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Abstract. Some hybrid systems models are unsafe for mathematically
correct but physically unrealistic reasons. For example, mathematical
models can classify a system as being unsafe on a set that is too small
to have physical importance. In particular, differences in measure zero
sets in models of cyber-physical systems (CPS) have significant mathe-
matical impact on the mathematical safety of these models even though
differences on measure zero sets have no tangible physical effect in a
real system. We develop the concept of “physical hybrid systems” (PHS)
to help reunite mathematical models with physical reality. We modify
a hybrid systems logic (differential temporal dynamic logic) by adding
a first-class operator to elide distinctions on measure zero sets of time
within CPS models. This approach facilitates modeling since it admits
the verification of a wider class of models, including some physically real-
istic models that would otherwise be classified as mathematically unsafe.
We also develop a proof calculus to help with the verification of PHS.

Keywords: hybrid systems · almost everywhere · differential temporal
dynamic logic · proof calculus

1 Introduction

Hybrid systems [24,1], which have interacting discrete and continuous dynamics,
provide all the necessary mathematical precision to describe and verify the be-
havior of safety-critical cyber-physical systems (CPS), such as self-driving cars,
surgical robots, and drones. Ironically, however, hybrid systems provide so much
mathematical precision that they can distinguish models that exhibit no phys-
ically measurable difference. More specifically, since mathematical models are
minutely precise, models can classify systems as being unsafe on minutely small
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sets—even when these sets have no physical significance. For example, a mathe-
matical model could classify a system as being mathematically unsafe at a single
instant in time—but why should the safety of a model give more weight to such
glitches than even the very notion of solutions of differential equations, which is
unaffected [30] by changes on sets of measure zero in time? Practically speaking,
a physical system is only unsafe at a single instant of time if it is also already
unsafe at a significantly larger set of times. In the worst case, such degenerate
counterexamples could detract attention from real unsafeties in a model.

That is why this paper calls for a shift in perspective toward physical hy-
brid systems (PHS) that are more attuned to the limitations and necessities of
physics than pure mathematical models. PHS are hybrid systems that behave
safely “almost everywhere” (in a measure theoretic sense) and thus, physically
speaking, are safe systems. While different flavors of attaining PHS are possible
and should be pursued, we propose arguably the tamest one, which merely disre-
gards differences in safety on sets of time of measure zero. As our ultimate hope
is that models of PHS can be (correctly) formally verified without introducing
any burden on the user, we introduce the ability to rigorously ignore sets of time
of measure zero into logic. A major difficulty is that there is a delicate trade-
off between the physical practicality of a definition (what real-world behavior
it captures) and the logical practicality of a definition (what logical reasoning
principles it supports). Our notion of safety almost everywhere in time not only
enjoys a direct link with well-established mathematical principles of differential
equations, but also satisfies key logical properties, such as compositionality.

We modify differential temporal dynamic logic (dTL) [15,25] to capture the
notion of safety time almost everywhere (tae) along the execution trace of a
hybrid system. dTL extends the hybrid systems logic differential dynamic logic
(dL) with the ability to analyze system behavior over time. We call our new logic
physical differential temporal dynamic logic (PdTL) to reflect its purpose. While
PdTL is closely related to dTL in style and development, the formalization of
safety tae is entirely new, and thus requires new reasoning. Guiding the develop-
ment of PdTL is the following motivating example: Consider a train and a safety
condition v<100 on the velocity of the train. Physically speaking, it is fine to
allow v=100 for a split-second, because this has no measurable impact. PdTL is
designed to classify the situation where the train continuously accelerates until
v=100 and immediately brakes whenever it reaches v=100 as tae safe.

2 Related Work

Since all systems inherently suffer from imprecision, several approaches develop
robust hybrid systems, which are stable up to small perturbations—for exam-
ple, in the contexts of decidability [2,10,11], runtime monitoring [8,9], and con-
trols [18,19,22]. If systems are robust, they provide a fair amount of automation
[11,17]. Both our approach and robustness hinge on building in an awareness of
physics to hybrid systems verification. However, robustness is fundamentally dif-
ferent from our deductive verification approach. The analysis of robust systems
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often relies on a reachability analysis (see, e.g., [21]) which loses much of the
logical precision present in deductive verification, e.g., decidability of differential
equation invariants [27]. Further, by building on dL, which is a general purpose
hybrid systems logic, we are able to handle a wide class of models, whereas tools
like dReach [17] tend to be slightly more limited in scope. In particular, our de-
ductive approach for PHS admits an induction principle—making it possible to
verify safety properties of controllers that run in loops for any amount of time—
whereas robustness approaches are presently limited to bounded model checking.
We advocate for robustness in that models can, and should be, written with an
awareness of imprecision. However, we recognize that modeling is difficult, and
even well-intentioned models can suffer from nonphysical glitches—hence PHS.

Non-classical solutions of ODEs [4,6], especially Filippov and Carathéodory
solutions, align well with the PHS intuition as they often inherently ignore sets of
measure zero. Filippov solutions consider vector fields equivalent up to differences
on sets of measure zero. Carathéodory solutions satisfy a differential equation
everywhere except on a set of measure zero. Hybrid systems models do not
usually make use of non-classical solutions, since admitting them would require a
relaxed notion of safety. Non-classical solutions are sometimes used in the context
of controls: Goebel et al. [13] generalized the notion of a solution to a hybrid
system by using non-classical solutions of ODEs by Filippov and Krasovskii,
with a view towards obtaining robustness properties, and a later work [12] allows
solutions that fit a system of ODEs almost everywhere in a time interval. The
temporal approach of PdTL naturally admits Carathéodory solutions.

Eliding sets of measure zero can be computationally significant—notably, in
quantifier elimination, which arises in the last step of hybrid systems proofs.
Despite having no physical meaning, measure zero sets have a significant impact
on the efficiency of real arithmetic, and thus on the overall hybrid systems proofs.
The enabling factor behind efficient arithmetic [20] is to ignore sets of measure
zero and thus remove the need to compute with irrational algebraic numbers. A
potential computational benefit is an encouraging motivation for PHS.

3 Syntax of PdTL

In pursuit of enabling the statement of physical safety properties of hybrid sys-
tems, we develop PdTL, which builds on concepts from dTL [15,25] to introduce
an “almost everywhere in time” operator, �tae, which makes it possible to dis-
regard minor glitches violating safety conditions on sets of time of measure zero.
When possible, we keep our notation consistent with that of dTL [25], so that
the syntax of PdTL is very similar to the syntax of dTL—the key difference
being that we eschew dTL trace formulas �φ and ♦φ in favor of �taeφ.

The new PdTL formula [α]�taeφ expresses that along each run of the hybrid
system α, the formula φ is true at almost every time (“tae” stands for “time
almost everywhere”). This formula remains true even in cases where φ is false at
only a measure zero set of points in time along α. Because a hybrid system may
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exhibit different behaviors, the particular measure zero set of points in time at
which φ is false is allowed to depend on the particular run of α.

Fix a set Σ containing real-valued variables, function symbols, and predicate
symbols. In particular, Σ contains the symbols needed for first-order logic of real
arithmetic (FOL). We use Σvar to denote the set of real-valued variables in Σ,
and let Trm(Σ) denote the set of (polynomial) terms over Σ (as in FOL).

We now define the syntax of hybrid programs (which model hybrid systems)
and formulas capable of expressing physical properties of hybrid programs. Hy-
brid programs [25,26] are allowed to assign values to variables (with the :=
operator), test the truth of formulas (with the ? operator), evolve along systems
of differential equations, and branch nondeterministically (with the ∪ operator).
Hybrid programs are also sequentially composable with the ; operator, and can
be run in loops with the ∗ operator.

Definition 1. Hybrid programs are given by a grammar, where α and β are
hybrid programs, e ∈ Trm(Σ), x is a variable, and P and R are FOL formulas:

α, β ::= x := e | ?P | x′ = f(x)&R | α ∪ β | α;β | α∗

As in CTL∗ [7] and dTL, we split PdTL formulas into state formulas that
are true or false in a state (i.e., at a snapshot in time) and trace formulas that
are true or false along a fixed trace that keeps track of the behavior of a system
over time.

Definition 2. The state formulas are given by the following grammar, where
p ∈ Σ is a predicate symbol of arity n≥0, e1, . . . , en ∈ Trm(Σ), φ and ψ are
state formulas, α is a hybrid program, κ is a trace formula, and x is a variable:

φ, ψ ::= p(e1, . . . , en) | ¬φ | φ ∧ ψ | ∀xφ | [α]κ | 〈α〉κ

Trace formulas are given by the following grammar, where φ is a state formula:

κ ::= φ | �taeφ

We will also allow the use of the standard logical operators ∨, →, and ↔,
which are defined in terms of ¬ and ∧ as usual in classical logic.

Our motivating example can be modeled in PdTL as follows:

a=0 ∧ v=0→[
(
((?(v<100); a := 1) ∪ (?(v=100); a := −1));

{x′=v, v′=a & 0≤v≤100}
)∗

]�tae v<100

This claims that if the initial velocity and acceleration are both 0, then along any
run of the system, v<100 holds at almost all times. The train accelerates if v<100
and brakes if v=100; it moves according to the system of ODEs x′=v, v′=a. The
evolution domain constraint v≤100 indicates an event-triggered controller [26].

A natural question is why we choose to build in reasoning about �tae by
developing PdTL instead of having the user edit the model by, for example,
making the postcondition v≤100 instead of v<100. Indeed, in this particular case
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that would make the program safe at every moment in time. However, in other
examples, editing the postcondition in a similar way may be unwise. For example,
although [x := 0; y := 0; {x′ = 0, y′ = 1}]�tae(y>0→ x>1 ∨ x<1) is valid, if we
relax the inequalities, [x := 0; y := 0; {x′ = 0, y′ = 1}]�tae(y≥0 → x≥1 ∨ x≤1)
is not. As reasoning about hybrid systems is so subtle, the most user-friendly
approach to eliding sets of measure zero is to specifically introduce the rigorous
ability to ignore sets of measure zero into the logic.

4 Semantics of PdTL

We now report a trace semantics for hybrid programs, based on which we give
meaning to the informal concept of formulas being true almost everywhere in
time, first along an individual trace and then along all traces of a hybrid program.

4.1 Semantics of State Formulas

State formulas are evaluated at states, which capture the behavior of the hybrid
program at an instant in time. Each state contains the values of all relevant
variables at a given instant. We formalize this in the following definition.

Definition 3. A state is a map ω : Σvar → R. We distinguish a separate state
Λ to indicate the failure of a system run. The set of all states is Sta(Σvar).

We now give the semantics of state formulas. The val(ω, φ) operator deter-
mines whether state formula φ is true or false in state ω. The valuations of the
state formulas [α]κ and 〈α〉κ depend on the semantics of traces σ (especially the
notion of first σ), which is explained in Def. 5, and on the semantics of the trace
formula κ (i.e., val(ω, κ)) which is given later, in Def. 12, and may be undefined.

Definition 4 ([25]). The valuation of state formulas with respect to state ω is
defined inductively:

1. val(ω, p(θ1, . . . , θn)) is p`(val(ω, θ1), . . . , val(ω, θn)) where p` is the relation
associated with p under the semantics of real arithmetic

2. val(ω,¬φ) is true iff val(ω, φ) is false

3. val(ω, φ ∧ ψ) is true iff val(ω, φ) is true and val(ω, ψ) is true

4. val(ω,∀xφ) is true iff val(ωdx, φ) is true for all d ∈ R, where ωdx is the state
that is identical to ω, except x has the value d.

5. val(ω, [α]κ) is true iff for every trace σ of α that starts in first σ = ω, if
val(σ, κ) is defined, then val(σ, κ) is true

6. val(ω, 〈α〉κ) is true iff there is some trace σ of α where first σ = ω and
val(σ, κ) is true

We write ω |= φ when val(ω, φ) is true. We write ω 6|= φ when val(ω, φ) is false.
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4.2 Traces of Hybrid Programs

Trace formulas are evaluated with respect to an execution trace of a hybrid pro-
gram. Intuitively, a trace of a hybrid program views its behavior over time as a
sequence of functions, where each function corresponds to a particular discrete
or continuous portion of the dynamics. Most hybrid systems are associated with
multiple traces (to reflect the variety of behaviors that a given program can ex-
hibit). Each function within a trace maps from a time interval to states of the
hybrid program. Continuous portions of traces are functions from an uncountable
time interval, and thus are associated to uncountably many states, whereas dis-
crete portions involve just a single state. Significantly, traces are allowed to end
in an abort state Λ, which indicates an unsuccessful run of a program. Aborts are
incurred when tests fail and when evolution domain constraints are not initially
satisfied. No program can run past Λ. We review the formal definition below.

Definition 5 ([25]). A trace σ of a hybrid program α is a sequence of functions
σ = (σ0, σ1, . . . , σn) where σi : [0, ri] → Sta(Σvar). We will denote the length of
the interval associated to σi by |σi| (so that if σi maps from [0, ri] to states of α,
|σi| = ri). A position of σ is a tuple (i, ζ) where i ∈ N, ζ ∈ [0, ri]. Each position
(i, ζ) is associated with the corresponding state σi(ζ). A trace (σ0, σ1, . . . , σn) is
said to terminate if it does not end in the abort state, i.e. if σn(|σn|) 6= Λ, and
write last σ ≡ σn(|σn|) in that case. We write first σ ≡ σ0(0) for the first state.

We now modify the trace semantics [25] using Carathéodory solutions for
ODEs [30] using notation as in [26, Definition 2.6].

Definition 6. The state ν is reachable in the extended sense from initial state
ω by x′1 = θ1, . . . , x

′
n = θn & R iff there is a function ϕ : [0, r]→ Sta(Σvar) s.t.:

1. Initial and final states match: ϕ(0) = ω, ϕ(r) = ν.
2. ϕ is absolutely continuous.
3. ϕ respects the differential equations almost everywhere: For each variable

xi, ϕ(z)(xi) is continuous in z on [0, r] and if r>0, ϕ(z)(xi) has a time-
derivative of value ϕ(z)(θi) at all z ∈ [0, r] \ U , for some set U ⊂ [0, r] that
has Lebesgue measure zero.

4. The value of other variables y 6∈ {x1, . . . , xn} remains constant throughout
the continuous evolution, that is ϕ(z)(y) = ω(y) for all times z ∈ [0, r];

5. ϕ respects the evolution domain at all times: ϕ(z) |= R for all z ∈ [0, r].

If such a ϕ exists, we say that ϕ |= x′1 = θ1∧· · ·∧x′n = θn & R almost everywhere.

This change highlights how the PHS intuition aligns with the intuition behind
Carathéodory solutions. However, we have left the syntax of hybrid programs
unchanged, and any system of differential equations in this syntax has a unique
classical solution by Picard-Lindelöf [26]. We believe that in order to determine
a suitable generalization of the syntax of hybrid programs to allow systems
of ODEs with Carathéodory solutions, one should first develop strategies for
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reasoning about ODEs in PdTL that are beyond the scope of this work (for
example, a notion of differential invariants—see [26,27]).

Note that in condition 5 of Def. 6, the solution is required to stay within
the evolution domain constraint at all times. This is because evolution domain
constraints, when used correctly, are nonnegotiable—for example, a correct use
of evolution domain constraints is to reflect some underlying property of physics,
like that the speed of a decelerating system is always nonnegative.

We define the trace semantics [25], with the above change for ODEs. Like
evolution domain constraints, we treat tests as nonnegotiable, so as not to inter-
fere with a user’s ability to write precise models. We do not intend to secretly
change the meaning of models, but rather to identify physically correct models.

Definition 7. The trace semantics, τ(α), of a hybrid program α is the set of
all its possible hybrid traces and is defined inductively as follows (where e ∈
Trm(Σ)), x′ = f(x) is a vectorial ODE, R and P are FOL formulas, β is a
hybrid program, and where for a state ω, ω̂ is the function from [0, 0]→ Sta(Σvar)
with ω̂(0) = ω):

1. τ(x := e) = {(ω̂, ν̂) : ν = ω
val(ω,e)
x for ω ∈ Sta(Σvar)}

2. τ(x′ = f(x) & R) = {(ϕ) : ϕ |= x′ = f(x) & R almost everywhere } ∪
{(ω̂, Λ̂) : ω 6|= R}

3. τ(α ∪ β) = τ(α) ∪ τ(β)
4. τ(?P ) = {(ω̂) : val(ω, P ) = true} ∪ {(ω̂, Λ̂) : val(ω, P ) = false}
5. τ(α;β) = {σ ◦ ζ : σ ∈ τ(α), ζ ∈ τ(β) when σ ◦ ζ is defined}; the composition

of σ = (σ0, σ1, σ2, . . . ) and ζ = (ζ0, ζ1, ζ2, . . . ) is

σ ◦ ζ :=





(σ0, . . . , σn, ζ0, ζ1, . . . ) if σ terminates at σn and last σ=first ζ

σ if σ does not terminate

not defined otherwise

6. τ(α∗) =
⋃
n∈N τ(αn), where αn+1 := (αn;α) for n≥1, and α0 := ?(true)

As an important remark, notice that if we have a trace σ = (σ0, . . . , σn) and
|σi|>0, then σi ∈ τ(x′ = f(x) & R) for some (vectorial) ODE x′ = f(x) and
some evolution domain constraint R. In other words, only continuous portions
of a trace have nonzero duration, and continuous portions are only introduced
when our system is evolving subject to a system of differential equations.

We are almost ready to give the semantics of trace formulas, but first we
need to take a slight detour to discuss what formulas make “physical sense”.

4.3 Physical Formulas

One feature of our motivating example is that v<100 is not a physically mean-
ingful postcondition: If v is allowed to get arbitrarily close to 100, v=100 should
also be allowed, since there is no physically measurable difference between v<100
and v≤100. The postcondition v≤100 is, mathematically speaking, less restric-
tive than v<100, but also practically speaking, the same as v<100. Motivated
by this intuition, we define “physical formulas”.



Towards Physical Hybrid Systems 223

Physical Formulas and φ Geometrically, the set of states in which a state for-
mula φ in n variables is true is a subset, JφK = {(x1, . . . , xn) ∈ Rn | φ(x1, . . . , xn)},
of Rn. We use this correspondence to define the physical version of φ.

Definition 8. A state formula φ is called physical iff JφK is topologically closed.
If φ is a formula in n variables x1, . . . , xn, then the physical version of φ is the
closure, denoted by φ, and is, indeed, definable [3] by:

∀ε>0 ∃y1, . . . , yn
(
φ(y1, . . . , yn) ∧ (x1 − y1)2 + · · ·+ (xn − yn)2<ε2

)

This satisfies JφK = JφK, where JφK is the topological closure of JφK. Quantifier
elimination can compute a quantifier-free equivalent of φ that is often preferable.

Associating a state formula to subset of Rn is useful for identifying which
points are “almost included”, which will be crucial knowledge for our temporal
approach. In the train example, v=100 is “almost included” in the postcondition
v<100. These points that are “almost included” in formula φ are exactly the limit
points of the set associated to φ, so JφK adds in all of these limit points. We will
make use of the following properties of the physical version of φ. Both are proved
in a companion report [5].

Proposition 9. For any state formula φ, φ→ φ is valid (i.e., true in all states).

Proposition 10. The following proof rule is sound for state formulas φ, ψ (i.e.,
the validity of all premises implies the validity of the conclusion):

φ→ ψ
TopCl

φ→ ψ

4.4 Semantics of Trace Formulas

Intuitively, we want to say that, for a trace σ, σ |= �t.a.eφ when there is only a
“small” set of positions (i, ζ) where σi(ζ) 6|= φ and where the discrete portions
of σ satisfy a reasonable constraint. To formalize the notion of a “small” set of
positions, we map positions of σ to R, since R admits the Lebesgue measure.

Definition 11. Given a trace σ = (σ0, . . . , σn) of a hybrid program α with

|σi| = ri, map each position (i, ζ) of σ to ζ+ i+
∑i−1
k=0 |σk|, so that the positions

(0, 0), . . . , (0, r0) cover the interval [0, r0], the positions (1, 0), . . . , (1, r1) cover
the interval [r0 + 1, r0 + r1 + 1], and so on. In this way we have an injection,
which we call f , from positions of a trace σ to (a subset of) R.

Fig. 1 illustrates the mapping f , which is obtained by first concatenating
the positions between each discrete step (i.e. the positions for each continuous
function σi) and then projecting these concatenations onto a single time axis
so that the images of the states for σi and the states for σj are disjoint when
i 6= j. To ensure disjointness, our mapping places an open interval of unit length
between the images of the states of σi and the states of σi+1 (for all i). The
unit length was chosen arbitrarily—any nonzero length would work—but it is
important that the positions (i, ri) and (i+1, 0) have different projections, since
discrete changes can cause their states σi(ri) and σi+1(0) to be different.
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positions (0, 0), . . . , (0, r0) positions (1, 0), . . . , (1, r1)

0	

� = (�0, �1, . . . , �n)

r0	 1	+	r0	 1	+	r0	+	r1	 .	.	.	
n +

n�1X

k=0

rk n +

nX

k=0

rk

positions (n, 0), . . . , (n, rn)

Fig. 1. Injectively mapping positions of a trace to times in R

Definition 12. The valuation of a trace formula κ with respect to trace σ is
defined as:

1. val(σ, φ) = val(last σ, φ) if σ terminates. If σ does not terminate, then
val(σ, φ) is undefined. We write σ |= φ when val(σ, φ) is true. We write
σ 6|= φ when val(σ, φ) is false.

2. Let U be the set of positions (i, ζ) where corresponding states σi(ζ) satisfy
σi(ζ) 6|= φ and σi(ζ) 6= Λ. We say that val(σ,�taeφ) is true iff the following
two conditions are satisfied:
(a) (Discrete condition) For all i, if |σi| = 0 and σi(0) 6= Λ, then σi(0) |= φ.
(b) (Continuous condition) f(U) ⊆ R has measure zero with respect to the

Lebesgue measure, where f is the mapping defined in Def. 11 for σ; i.e.,
for all ε>0 there exist intervals Ip = [ap, bp] so that f(U) ⊆

⋃∞
p=0 Ip and∑∞

p=0 |bp − ap|<ε (see [16, Section 1-1013], or [28]).
We write σ |= �taeφ when val(σ,�taeφ) is true. We write σ 6|= �taeφ when
val(σ,�taeφ) is false.

A short primer on the measure theory we need is in a companion report [5].
With this mapping, the condition that f(U) has measure zero with respect to

the Lebesgue measure enforces the t.a.e. constraint for the continuous portions
of our program. The image of the states for σi is an interval of length ri. In order
for the t.a.e constraint to be satisfied, σi cannot go wrong except at a “small
set” of states, where we use our mapping to formalize the notion of a “small set”
in terms of measure zero.

Next, the condition that σi(0) |= φ whenever |σi| = 0 constrains the discrete
portions of a program. This constraint will be important for induction; it also
ensures that discrete programs behave reasonably within our logic. For example,
let α be the fully discrete program x := 5; (x := x + 1)∗, and take a trace σ
of α. The states of σ map to the points 5, 6, 7, . . . , n, and without the discrete
condition, we would be able to show that [x := 5; (x := x+ 1)∗]�taex<5 is valid,
even though x is never less than 5 along the trace.

To understand why the discrete condition specifies σi(0) |= φ when |σi| = 0
instead of σi(0) |= φ when |σi| = 0, recall the motivating train control example.
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We want to allow the velocity of the train to evolve from a safe state where
v<100 to an unsafe state where v = 100, as long as the train then immediately
brakes (sets its acceleration to a negative value). If we specified that σi(0) |= φ,
the train would not be allowed to accelerate from v<100 to v = 100 and then
brake, because at the discrete braking point, the train would be in a state that
is unsafe mathematically (though still safe physically).

Given a hybrid program α, postcondition φ, and a state ω, we are interested
in determining whether ω |= [α]�taeφ holds, because when such a formula is true
for a given hybrid program, that indicates that no matter how that particular
hybrid program runs, it will be “safe almost everywhere”. Following Def. 4, this
is true iff for each trace σ ∈ τ(α) with first σ = ω, σ |= �taeφ.

5 Discussion

Now that we have developed the semantics, we step back to consider how PdTL
makes progress towards PHS, and why PdTL is a good way to introduce PHS.

Impact on Modeling. PdTL allows the verification of several classes of physically
realistic models that are mathematically not quite safe. For example, in Section 7
we will explain how PdTL allows the verification of the train control model.
This simple train example is representative of a greater class of examples—
tiny glitches are common in event-triggered controllers, since the event that is
being detected is often an almost unsafe event that requires the controller to
immediately change behavior.

Other examples do not involve time-triggered controllers, but rather suffer
from tiny glitches at handover points between the discrete and continuous dy-
namics within a hybrid program. Consider the safety postcondition x2 + y2<1
and the hybrid program x := 0; y := 1; {x′ = −x, y′ = −y}. The only glitch is
that the program starts ever so slightly outside the safe set. Since it immediately
moves into the safe set, all runs of this hybrid program are safe tae. PdTL is
designed to classify [x := 0; y := 1; {x′ = −x, y′ = −y}]�taex

2 + y2<1 as valid.
In another class of examples, our approach handles tiny glitches within the

continuous portion of the program. This can easily happen if the postcondition
is missing some small regions. For example, consider two robots that are moving,
one in front of the other. Since we do not want the robots to collide, it is unsafe
for the second robot to accelerate while the first robot is braking. Say we model
this with safety postcondition ¬(a1≤0∧a2≥0). This is a small modeling mistake,
because we should allow the point where a1=0 and a2=0. Now, if our controller
is a1 := −1; a2 := −1; {a′1 = 1, a′2 = 1}, any run of this hybrid program is tae
safe, but not safe at all points in time (as some runs will contain the origin).
Notably, the very similar controller a1 := −1; a2 := −1; {a′1 = 1, a′2 = 2} is not
tae safe. PdTL is designed to distinguish between these two controllers.

Why tae? The tae safety notion along the trace of a hybrid system is a natural
approach with strong mathematical underpinnings (e.g., from the invariance of
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Lebesgue integrals up to sets of measure zero, and from Carathéodory solutions),
and with physical motivation from examples like those just discussed. Introduc-
ing tae is a good way to begin PHS, because it may be the closest possible PHS
construct to the canonical notion of “safety everywhere”. However, this closeness
to safety everywhere does make tae more restrictive than some other possible
PHS notions—for example, a notion of safety “space almost everywhere”, or sae.

Consider a self-driving car moving in R3. The final states of a hybrid program
α modeling the car correspond to positions in R3, so here we may wish to consider
safety almost everywhere with respect to the Lebesgue measure on the set of all
possible final states of α as follows: Given a hybrid program α and precondition
ψ, let F = {last σ s.t. σ ∈ τ(α),first σ |= ψ}. Say that ψ ` [α]�µsaeφ if µ({ω ∈
F | ω 6|= φ}) = 0, where µ is the Lebesgue measure on R3. This modality has an
intuitive geometric interpretation and is more permissive than tae.

However, �µsae applies only when there is a natural measure µ on the set
of all possible final states of α. Furthermore, �µsae is not compositional. Given
P ` [α]�µsaeP and P ` [β]�µsaeP , in order to conclude that P ` [α;β]�µsaeP ,
one needs to know that β is sae safe when starting in JP K∪Q, for any measure zero
set Q reachable from α. This is not always true—for example, let P be x2+y2<1,
α be {x′ = 1, y′ = 1 & x2 + y2≤1} and β be ?(x2 + y2=1); {x′ = 1, y′ = 1}.
Further, given α, it is unclear how to syntactically classify such sets Q—as sae is
more relaxed than tae, it also seems to be less well-behaved. Thus, although �µsae
has some advantages, it is not clear how to constrain it to achieve desirable logical
properties like compositionality. Although we hope that future work will develop
a notion of safety sae, the challenges therein are no small matter. In contrast,
tae satisfies many nice logical properties, which we now turn our attention to.

6 Proof Calculus and Properties of PdTL

Before developing the proof calculus for PdTL, we discuss some key properties.
First, PdTL is a conservative extension of dL, i.e. all valid formulas of dL are
still valid in PdTL. The proof of this, discussed in a companion report [5], is
essentially the same as the proof that dTL is a conservative extension of dL
[25, Proposition 4.1]. This conservativity property is useful, since if we are able
to reduce temporal PdTL formulas to dL formulas, we can use the extensive
machinery built for dL to close proofs. Indeed, our proof calculus is designed
to reduce temporal PdTL formulas into nontemporal formulas to rely on dL’s
capabilities for the latter.

Key dL axioms are proved sound for PdTL in a companion report [5], which
is useful as sometimes a dL axiom is needed to reduce the goal in a proof, as we
will see when we analyze the train example in Section 7.

Next, we state three properties of temporal PdTL formulas which underlie
some of the soundness proofs for rules in the proof calculus. These properties
hold by construction. All proofs are in the companion report [5].

Lemma 13. If σ |= �taeφ for a terminating σ, then last σ |= φ.
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Corollary 14. The formula [α]�taeφ→ [α]φ is valid.

Lemma 15. If ξ and η are traces of hybrid programs where ξ terminates and
last ξ = first η, then ξ ◦ η |= �taeφ iff both ξ |= �taeφ and η |= �taeφ.

6.1 Proof Calculus

The proof calculus for PdTL is shown in Fig. 2. Intuitively, all of the axioms
are designed to successively decompose complicated formulas into structurally
simpler formulas while successively reducing trace formulas into state formulas.
The test axiom, assignment axiom, solution axiom, and solution with evolution
domain constraint axiom ([?]tae, [:=]tae, [′]tae, and [′&]tae) remove instances of
�tae. The nondeterministic choice axiom [∪]tae reduces a choice between two
hybrid programs to two separate programs. The induction axiom Itae reduces
a loop property involving a trace formula to a loop property involving a state
formula; Itae also allows us to derive two very useful proof rules.

The Gödel generalization rule (Gtae) proves that if formula φ is valid, then
it is also true, tae, along the trace of any hybrid program. The modal modus
ponens rule (Ktae) allows us to derive a monotonicity property. Our approach oc-
casionally introduces extra premises; for example, the modal modus ponens rule
(Ktae), has an extra goal φ → ψ due to the discrete condition of Def. 12. Many
of these extra premises will be easy to prove—if our models make use of physical
formulas, which are closed, then these extra cases will prove immediately.

[?]tae [?P ]�taeφ↔ φ
φ

Gtae
[α]�taeφ

[∪]tae [α ∪ β]�taeφ↔ [α]�taeφ ∧ [β]�taeφ

[:=]tae [x := e]�taeφ↔ φ ∧ [x := e]φ
φ→ ψ [α]�tae(φ→ ψ)

Ktae
[α]�taeφ→ [α]�taeψ

[; ]tae [α;β]�taeφ↔ ([α]�taeφ ∧ [α][β]�taeφ)

Itae [α∗]�taeφ↔
(
φ ∧ [α∗](φ→ [α]�taeφ)

) φ→ ψ
TopCl

φ→ ψ
[′]tae [x′ = f(x)]�taeP ↔ P ∧ ∀t≥0Q

[′&]tae [x′ = f(x)&R]�taeP ↔ P∧ CGG [α]�taeφ→ [α]φ

∀t>0 ((∀0≤s≤t [x := y(s)]R)→ Q)

Fig. 2. Proof calculus for PdTL3

3 Here, α and β are hybrid programs, φ and ψ are state formulas, P is a FOL formula,
y(t) is the unique global polynomial solution to the differential equation x′ = f(x),
and the formula Q in [′]tae and [′&]tae is the FOL formula constructed by Proposi-
tion 16 for P (y(t)). Although the “for almost all” quantifier is in general not definable
in FOL [23], Proposition 16 justifies that “for almost all t≥0[x := y(t)]P” is logically
equivalent to “∀t≥0 Q”.
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Soundness proofs are in the report [5]. We discuss a few key high-level ideas.

Soundness of [; ]tae and Itae Sequential composition and induction are subtly
challenging for PHS—since we are allowed to leave the safe set, handover points
between hybrid programs are no longer guaranteed to be safe points. However, se-
quential composition and induction are crucial for the practicality of verification,
which is predicated on having a good way of breaking down complicated formu-
las into simpler components. The soundness proof of [; ]tae exploits Lemma 15.
The soundness proof of Itae is based on Lemma 13, which in turn relies on the
discrete condition of Def. 12.

Differential Equations Reasoning about differential equations is one of the most
challenging aspects of hybrid systems. In this work, we focus on relatively simple
reasoning principles for differential equations, as justifying even simple princi-
ples is made much more challenging by introducing the notion of “safety almost
everywhere”. We leave the development of more complicated reasoning (for ex-
ample, a notion of differential invariants for �tae) to future work.

For “sufficiently tame” systems of ODEs x′ = f(x), we might hope to replace
[x′ = f(x)]�taeP with an equivalent expression without the �tae modality. The
cleanest case is when x′ = f(x) has a unique global polynomial solution, y(t).
Although we think of y as being a polynomial in t, y can involve any of the other
parameters, call them x1, . . . , xn, in f , from its dependency on initial values.
We require that y is also polynomial in x1, . . . , xn. This is the case handled
by axiom [′]tae: [x′ = f(x)]�taeP ↔ P ∧ ∀t≥0Q, where Q is a FOL formula
constructed so that “∀t≥0Q” expresses “for almost all t≥0 [x := y(t)]P”. Axiom
[′&]tae generalizes [′]tae to ODEs with evolution domain constraints.

In particular, we get Q by applying Proposition 16 to P (y(t)), which is the
formula obtained using the assignment axiom [:=] of dL on [x := y(t)]P (it is a
FOL formula because y(t) is polynomial and polynomials are closed under com-
position). Given any FOL formula P , Proposition 16 constructs a FOL formula
Q so that “for almost all t≥0P” is semantically equivalent to ∀t≥0Q (i.e., “for
almost all t≥0P” is true in a state ω iff ∀t≥0Q is true in ω).

Proposition 16. Let P be a FOL formula. Using quantifier elimination [29],
put it into one of the following normal forms: e=0, e≥0, e<0, P1 ∧ P2, and
P1 ∨ P2, where e is a polynomial and P1, P2 are FOL formulas. Construct the
FOL formula Q = g(P ) by structural induction on P as follows: g(e=0) is e=0,
g(e≥0) is e≥0, g(e<0) is e≤0 ∧ ((an=0 ∧ · · · ∧ a1=0) → e<0), g(P1 ∧ P2) is
g(P1) ∧ g(P2), and g(P1 ∨ P2) is g(P1) ∨ g(P2).

Then, for any state ω, the following hold:

1. Locally false: If ωkt 6|= Q for some k≥0, then there is a nonempty interval
[k, `) so that for all q ∈ [k, `), ωqt 6|= P . Further, if k>0, then there is an
interval (`1, `2) with `1<k<`2 so that for all q ∈ (`1, `2), ωqt 6|= P .

2. Finite difference: There are only finitely many values k≥0 where ωkt |= Q ∧
¬P .

The proof is by induction on the structure of P ; details are in the report [5].
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6.2 Derived Rules

We highlight some of the most useful derived rules for PdTL formulas in Fig. 3.
Monotonicity properties are fundamental in logic. Our rule Mtae intuitively says
that if φ → ψ is valid, then if φ is true almost everywhere along every trace of
a hybrid program, then ψ is also true almost everywhere along every trace of
that hybrid program. The rule Indtae reduces proving a safety property of hybrid
program α∗ to proving a safety property of program α. When its premise proves,
it effectively removes the need to reason about loops. The rule looptae provides
us with a loop invariant rule. The rule Comptae reduces a property of α;β to
individual properties of α and β. The derivations are given in the report [5].

ψ → φ
Mtae

[α]�taeψ → [α]�taeφ

φ ` [α]�taeφ
Indtae

φ ` [α∗]�taeφ

Γ ` ψ,∆ ψ ` [α]�taeψ ψ ` φ
looptae

Γ ` [α∗]�taeφ,∆

ψ → [α]�taeφ φ→ [β]�taeφ
Comptae

ψ → [α;β]�taeφ

Fig. 3. Derived rules for PdTL

7 Proof of Motivating Example

We now apply our proof calculus to the model of the train example (Section 3).
Full details are in the report [5]. Using structural rule →R and our induction
proof rule looptae with invariant v<100, the proof reduces to showing a=0∧v=0 `
v≤100 (which holds by real arithmetic), v<100 ` v<100 (identically true), and

v≤100 `[
(
(?(v<100); a := 1) ∪ (?(v = 100); a := −1)

)
;

{x′ = v, v′ = a & 0≤v≤100}]�taev<100.

Axiom [; ]tae splits this into goals (1) and (2):

v≤100 ` [(?(v<100); a := 1) ∪ (?(v = 100); a := −1)]�taev<100 (1)

v≤100 ` [(?(v<100); a := 1) ∪ (?(v = 100); a := −1)]

[{x′ = v, v′ = a& 0≤v≤100}]�taev<100.
(2)

(1) is straighforward. (2) is more complicated because it involves ODEs reason-
ing. The dL axioms [∪] and ∧R split the proof of (2) into (3) and (4):

v≤100 ` [?(v<100); a := 1][{x′ = v, v′ = a & 0≤v≤100}]�taev<100 (3)

v≤100 ` [?(v = 100); a := −1][{x′ = v, v′ = a & 0≤v≤100}]�taev<100 (4)
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(3) and (4) require similar reasoning, so we focus on (3). The dL axioms [; ], [:=],
and [?] reduce (3) to

v≤100, v<100 ` [{x′ = v, v′ = 1 & 0≤v≤100}]�taev<100 (5)

To prove (5), we need to use axiom [′&]tae, which says:

[x′ = f(x)&R]�taeP ↔ P ∧ ∀t>0 ((∀0≤s≤t [x := y(s)]R)→ Q)

For clarity, we use v0 for the value of v in the initial state before it starts
evolving along the ODEs, and similarly we use x0 for the value of x in the
initial state. Following Proposition 16, Q is (1 = 0→ t+ v0<100) ∧ t+ v0≤100.
Since applying [′&]tae reduces our goal to a dL formula, and since PdTL is a
conservative extension of dL, we can use the contextual equivalence rules of dL
to replace Q with the logically equivalent formula t+ v0≤100, obtaining:

v0≤100, v0<100 ` v0≤100 ∧ ∀t>0
((
∀0≤s≤t [x := .5s2 + v0s+ x0][v := s+ v0]0≤v≤100

)
→ t+ v0≤100

) (6)

After using the dL axiom [:=], the proof closes by real arithmetic.

8 Conclusions and Future Work

We introduce PHS to help narrow the gap between mathematical models and
physical reality. To enable logic to begin to distinguish between true unsafeties
of systems and physically unrealistic unsafeties, we develop the notion of safety
tae along the execution trace of a system. Our new logic, PdTL, contains the
logical operator �tae, which elides sets of time that have measure zero.

A cornerstone of our approach is its logical practicality—in order to support
verification, we develop a proof calculus for PdTL. We demonstrate the capabil-
ity of the proof calculus by applying it to a motivating example. We think it is
an interesting and challenging problem for future work to develop new ways of
thinking about PHS, such as the notion of space almost everywhere discussed in
Section 5, while maintaining this logical practicality.

Future work could continue to develop PdTL. It would be especially interest-
ing to develop further differential equations reasoning, including an appropriate
generalization of the syntax of hybrid programs to admit Carathéodory solutions.
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