
From Safety to Guilty & from Liveness to Niceness
Stefan Mitsch*, Jan-David Quesel, André Platzer

Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213
Email: {smitsch,jquesel,aplatzer}@cs.cmu.edu

Abstract—Robots are solving challenging tasks that we want
them to be able to perform (liveness), but we also do not want
them to endanger their surroundings (safety). Formal methods
provide ways of proving such correctness properties, but have the
habit of only saying “yes” when the answer is “yes” (soundness).
More often than not, formal methods say “no”: They find out that
the system is neither safe nor live, because there are “unexpected”
circumstances in which the robot just cannot do what we expect it
to. Inspecting those unexpected circumstances is informative, and
identifies constraints on reasonable behavior of the environment.
This ultimately leads from safety to the question of who is guilty
depending on whose action caused the safety violation. It also
leads from liveness to the question of what behavior of the
environment is nice enough so that the robot can finish its task.

I. FORMAL METHODS FOR ROBOTICS

Robots often interact with a dynamically changing environ-
ment and in close proximity to humans or critical infrastruc-
ture. Thus, safety is key. But we also want a robot to complete
some useful task or achieve a particular goal (liveness).

Formal verification methods help to exhaustively analyze
a robot and its control algorithms for correctness. This pa-
per is based on our experience with formal verification of
safety and liveness properties of autonomous robotic ground
vehicles [2]. The overall challenge arises, because robots
not only execute discrete (control) algorithms, but they also
interact with the real world through sensors and actuators.
For verification purposes, thus, we need to take the discrete
control algorithms and the continuous physical behavior of
both our own robot and the environment into account. Hybrid
systems are a suitable mathematical model to describe systems
with interacting discrete and continuous behavior. We focus on
theorem proving for hybrid systems as verification method,
and use differential dynamic logic [4] implemented in the
KeYmaera prover [5] and the modeling tool Sphinx [3] to
illustrate the challenges that arise from analyzing safety and
liveness questions.

II. SAFETY: ALWAYS STAY SAFE

An important and useful consequence when applying formal
verification to robotics and other systems is that we are forced
to define unambiguously what we mean by safety.

a) What is Safe?: Often, pure safety conditions are un-
achievable (e.g., “never collide”), because they can no longer
be guaranteed if other agents in the environment actively try to
ruin safety. What we usually mean instead is safety w.r.t. some
norm or global system invariant (i.e., our own robot behaves
such that it stays safe if the environment is reasonable). If

* Currently on leave from Johannes Kepler University, Linz, Austria

everybody follows such a norm—i.e., nobody shows abnormal
behavior guilty of a violation—then everyone is safe.

b) Whom to Blame?: For safety verification of the dy-
namic window collision avoidance algorithm in the presence
of moving obstacles [2], we used passive safety and passive-
friendly safety [1] as the requisite safety conditions.

For passive safety, robots follow the norm of avoiding
collision by just stopping. In case of a collision, we blame
the agent that was not stopped. But this norm falls short of
“correctly” attributing blame when some of the agents can
only react slowly and our own robot should know better (e.g.,
move quickly to a stop right in front of a train).

And still there are situations where these safety norms may
result in rather conservative or sometimes even surprising
behavior, because the safety conditions lack a notion of
orientation of agents towards each other. For example, our own
robot would try to stop even if an obstacle approaches the robot
from behind, which makes collision avoidance maneuvers for
obstacles even more difficult. Such orientation relationships
and other spatial configurations involving multiple agents pose
an interesting challenge for formal verification techniques.

c) The Role of Spatial Configuration in Blame: In order
to formulate norms we typically impose certain spatial struc-
ture (e.g., traffic lanes or 4-way stop intersections).

For instance, consider highway traffic, where rear-ending
another car would certainly be deemed unsafe. Yet, if one
car cuts in front of another, who is to blame for a resulting
crash? Similarly, if a car turns from a parking lot onto a
street, traffic laws clearly capture the liability in case of an
accident, so drivers behave accordingly. Traffic participants
rely on these assumptions. Otherwise, cars would need to slow
down significantly at each driveway since a collision might
be imminent. In order for such norms to work safely, the
assumptions have to be acyclic and mutually consistent.

Even though traffic rules are well-known, tested for cen-
turies, and can use structure manifested in real-world (e.g.,
lanes or road signs as area delimiters) they are already
complicated. Assigning blame in unstructured two- or three-
dimensional space gets even more complicated. For example,
let us consider a simple orientation notion as in Fig. 1. Here,
an agent is to blame if it collides with an object that was in its
domain of responsibility when the agent initiated a maneuver
(different notions of domain of responsibility are possible, e.g.,
along the sensor range of a Lidar, cf. Fig. 1c). This rule may
fail if both agents can make fast sudden turns, as in Fig. 1d. In
summary, we argue that finding an appropriate spatial structure
is crucial to formalize and verify useful safety conditions.

In Calin Belta and Hadas Kress-Gazit, editors, 5th Workshop on Formal Methods for Robotics and Automation, 2014. © The author 



Robot

Obstacle

direction
of motion

domain of
responsibility

(a) Robot to blame

Robot

Obstacle

(b) Both to blame

Robot

domain of
responsibility

(c) Sensor-dependent do-
main of responsibility

Robot

Obstacle
b Collision

(d) Collision, but both not
considered guilty

Figure 1: Orientation scenarios

d) The Role of Temporal Configuration in Blame: Blame
cannot always be evaluated at a single instant of time. Consider
the following two cases: (1) a car cuts in front of another one,
which leads to a collision and (2) a car blindly rear-ends the car
in front because the driver fell asleep. These two scenarios are
indistinguishable if we only consider the moment of collision.
However, knowing the course of events leading to the collision
enables us to assign blame properly. Thus, in case (1) the car
that was rear-ended was to blame, whereas it was behaving
correctly in case (2).

Hence we conjecture that the system model needs to keep a
record of certain situations in order to avoid situations where
it is to blame in case a collision is imminent.

e) Unique Guilty Party: If for every collision scenario
there is a unique guilty party then the local optimizing behav-
ior of robots will ensure global safety. We say, a single robot
behaves correctly if it is never causing a collision rather than
never being involved in one. Hence if all robots behave cor-
rectly according to this definition, there will not be collisions
when they are avoidable from the initial configuration. Overall,
this could also have interesting consequences for cases where
a robot is not even involved in the ultimate safety violation but
still to blame for it. Again, think of a car cutting in front of
another. The second car, who is not able to brake in time, might
instead decide to avoid collision by performing a lane change
as well. However, this might cause a collision between the
second car and a third car, which does not involve the accident
perpetrator itself: the first car. A further open question is how
to avoid safety violations caused by uncoordinated actions
of multiple robots that each on their own cannot identify
themselves as contributing to a safety violation.

III. LIVENESS: ULTIMATELY GET TO THE GOAL

Liveness, such as whether a robot ultimately reaches its
goal for any behavior and layout of the environment, is an
even harder question than safety, because there are many
ways that environmental conditions or behavior prevent the
robot from achieving its goals. For example, an obstacle
that is allowed to move arbitrarily could always block the
robot’s path. To guarantee liveness, one has to characterize
all necessary conditions that allow the robot to reach its goal,
which are often prohibitively many.

The change in perspective from safety to guilty corresponds
to the change from liveness to niceness, i.e., the study of
whether a robot is guaranteed to achieve its goal assuming
the environment is reasonably nice or even supportive. Yet,
while global safety may follow from the conjunction of local
safety constraints, the pattern falls short for liveness properties
in most cases. If the goal of one robot is to indefinitely occupy
a certain space and that of another is to reach this very space
there is no possible way for both to satisfy their requirements.
Unfortunately, these conflicting situations are not always as
easily identifiable. Therefore, if there are situations where
we cannot get to the goal, not even in a nice environment,
another common criterion in robotics is that of having invested
reasonable effort of trying to get to the goal.

Another challenge in liveness is how to measure progress.
In the presence of obstacles a robot sometimes needs to move
away from the goal in order to ultimately get to the goal. But
how far is a robot allowed to deviate on the detour?

We argue that spatial and temporal contracts again help
ensure liveness properties. For example, if n robots operate
on n disjoint connected sub-spaces of a plane, each one of
them can reach every position within its own sub-space as
long as all robots respect the sub-space boundaries. More
complex temporal contracts are necessary for cases where the
spatial regions intersect, so that every robot can make progress,
just at different times. For example, we could allow boundary
violation for a limited time per robot. Then eventually, each
robot will be able to operate within its sub-space undisturbed.

IV. CONCLUSION

Safety and liveness are important properties for robotic
systems. Their specification is by no means trivial. For traffic
scenarios, the existing laws provide helpful advice which
corner cases need to be considered for safety. Still, lack of
structure in general two- or three-dimensional space makes it
difficult already to capture formally who is at fault in case
of a collision, so that robots know how they need to act in
order to avoid being guilty of a safety violation. Even worse,
for liveness properties the possibilities of failing are almost
endless, which makes it highly non-trivial to list all necessary
conditions to ensure progress towards a specific goal.

Acknowledgments: This material is based upon work supported by the NSF
(NSF CAREER Award CNS-1054246, NSF EXPEDITION CNS-0926181,
CNS-1035800, CNS-0931985), by DARPA (FA8750-12-2-0291), by the US
DOT UTC T-SET (DTRT12GUTC11), and by the EU REA (FP7 Marie Curie
Actions PIOF-GA-2012-328378).

REFERENCES
[1] Kristijan Maček, Dizan Alejandro Vasquez Govea, Thierry Fraichard, and

Roland Siegwart. Towards Safe Vehicle Navigation in Dynamic Urban
Scenarios. Automatika, 50(3–4):184–194, 2009.

[2] Stefan Mitsch, Khalil Ghorbal, and André Platzer. On Provably Safe
Obstacle Avoidance for Autonomous Robotic Ground Vehicles. In
Robotics: Science and Systems, 2013.

[3] Stefan Mitsch, Grant O. Passmore, and André Platzer. Collaborative
Verification-Driven Engineering of Hybrid Systems. Math. in Comp. Sci.,
2014. doi: 10.1007/s11786-014-0176-y.

[4] André Platzer. Logics of Dynamical Systems. In LICS, pages 13–24.
IEEE, 2012. doi: 10.1109/LICS.2012.13.

[5] André Platzer and Jan-David Quesel. KeYmaera: A Hybrid Theorem
Prover for Hybrid Systems. In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek, editors, IJCAR, volume 5195 of LNCS. Springer, 2008.


	Formal Methods for Robotics
	Safety: Always Stay Safe
	Liveness: Ultimately Get to the Goal
	Conclusion



