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Safety-critical CPS

• How do we know that cyber-physical systems
(CPS) are functioning correctly?

• First step: model your CPS
• Hybrid systems model CPS
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Then write hybrid systems in logic...

...with differential dynamic logic, perhaps?
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Problems?
• The model could be overly permissive

• Or the model could be overly strict
• Logic is precise, physical systems are not
• Note that we absolutely want to have precise

safety guarantees
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Math versus physics

• How can models be too strict?

• Models can classify systems as being unsafe on
minutely small sets

• Is this realistic?
• No! Even math allows more imprecision than

models
• Does it matter?

• Yes! Physically unrealistic counterexamples can
distract from real unsafeties of a system
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Our Approach
• We propose physical hybrid systems (PHS),
which are systems that behave safely almost
everywhere

• There are multiple ways to develop PHS
• Our first foray into PHS stays very close to the

usual notion of safety
• Our new logic (PdTL) is designed to ignore “very

small”, meaningless sets of safety violations along
the execution trace of a system.
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FAQ, anticipated

• Why not ask the user to edit the models?

• PdTL is capturing something that is even closer to
the normal notion of safety

• Also, we don’t want to limit the models that a user
can write

• Why isn’t this just solved by robustness?

7 / 1



FAQ, anticipated

• Why not ask the user to edit the models?
• PdTL is capturing something that is even closer to

the normal notion of safety
• Also, we don’t want to limit the models that a user

can write

• Why isn’t this just solved by robustness?

7 / 1



FAQ, anticipated

• Why not ask the user to edit the models?
• PdTL is capturing something that is even closer to

the normal notion of safety
• Also, we don’t want to limit the models that a user

can write

• Why isn’t this just solved by robustness?

7 / 1



Robustness

• Safe up to small perturbations
• Tool support, e.g. dReach

• Models of CPS can and should be robust
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Robustness
• But robustness is only one piece of the puzzle.
We’re trying to do something different.

• Also, robustness often requires a reachability
analysis and can be more limited in scope (no
induction!)
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Let’s talk PdTL

• Physical differential temporal dynamic logic
(PdTL) extends dTL extends dL

• dTL rigorizes execution traces
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Formulas in dTL (and PdTL!)
• State formulas

• Evaluated in a state
(at a snapshot in
time)

• States map
variables to R

• Trace formulas
• Evaluated along

execution traces
(sequences of
functions mapping
intervals to states)
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Traces in PdTL
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PdTL

• Trace semantics
• The same as in dTL, except we allow Carathéodory

solutions to ODEs

• Formulas
• The same state formulas as dTL
• Instead of dTL’s trace formulas, use �tae
• Intuitively, σ |= �taeφ means φ holds except at

only a “small” set of positions along the trace
• Measure zero: mathematically rigorous notion of a

very small set
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PdTL

• How to get a measure on a trace? Map it to R

positions (0, 0), . . . , (0, r0) positions (1, 0), . . . , (1, r1)

0	

� = (�0,�1, . . . ,�n)

r0	 1	+	r0	 1	+	r0	+	r1	 .	.	.	
n +

n�1X

k=0

rk n +

nX

k=0

rk

positions (n, 0), . . . , (n, rn)
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PdTL
• For σ |= �taeφ to hold:

• Need φ to be satisfied at almost all positions along
the trace (continuous condition)

• On discrete portions of the trace, need φ to almost
hold (discrete condition)
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Compelling logical properties

• Conservative extension of dL

• A proof calculus that is designed to:
• Remove instances of �tae when possible

[?P]�taeφ↔ φ
• Reduce complicated formulas to structurally

simpler formulas
[α ∪ β]�taeφ↔ [α]�taeφ ∧ [β]�taeφ

• Do induction
φ ` [α]�taeφ

φ ` [α∗]�taeφ
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Compelling logical properties

• A major challenge: reasoning principles for
ODEs

• [x ′ = f (x)]�taeP ↔ P ∧ ∀t≥0Q
• P and Q are FOL formulas so that:

“for almost all t≥0[x := y(t)]P” ⇐⇒ ∀t≥ 0 Q,
where y(t) solves the ODE

• More complicated ODEs reasoning: a remaining
challenge
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Proof calculus

[?]tae [?P]�taeφ↔ φ Gtae

φ

[α]�taeφ

[∪]tae [α ∪ β]�taeφ↔ [α]�taeφ ∧ [β]�taeφ

[:=]tae [x := e]�taeφ↔ φ ∧ [x := e]φ Ktae

φ→ ψ [α]�tae(φ→ ψ)

[α]�taeφ→ [α]�taeψ

[; ]tae [α;β]�taeφ↔ ([α]�taeφ ∧ [α][β]�taeφ)

Itae [α∗]�taeφ↔
(
φ ∧ [α∗](φ→ [α]�taeφ)

)
TopCL

φ→ ψ

φ→ ψ

[′]tae [x ′ = f (x)]�taeP ↔ P ∧ ∀t≥0Q

[′&]tae [x ′ = f (x)&R]�taeP ↔ P∧ CGG [α]�taeφ→ [α]φ

∀t>0 ((∀0≤s≤t [x := y(s)]R)→ Q)

Here, α and β are hybrid programs, φ and ψ are state formulas, P is a FOL
formula, y(t) solves x ′ = f (x), and the formula Q in [′]tae and [′&]tae is a FOL
formula constructed for P(y(t)) so that “for almost all t≥0[x := y(t)]P” is logically
equivalent to “∀t≥0 Q”.
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PdTL works on the train example
• Model:

a = 0 ∧ v = 0→[
(
((?(v<100); a := 1) ∪ (?(v = 100); a := −1));
{x ′ = v , v ′ = a & 0≤v≤100}

)∗
]�taev<100

• Key idea: Remove the loop with looptae, split and
simplify with [; ]tae and dL axioms, handle the ODE with
[′&]tae, close with dL reasoning
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PdTL works on the train example
... and other event-triggered controllers
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When else does it work?
• Start at x = 0 and y = 1, evolve along
x ′ = −x , y ′ = −y , require x2 + y 2 < 1

• Handover point glitch

21 / 1



When else does it work?
• Start at x = 0 and y = 1, evolve along
x ′ = −x , y ′ = −y , require x2 + y 2 < 1

• Handover point glitch

21 / 1



When else does it work?
• Handle glitches in continuous portions of
program

• Two robots moving
• Model this with ¬(a1 ≤ 0 ∧ a2 ≥ 0)
• This is a small mistake. We should allow
a1 = 0 ∧ a2 = 0
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When else does it work?
• Postcondition ¬(a1 ≤ 0 ∧ a2 ≥ 0)
• Controller a1 := −1; a2 := −1; {a′1 = 1, a′2 = 1}

• This is tae safe (but not safe everywhere)
• a1 := −1; a2 := −1; {a′1 = 1, a′2 = 2} is not tae
safe
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Conclusion

• PdTL formalizes the notion of safety “almost
everywhere in time”

• Next up. . . more relaxed notions of PHS?
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Questions?

Thank you!
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