .

$$\hat{Q}^{\sigma}(s,a) \stackrel{\#samples
ightarrow \infty}{\longrightarrow} Q^{\sigma}(s,a) \equiv P(\pi \models arphi \mid (s,a) \in \pi)$$



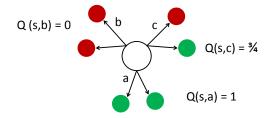
Record whether state action pairs crossed by samples satisfied φ .

$$\hat{Q}^{\sigma}(s,a) \stackrel{\#samples
ightarrow \infty}{\longrightarrow} Q^{\sigma}(s,a) \equiv P(\pi \models arphi \mid (s,a) \in \pi)$$



Record whether state action pairs crossed by samples satisfied φ .

$$\hat{Q}^{\sigma}(s,a) \stackrel{\#\mathsf{samples} o \infty}{\longrightarrow} Q^{\sigma}(s,a) \equiv P(\pi \models arphi \mid (s,a) \in \pi)$$



New scheduler σ' is obtained from σ by giving higher probability to transitions with higher quality.

$$\sigma'(s, a) = rac{\hat{Q}^{\sigma}(s, a)}{\sum_{b \in \mathcal{A}} \hat{Q}^{\sigma}(s, b)}$$

New scheduler σ' is obtained from σ by giving higher probability to transitions with higher quality.

$$\sigma'(s, a) = rac{\hat{Q}^{\sigma}(s, a)}{\sum_{b \in \mathcal{A}} \hat{Q}^{\sigma}(s, b)}$$

$$Q(s,b) = 0$$

$$Q(s,c) = \frac{3}{4}$$

$$Q(s,c) = 1$$

New scheduler σ' is obtained from σ by giving higher probability to transitions with higher quality.

$$\sigma'(s, a) = rac{\hat{Q}^{\sigma}(s, a)}{\sum_{b \in \mathcal{A}} \hat{Q}^{\sigma}(s, b)}$$

Q (s,b) = 0

$$Q(s,c) = \frac{3}{4}$$

 $a = \frac{\sigma'(s,a)}{Q(s,c)} = \frac{1}{(1+\frac{3}{4}+0)}$
 $Q(s,a) = 1$

New scheduler σ' is obtained from σ by giving higher probability to transitions with higher quality.

$$\sigma'(s, a) = rac{\hat{Q}^{\sigma}(s, a)}{\sum_{b \in \mathcal{A}} \hat{Q}^{\sigma}(s, b)}$$

Q (s,b) = 0

$$\sigma'(s,b) = 0$$

 $\sigma'(s,b) = 0$
 $\sigma'(s,c) = 3/7$
 $Q(s,c) = 3/7$
 $Q(s,c) = 3/7$
 $Q(s,c) = 3/7$
 $Q(s,c) = 3/7$

New scheduler σ' is obtained from σ by giving higher probability to transitions with higher quality.

$$\sigma'(s, a) = rac{\hat{Q}^{\sigma}(s, a)}{\sum_{b \in \mathcal{A}} \hat{Q}^{\sigma}(s, b)}$$

$$\sigma'(s,b) = 0$$

What if we explore too little?

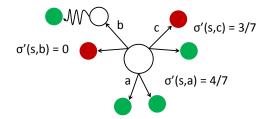
In case there are state action pairs such that $\hat{Q}(s, a) = 0$, keep a history parameter h and update instead

$$\sigma'(s, a) = h\sigma(s, a) + (1 - h) rac{\hat{Q}^{\sigma}(s, a)}{\sum_{b \in \mathcal{A}} \hat{Q}^{\sigma}(s, b)}$$

What if we explore too little?

In case there are state action pairs such that $\hat{Q}(s, a) = 0$, keep a history parameter h and update instead

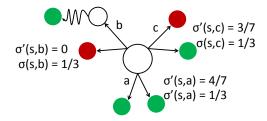
$$\sigma'(s, \mathsf{a}) = h\sigma(s, \mathsf{a}) + (1-h)rac{\hat{Q}^{\sigma}(s, \mathsf{a})}{\sum_{b\in\mathcal{A}}\hat{Q}^{\sigma}(s, b)}$$



What if we explore too little?

In case there are state action pairs such that $\hat{Q}(s, a) = 0$, keep a history parameter h and update instead

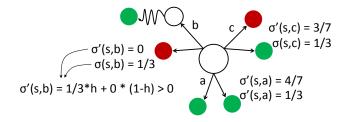
$$\sigma'(s, a) = h\sigma(s, a) + (1 - h) rac{\hat{Q}^{\sigma}(s, a)}{\sum_{b \in \mathcal{A}} \hat{Q}^{\sigma}(s, b)}$$



What if we explore too little?

In case there are state action pairs such that $\hat{Q}(s, a) = 0$, keep a history parameter h and update instead

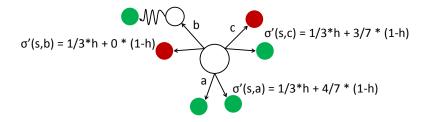
$$\sigma'(s, a) = h\sigma(s, a) + (1 - h) rac{\hat{Q}^{\sigma}(s, a)}{\sum_{b \in \mathcal{A}} \hat{Q}^{\sigma}(s, b)}$$



What if we explore too little?

In case there are state action pairs such that $\hat{Q}(s, a) = 0$, keep a history parameter h and update instead

$$\sigma'(s, a) = h\sigma(s, a) + (1 - h) rac{\hat{Q}^{\sigma}(s, a)}{\sum_{b \in \mathcal{A}} \hat{Q}^{\sigma}(s, b)}$$

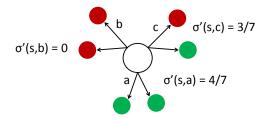


What if we explore too much?

Keep a greediness parameter ϵ and give *all* probability to the best action except for ϵ , which is distributed according to the update rule

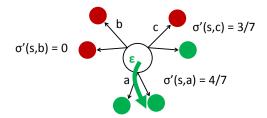
What if we explore too much?

Keep a greediness parameter ϵ and give *all* probability to the best action except for ϵ , which is distributed according to the update rule



What if we explore too much?

Keep a greediness parameter ϵ and give *all* probability to the best action except for ϵ , which is distributed according to the update rule



What if we explore too much?

Keep a greediness parameter ϵ and give *all* probability to the best action except for ϵ , which is distributed according to the update rule

$$\sigma'(s,b) = 0$$

What if we explore too much?

Keep a greediness parameter ϵ and give *all* probability to the best action except for ϵ , which is distributed according to the update rule

$$\sigma'(s,b) = 0 * (1-\varepsilon)$$

$$\sigma'(s,c) = 3/7 * (1-\varepsilon)$$

$$\sigma'(s,a) = \varepsilon + 4/7 * (1-\varepsilon)$$

If at first you don't succeed...

If σ makes $P^{\sigma}(\{\pi : \pi \models \varphi\}) > \theta$, the property is surely false.

If at first you don't succeed...

If σ makes $P^{\sigma}(\{\pi : \pi \models \varphi\}) > \theta$, the property is surely false.

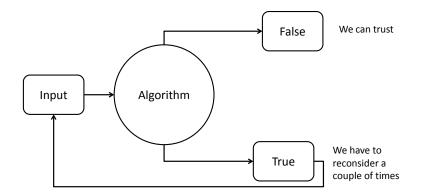
If not

- We may be converging towards a local optimum;
- The property may be true;

SMC for MDPs

If at first you don't succeed...

Algorithms like this are called "False-biased Monte Carlo Algorithms"



Confidence increases exponentially with the number of times we restart.

▶ Theorem

Summary

- 1 Markov Decision Processes
- 2 Probabilisitic MC and Statistical MC
- **3** SMC for MDPs
- Why does it work?
 - 5 Experimental Validation

Definition [Value]

The Value of a state s under a scheduler σ is defined as

$$V^{\sigma}(s) = P(\pi \models arphi \mid (s, a) \in \pi, a \in \mathcal{A}(s))$$

Definition [Value]

The Value of a state s under a scheduler σ is defined as

$$\mathcal{V}^{\sigma}(s) = \mathcal{P}(\pi \models arphi \mid (s, a) \in \pi, a \in \mathcal{A}(s))$$

Notice that the MC problem can be reduced to finding $V(^{\sigma}s_i)$

Definition [Value]

The Value of a state s under a scheduler σ is defined as

$$\mathcal{V}^{\sigma}(s) = \mathcal{P}(\pi \models arphi \mid (s, a) \in \pi, a \in \mathcal{A}(s))$$

Notice that the MC problem can be reduced to finding $V(^{\sigma}s_i)$

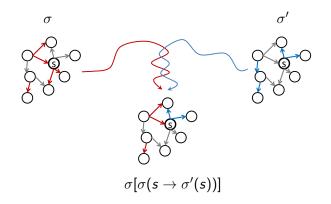
$$V^{\sigma}(s) = \sum_{a \in \mathcal{A}(s)} \sigma(s, a) Q^{\sigma}(s, a)$$

Definition [Local Update]

Let σ and σ' be two schedulers. The local update of σ by σ' in s, $\sigma[\sigma(s) \rightarrow \sigma'(s)]$ is the scheduler the behaves like σ everywhere but in s, where it behaves as σ' .

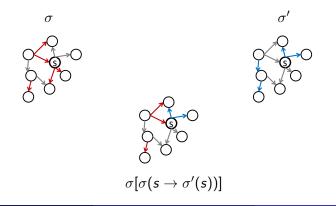
Definition [Local Update]

Let σ and σ' be two schedulers. The local update of σ by σ' in s, $\sigma[\sigma(s) \rightarrow \sigma'(s)]$ is the scheduler the behaves like σ everywhere but in s, where it behaves as σ' .



Definition [Local Update]

Let σ and σ' be two schedulers. The local update of σ by σ' in s, $\sigma[\sigma(s) \rightarrow \sigma'(s)]$ is the scheduler the behaves like σ everywhere but in s, where it behaves as σ' .



Theorem [SB]

Let σ and σ' be two schedulers and $\forall s \in S : V^{\sigma[\sigma(s) \to \sigma'(s)]}(s) \ge V^{\sigma}(s)$, then

$$orall s \in S: V^{\sigma'}(s) \geq V^{\sigma}(s)$$

Corollary

Let σ be the input scheduler and σ' be the output of Scheduler Improvement. Then

$$orall s \in S: V^{\sigma'}(s) \geq V^{\sigma}(s)$$

and, in particular

$$V^{\sigma'}(s_i) \geq V^{\sigma}(s_i)$$

David Henriques (CMU)

Summary

- 1 Markov Decision Processes
- 2 Probabilisitic MC and Statistical MC
- **3** SMC for MDPs
- Why does it work?
- 5 Experimental Validation

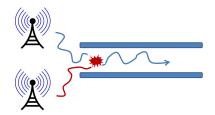
Experimental Validation

We divided models in three categories

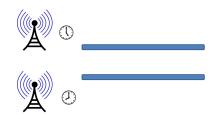
- Heavily structured models
- Structured models
- Unstructured models

Comparisons were made against PRISM, a state-of-the-art probabilistic model checker

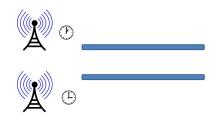
- CSMA Carrier Sense, Multiple Access protocol
- WLAN IEEE 802.11 wireless LAN protocol



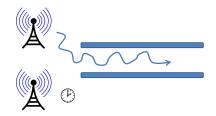
- CSMA Carrier Sense, Multiple Access protocol
- WLAN IEEE 802.11 wireless LAN protocol



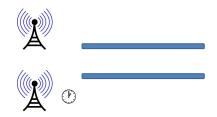
- CSMA Carrier Sense, Multiple Access protocol
- WLAN IEEE 802.11 wireless LAN protocol



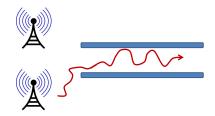
- CSMA Carrier Sense, Multiple Access protocol
- WLAN IEEE 802.11 wireless LAN protocol



- CSMA Carrier Sense, Multiple Access protocol
- WLAN IEEE 802.11 wireless LAN protocol



- CSMA Carrier Sense, Multiple Access protocol
- WLAN IEEE 802.11 wireless LAN protocol



CSMA 3 4	θ	0.5	0.8	0.85	0.9	0.95	PRISM
	out	F	F	F	Т	Т	0.86
	t	1.7	11.5	35.9	115.7	111.9	136
CSMA 3 6	θ	0.3	0.4	0.45	0.5	0.8	PRISM
	out	F	F	F	Т	Т	0.48
	t	2.5	9.4	18.8	133.9	119.3	2995
CSMA 4 4	θ	0.5	0.7	0.8	0.9	0.95	PRISM
	out	F	F	F	F	Т	0.93
	t	3.5	3.7	17.5	69.0	232.8	16244
CSMA 4 6	θ	0.5	0.7	0.8	0.9	0.95	PRISM
	out	F	F	F	F	F	timeout
	t	3.7	4.1	4.2	26.2	258.9	timeout
WLAN 5	θ	0.1	0.15	0.2	0.25	0.5	PRISM
	out	F	F	Т	Т	Т	0.18
	t	4.9	11.1	124.7	104.7	103.2	1.6
WLAN 6	θ	0.1	0.15	0.2	0.25	0.5	PRISM
	out	F	F	Т	Т	Т	0.18
	t	5.0	11.3	127.0	104.9	102.9	1.6

CSMA 3 4	θ	0.5	0.8	0.85	0.9	0.95	PRISM
	out	F	F	F	Т	Т	0.86
	t	1.7	11.5	35.9	115.7	111.9	136
CSMA 3 6	θ	0.3	0.4	0.45	0.5	0.8	PRISM
	out	F	F	F	Т	Т	0.48
	t	2.5	9.4	18.8	133.9	119.3	2995
CSMA 4 4	θ	0.5	0.7	0.8	0.9	0.95	PRISM
	out	F	F	F	F	Т	0.93
	t	3.5	3.7	17.5	69.0	232.8	16244
CSMA 4 6	θ	0.5	0.7	0.8	0.9	0.95	PRISM
	out	F	F	F	F	F	timeout
	t	3.7	4.1	4.2	26.2	258.9	timeout
WLAN 5	θ	0.1	0.15	0.2	0.25	0.5	PRISM
	out	F	F	Т	Т	Т	0.18
	t	4.9	11.1	124.7	104.7	103.2	1.6
WLAN 6	θ	0.1	0.15	0.2	0.25	0.5	PRISM
	out	F	F	Т	Т	Т	0.18
	t	5.0	11.3	127.0	104.9	102.9	1.6

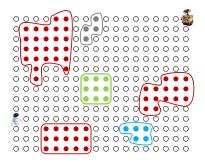
Experimental Validation

Highly Structured Models

Takeaways

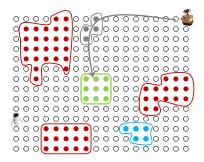
- Symmetry makes the number of "meaningful" actions relatively small;
- SMC works well in highly structured systems;
- Exact methods still work best in most cases;

• Motion Planning - Two robots move around an n by n plant

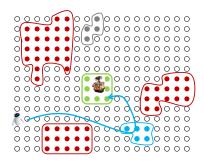


$$\begin{split} & P_{\leq \theta}(\left[\textit{Safe}_{1} \mathbf{U}^{\leq 30}\left(\textit{pickup}_{1} \land \left[\textit{Safe}_{1}^{\prime} \mathbf{U}^{\leq 30}\textit{RendezVous}\right]\right)\right] \\ & \land \left[\textit{Safe}_{2} \mathbf{U}^{\leq 30}\left(\textit{pickup}_{2} \land \left[\textit{Safe}_{2}^{\prime} \mathbf{U}^{\leq 30}\textit{RendezVous}\right]\right)\right]\right) \end{split}$$

• Motion Planning - Two robots move around an n by n plant

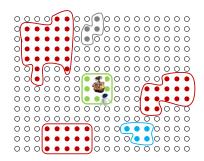


$$\begin{split} & P_{\leq \theta}(\left[\textit{Safe}_{1} \mathbf{U}^{\leq 30}\left(\textit{pickup}_{1} \land \left[\textit{Safe}_{1}' \mathbf{U}^{\leq 30}\textit{RendezVous}\right]\right)\right] \\ & \land \left[\textit{Safe}_{2} \mathbf{U}^{\leq 30}\left(\textit{pickup}_{2} \land \left[\textit{Safe}_{2}' \mathbf{U}^{\leq 30}\textit{RendezVous}\right]\right)\right]\right) \end{split}$$

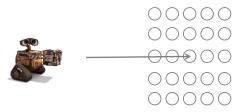


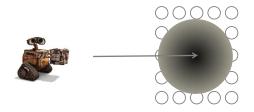
$$onumber P_{\leq heta}(\left[Safe_1 \mathbf{U}^{\leq 30}\left(\textit{pickup}_1 \land \left[Safe_1' \mathbf{U}^{\leq 30}\textit{RendezVous}
ight]
ight)
ight] \\ \land \left[Safe_2 \mathbf{U}^{\leq 30}\left(\textit{pickup}_2 \land \left[Safe_2' \mathbf{U}^{\leq 30}\textit{RendezVous}
ight]
ight)
ight])$$

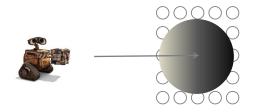
• Motion Planning - Two robots move around an *n* by *n* plant

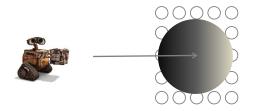


$$\begin{split} & P_{\leq \theta}(\left[\textit{Safe}_{1} \mathbf{U}^{\leq 30}\left(\textit{pickup}_{1} \land \left[\textit{Safe}_{1}^{\prime} \mathbf{U}^{\leq 30}\textit{RendezVous}\right]\right)\right] \\ & \land \left[\textit{Safe}_{2} \mathbf{U}^{\leq 30}\left(\textit{pickup}_{2} \land \left[\textit{Safe}_{2}^{\prime} \mathbf{U}^{\leq 30}\textit{RendezVous}\right]\right)\right]\right) \end{split}$$









Robot	θ	0.9	0.95	0.99	PRISM
<i>n</i> = 50	out	F	F	F	0.999
<i>r</i> = 1	t	23.4	27.5	40.8	1252.7
Robot	θ	0.9	0.95	0.99	PRISM
<i>n</i> = 50	out	F	F	F	0.999
<i>r</i> = 2	t	71.7	73.9	250.4	3651.045
Robot	θ	0.95	0.97	0.99	PRISM
<i>n</i> = 75	out	F	F	F	timeout
r = 2	t	382.5	377.1	2676.9	timeout
Robot	θ	0.85	0.9	0.95	PRISM
<i>n</i> = 200	out	F	F	Т	timeout
r = 3	t	903.1	1129.3	2302.8	timeout

Takeaways

- Exact methods cannot exploit symmetry so much;
- Number of really "meaningful" actions still relatively small;
- SMC works very well in structured systems;

• Uniform random model - number of actions enabled follows uniform distribution, number of targets per choice follows uniform distribution, targets picked uniformly, probabilities of transitions uniformely distributed. Objective: as little structure as possible.

• Uniform random model - number of actions enabled follows uniform distribution, number of targets per choice follows uniform distribution, targets picked uniformly, probabilities of transitions uniformely distributed. Objective: as little structure as possible.

Results very unpredictable and typically pretty bad.

• Uniform random model - number of actions enabled follows uniform distribution, number of targets per choice follows uniform distribution, targets picked uniformly, probabilities of transitions uniformely distributed. Objective: as little structure as possible.

Results very unpredictable and typically pretty bad.

- \bullet < 0.3 probability gathered after a few hours with SMC.
- Exact methods fail to produce answers.

Takeaways

- Lack of structure makes this problem very hard;
- SMC cannot focus on "good" areas;
- Symbolic methods cannot exploit symmetry when encoding the system.

Conclusions and Future Work

Conclusions

- Statistical method for MC for probabilism + nondeterminism;
- Empirically and theoretically validated;
- Uses bounded memory;
- Efficient for complex but structured models.

Future Work

- Unbounded LTL;
- Distributed systems;
- Schedulers with memory;

• ...

Bibliography

Zuliani P., Platzer A., Clarke E.M.

Bayesian statistical model checking with applications to simulink/stateflow verification. HSCC. 2010.

Sutton R.S., Barto A.

Reinforcement Learning: An introduction. MIT Press. 1998.

Brassard G., Bratley P. Algorithmics - Theory and Practice. Prentice Hall, 1988.

False Biased Monte Carlo Algorithms

Since our algorithm is false biased (results of "false" are always accurate), we can just run the algorithm again to exponentially increase confidence on a "probably true" result.

Bounding theorem [BB]

If the probability of success of a single trial of a false biased algorithm is greater than

$$p = 1 - 2^{\frac{\log \eta}{T}}$$

where T is the number of iterations of the algorithm, than we can ensure a correcness level of $1 - \eta$, $(0 < \eta < 1)$.

Proof of Improvement Theorem

$$\begin{aligned} V^{\sigma[\sigma(s)\to\sigma'(s)}(s) \\ &= \sum_{a\in A(s)} p_{\epsilon}(s,a)Q^{\sigma}(s,a) + (1-\epsilon)\max_{a\in A(s)}Q^{\sigma}(s,a) \\ &= \sum_{a\in A(s)} p_{\epsilon}(s,a)Q^{\sigma}(s,a) + \left(\sum_{a\in A(s)} \sigma(s,a) - \sum_{a\in A(s)} p_{\epsilon}(s,a)\right)\max_{a\in A(s)}Q^{\sigma}(s,a) \\ &= \sum_{a\in A(s)} p_{\epsilon}(s,a)Q^{\sigma}(s,a) + \sum_{a\in A(s)} [\sigma(s,a) - p_{\epsilon}(s,a)]\max_{a\in A(s)}Q^{\sigma}(s,a) \\ &= \sum_{a\in A(s)} p_{\epsilon}(s,a)Q^{\sigma}(s,a) + \sum_{a\in A(s)} [(\sigma(s,a) - p_{\epsilon}(s,a))\max_{a\in A(s)}Q^{\sigma}(s,a)] \\ &\geq \sum_{a\in A(s)} p_{\epsilon}(s,a)Q^{\sigma}(s,a) + \sum_{a\in A} [(\sigma(s,a) - p_{\epsilon}(s,a))Q^{\sigma}(s,a)] \\ &= \sum_{a\in A(s)} p_{\epsilon}(s,a)Q^{\sigma}(s,a) + \sum_{a\in A(s)} \sigma(s,a)Q^{\sigma}(s,a) - \sum_{a\in A(s)} p_{\epsilon}(s,a)Q^{\sigma}(s,a) \\ &= \sum_{a\in A(s)} \sigma(s,a)Q^{\sigma}(s,a) = V^{\sigma}(s) \end{aligned}$$

$$\sigma'(s,a) = (1-h) \left[I\{a = \arg \max_{a} Q^{\sigma}(s,a)\}(1-\epsilon) + \epsilon \left(\frac{Q^{\sigma}(s,a)}{\sum_{b} Q^{\sigma}(s,a)}\right) \right] + h\sigma(s,a)$$

Back