
Towards Physical Hybrid Systems

Katherine Cordwell and André Platzer

Carnegie Mellon University

August 29, 2019

This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship under Grant No. DGE-1252522. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation or of any other sponsoring institution. This research was also
sponsored by the AFOSR under grant number FA9550-16-1-0288 and by the Alexander von Humboldt
Foundation.

1 / 1



Safety-critical CPS

• How do we know that cyber-physical systems
(CPS) are functioning correctly?

• First step: model your CPS
• Hybrid systems model CPS

2 / 1



Safety-critical CPS

• How do we know that cyber-physical systems
(CPS) are functioning correctly?
• First step: model your CPS
• Hybrid systems model CPS

2 / 1



Safety-critical CPS

• How do we know that cyber-physical systems
(CPS) are functioning correctly?
• First step: model your CPS
• Hybrid systems model CPS

2 / 1



Then write hybrid systems in logic...

...with differential dynamic logic, perhaps?

3 / 1



Then write hybrid systems in logic...

...with differential dynamic logic, perhaps?

3 / 1



Then write hybrid systems in logic...

...with differential dynamic logic, perhaps?

3 / 1



Then write hybrid systems in logic...

...with differential dynamic logic, perhaps?

3 / 1



Then write hybrid systems in logic...

...with differential dynamic logic, perhaps?

3 / 1



Then write hybrid systems in logic...

...with differential dynamic logic, perhaps?

3 / 1



Then write hybrid systems in logic...

...with differential dynamic logic, perhaps?

3 / 1



Problems?
• The model could be overly permissive

• Or the model could be overly strict
• Logic is precise, physical systems are not
• Note that we absolutely want to have precise

safety guarantees

4 / 1



Problems?
• The model could be overly permissive
• Or the model could be overly strict

• Logic is precise, physical systems are not
• Note that we absolutely want to have precise

safety guarantees

4 / 1



Problems?
• The model could be overly permissive
• Or the model could be overly strict

• Logic is precise, physical systems are not
• Note that we absolutely want to have precise

safety guarantees

4 / 1



Math versus physics

• How can models be too strict?

• Models can classify systems as being unsafe on
minutely small sets

• Is this realistic?
• No! Even math allows more imprecision than

models
• Does it matter?

• Yes! Physically unrealistic counterexamples can
distract from real unsafeties of a system

5 / 1



Math versus physics

• How can models be too strict?
• Models can classify systems as being unsafe on

minutely small sets

• Is this realistic?
• No! Even math allows more imprecision than

models
• Does it matter?

• Yes! Physically unrealistic counterexamples can
distract from real unsafeties of a system

5 / 1



Math versus physics

• How can models be too strict?
• Models can classify systems as being unsafe on

minutely small sets
• Is this realistic?

• No! Even math allows more imprecision than
models

• Does it matter?
• Yes! Physically unrealistic counterexamples can

distract from real unsafeties of a system

5 / 1



Math versus physics

• How can models be too strict?
• Models can classify systems as being unsafe on

minutely small sets
• Is this realistic?

• No! Even math allows more imprecision than
models

• Does it matter?
• Yes! Physically unrealistic counterexamples can

distract from real unsafeties of a system

5 / 1



Math versus physics

• How can models be too strict?
• Models can classify systems as being unsafe on

minutely small sets
• Is this realistic?

• No! Even math allows more imprecision than
models

• Does it matter?

• Yes! Physically unrealistic counterexamples can
distract from real unsafeties of a system

5 / 1



Math versus physics

• How can models be too strict?
• Models can classify systems as being unsafe on

minutely small sets
• Is this realistic?

• No! Even math allows more imprecision than
models

• Does it matter?
• Yes! Physically unrealistic counterexamples can

distract from real unsafeties of a system

5 / 1



Our Approach
• We propose physical hybrid systems (PHS),
which are systems that behave safely almost
everywhere

• There are multiple ways to develop PHS
• Our first foray into PHS stays very close to the

usual notion of safety
• Our new logic (PdTL) is designed to ignore “very

small”, meaningless sets of safety violations along
the execution trace of a system.

6 / 1



Our Approach
• We propose physical hybrid systems (PHS),
which are systems that behave safely almost
everywhere
• There are multiple ways to develop PHS

• Our first foray into PHS stays very close to the
usual notion of safety

• Our new logic (PdTL) is designed to ignore “very
small”, meaningless sets of safety violations along
the execution trace of a system.

6 / 1



Our Approach
• We propose physical hybrid systems (PHS),
which are systems that behave safely almost
everywhere
• There are multiple ways to develop PHS
• Our first foray into PHS stays very close to the

usual notion of safety

• Our new logic (PdTL) is designed to ignore “very
small”, meaningless sets of safety violations along
the execution trace of a system.

6 / 1



Our Approach
• We propose physical hybrid systems (PHS),
which are systems that behave safely almost
everywhere
• There are multiple ways to develop PHS
• Our first foray into PHS stays very close to the

usual notion of safety

• Our new logic (PdTL) is designed to ignore “very
small”, meaningless sets of safety violations along
the execution trace of a system.

6 / 1



Our Approach
• We propose physical hybrid systems (PHS),
which are systems that behave safely almost
everywhere
• There are multiple ways to develop PHS
• Our first foray into PHS stays very close to the

usual notion of safety

• Our new logic (PdTL) is designed to ignore “very
small”, meaningless sets of safety violations along
the execution trace of a system.

6 / 1



Our Approach
• We propose physical hybrid systems (PHS),
which are systems that behave safely almost
everywhere
• There are multiple ways to develop PHS
• Our first foray into PHS stays very close to the

usual notion of safety
• Our new logic (PdTL) is designed to ignore “very

small”, meaningless sets of safety violations along
the execution trace of a system.

6 / 1



FAQ, anticipated

• Why not ask the user to edit the models?

• PdTL is capturing something that is even closer to
the normal notion of safety

• Also, we don’t want to limit the models that a user
can write

• Why isn’t this just solved by robustness?

7 / 1



FAQ, anticipated

• Why not ask the user to edit the models?
• PdTL is capturing something that is even closer to

the normal notion of safety
• Also, we don’t want to limit the models that a user

can write

• Why isn’t this just solved by robustness?

7 / 1



FAQ, anticipated

• Why not ask the user to edit the models?
• PdTL is capturing something that is even closer to

the normal notion of safety
• Also, we don’t want to limit the models that a user

can write

• Why isn’t this just solved by robustness?

7 / 1



Robustness

• Safe up to small perturbations
• Tool support, e.g. dReach

• Models of CPS can and should be robust

8 / 1



Robustness

• Safe up to small perturbations
• Tool support, e.g. dReach
• Models of CPS can and should be robust

8 / 1



Robustness
• But robustness is only one piece of the puzzle.
We’re trying to do something different.

• Also, robustness often requires a reachability
analysis and can be more limited in scope (no
induction!)

9 / 1



Robustness
• But robustness is only one piece of the puzzle.
We’re trying to do something different.

• Also, robustness often requires a reachability
analysis and can be more limited in scope (no
induction!)

9 / 1



Robustness
• But robustness is only one piece of the puzzle.
We’re trying to do something different.

• Also, robustness often requires a reachability
analysis and can be more limited in scope (no
induction!)

9 / 1



Let’s talk PdTL

• Physical differential temporal dynamic logic
(PdTL) extends dTL extends dL

• dTL rigorizes execution traces

10 / 1



Formulas in dTL (and PdTL!)
• State formulas

• Evaluated in a state
(at a snapshot in
time)

• States map
variables to R

• Trace formulas
• Evaluated along

execution traces
(sequences of
functions mapping
intervals to states)

11 / 1



Formulas in dTL (and PdTL!)
• State formulas

• Evaluated in a state
(at a snapshot in
time)

• States map
variables to R

• Trace formulas
• Evaluated along

execution traces
(sequences of
functions mapping
intervals to states)

11 / 1



Formulas in dTL (and PdTL!)
• State formulas

• Evaluated in a state
(at a snapshot in
time)

• States map
variables to R

• Trace formulas
• Evaluated along

execution traces
(sequences of
functions mapping
intervals to states)

11 / 1



Traces in PdTL

12 / 1



PdTL

• Trace semantics
• The same as in dTL, except we allow Carathéodory

solutions to ODEs

• Formulas
• The same state formulas as dTL
• Instead of dTL’s trace formulas, use �tae
• Intuitively, σ |= �taeφ means φ holds except at

only a “small” set of positions along the trace
• Measure zero: mathematically rigorous notion of a

very small set

13 / 1



PdTL

• Trace semantics
• The same as in dTL, except we allow Carathéodory

solutions to ODEs
• Formulas

• The same state formulas as dTL
• Instead of dTL’s trace formulas, use �tae

• Intuitively, σ |= �taeφ means φ holds except at
only a “small” set of positions along the trace

• Measure zero: mathematically rigorous notion of a
very small set

13 / 1



PdTL

• Trace semantics
• The same as in dTL, except we allow Carathéodory

solutions to ODEs
• Formulas

• The same state formulas as dTL
• Instead of dTL’s trace formulas, use �tae
• Intuitively, σ |= �taeφ means φ holds except at

only a “small” set of positions along the trace

• Measure zero: mathematically rigorous notion of a
very small set

13 / 1



PdTL

• Trace semantics
• The same as in dTL, except we allow Carathéodory

solutions to ODEs
• Formulas

• The same state formulas as dTL
• Instead of dTL’s trace formulas, use �tae
• Intuitively, σ |= �taeφ means φ holds except at

only a “small” set of positions along the trace
• Measure zero: mathematically rigorous notion of a

very small set

13 / 1



PdTL

• How to get a measure on a trace? Map it to R

positions (0, 0), . . . , (0, r0) positions (1, 0), . . . , (1, r1)

0	

� = (�0,�1, . . . ,�n)

r0	 1	+	r0	 1	+	r0	+	r1	 .	.	.	
n +

n�1X

k=0

rk n +

nX

k=0

rk

positions (n, 0), . . . , (n, rn)

14 / 1



PdTL
• For σ |= �taeφ to hold:

• Need φ to be satisfied at almost all positions along
the trace (continuous condition)

• On discrete portions of the trace, need φ to almost
hold (discrete condition)

15 / 1



PdTL
• For σ |= �taeφ to hold:

• Need φ to be satisfied at almost all positions along
the trace (continuous condition)

• On discrete portions of the trace, need φ to almost
hold (discrete condition)

15 / 1



PdTL
• For σ |= �taeφ to hold:

• Need φ to be satisfied at almost all positions along
the trace (continuous condition)

• On discrete portions of the trace, need φ to almost
hold (discrete condition)

15 / 1



Compelling logical properties

• Conservative extension of dL

• A proof calculus that is designed to:
• Remove instances of �tae when possible

[?P]�taeφ↔ φ
• Reduce complicated formulas to structurally

simpler formulas
[α ∪ β]�taeφ↔ [α]�taeφ ∧ [β]�taeφ

• Do induction
φ ` [α]�taeφ

φ ` [α∗]�taeφ

16 / 1



Compelling logical properties

• Conservative extension of dL
• A proof calculus that is designed to:

• Remove instances of �tae when possible
[?P]�taeφ↔ φ

• Reduce complicated formulas to structurally
simpler formulas

[α ∪ β]�taeφ↔ [α]�taeφ ∧ [β]�taeφ
• Do induction

φ ` [α]�taeφ

φ ` [α∗]�taeφ

16 / 1



Compelling logical properties

• Conservative extension of dL
• A proof calculus that is designed to:

• Remove instances of �tae when possible
[?P]�taeφ↔ φ

• Reduce complicated formulas to structurally
simpler formulas

[α ∪ β]�taeφ↔ [α]�taeφ ∧ [β]�taeφ

• Do induction
φ ` [α]�taeφ

φ ` [α∗]�taeφ

16 / 1



Compelling logical properties

• Conservative extension of dL
• A proof calculus that is designed to:

• Remove instances of �tae when possible
[?P]�taeφ↔ φ

• Reduce complicated formulas to structurally
simpler formulas

[α ∪ β]�taeφ↔ [α]�taeφ ∧ [β]�taeφ
• Do induction

φ ` [α]�taeφ

φ ` [α∗]�taeφ

16 / 1



Compelling logical properties

• A major challenge: reasoning principles for
ODEs

• [x ′ = f (x)]�taeP ↔ P ∧ ∀t≥0Q
• P and Q are FOL formulas so that:

“for almost all t≥0[x := y(t)]P” ⇐⇒ ∀t≥ 0 Q,
where y(t) solves the ODE

• More complicated ODEs reasoning: a remaining
challenge

17 / 1



Compelling logical properties

• A major challenge: reasoning principles for
ODEs
• [x ′ = f (x)]�taeP ↔ P ∧ ∀t≥0Q

• P and Q are FOL formulas so that:
“for almost all t≥0[x := y(t)]P” ⇐⇒ ∀t≥ 0 Q,
where y(t) solves the ODE

• More complicated ODEs reasoning: a remaining
challenge

17 / 1



Compelling logical properties

• A major challenge: reasoning principles for
ODEs
• [x ′ = f (x)]�taeP ↔ P ∧ ∀t≥0Q
• P and Q are FOL formulas so that:

“for almost all t≥0[x := y(t)]P” ⇐⇒ ∀t≥ 0 Q,
where y(t) solves the ODE

• More complicated ODEs reasoning: a remaining
challenge

17 / 1



Compelling logical properties

• A major challenge: reasoning principles for
ODEs
• [x ′ = f (x)]�taeP ↔ P ∧ ∀t≥0Q
• P and Q are FOL formulas so that:

“for almost all t≥0[x := y(t)]P” ⇐⇒ ∀t≥ 0 Q,
where y(t) solves the ODE

• More complicated ODEs reasoning: a remaining
challenge

17 / 1



Proof calculus

[?]tae [?P]�taeφ↔ φ Gtae

φ

[α]�taeφ

[∪]tae [α ∪ β]�taeφ↔ [α]�taeφ ∧ [β]�taeφ

[:=]tae [x := e]�taeφ↔ φ ∧ [x := e]φ Ktae

φ→ ψ [α]�tae(φ→ ψ)

[α]�taeφ→ [α]�taeψ

[; ]tae [α;β]�taeφ↔ ([α]�taeφ ∧ [α][β]�taeφ)

Itae [α∗]�taeφ↔
(
φ ∧ [α∗](φ→ [α]�taeφ)

)
TopCL

φ→ ψ

φ→ ψ

[′]tae [x ′ = f (x)]�taeP ↔ P ∧ ∀t≥0Q

[′&]tae [x ′ = f (x)&R]�taeP ↔ P∧ CGG [α]�taeφ→ [α]φ

∀t>0 ((∀0≤s≤t [x := y(s)]R)→ Q)

Here, α and β are hybrid programs, φ and ψ are state formulas, P is a FOL
formula, y(t) solves x ′ = f (x), and the formula Q in [′]tae and [′&]tae is a FOL
formula constructed for P(y(t)) so that “for almost all t≥0[x := y(t)]P” is logically
equivalent to “∀t≥0 Q”.

18 / 1



PdTL works on the train example
• Model:

a = 0 ∧ v = 0→[
(
((?(v<100); a := 1) ∪ (?(v = 100); a := −1));
{x ′ = v , v ′ = a & 0≤v≤100}

)∗
]�taev<100

• Key idea: Remove the loop with looptae, split and
simplify with [; ]tae and dL axioms, handle the ODE with
[′&]tae, close with dL reasoning

19 / 1



PdTL works on the train example
• Model:

a = 0 ∧ v = 0→[
(
((?(v<100); a := 1) ∪ (?(v = 100); a := −1));
{x ′ = v , v ′ = a & 0≤v≤100}

)∗
]�taev<100

• Key idea: Remove the loop with looptae, split and
simplify with [; ]tae and dL axioms, handle the ODE with
[′&]tae, close with dL reasoning

19 / 1



PdTL works on the train example
... and other event-triggered controllers

20 / 1



When else does it work?
• Start at x = 0 and y = 1, evolve along
x ′ = −x , y ′ = −y , require x2 + y 2 < 1

• Handover point glitch

21 / 1



When else does it work?
• Start at x = 0 and y = 1, evolve along
x ′ = −x , y ′ = −y , require x2 + y 2 < 1

• Handover point glitch

21 / 1



When else does it work?
• Handle glitches in continuous portions of
program

• Two robots moving
• Model this with ¬(a1 ≤ 0 ∧ a2 ≥ 0)
• This is a small mistake. We should allow
a1 = 0 ∧ a2 = 0

22 / 1



When else does it work?
• Handle glitches in continuous portions of
program

• Two robots moving

• Model this with ¬(a1 ≤ 0 ∧ a2 ≥ 0)
• This is a small mistake. We should allow
a1 = 0 ∧ a2 = 0

22 / 1



When else does it work?

• Handle glitches in continuous portions of
program

• Two robots moving

• Model this with ¬(a1 ≤ 0 ∧ a2 ≥ 0)

• This is a small mistake. We should allow
a1 = 0 ∧ a2 = 0

22 / 1



When else does it work?

• Handle glitches in continuous portions of
program

• Two robots moving

• Model this with ¬(a1 ≤ 0 ∧ a2 ≥ 0)
• This is a small mistake. We should allow
a1 = 0 ∧ a2 = 0

22 / 1



When else does it work?
• Postcondition ¬(a1 ≤ 0 ∧ a2 ≥ 0)
• Controller a1 := −1; a2 := −1; {a′1 = 1, a′2 = 1}

• This is tae safe (but not safe everywhere)
• a1 := −1; a2 := −1; {a′1 = 1, a′2 = 2} is not tae
safe

23 / 1



When else does it work?
• Postcondition ¬(a1 ≤ 0 ∧ a2 ≥ 0)
• Controller a1 := −1; a2 := −1; {a′1 = 1, a′2 = 1}
• This is tae safe (but not safe everywhere)

• a1 := −1; a2 := −1; {a′1 = 1, a′2 = 2} is not tae
safe

23 / 1



When else does it work?
• Postcondition ¬(a1 ≤ 0 ∧ a2 ≥ 0)
• Controller a1 := −1; a2 := −1; {a′1 = 1, a′2 = 1}
• This is tae safe (but not safe everywhere)
• a1 := −1; a2 := −1; {a′1 = 1, a′2 = 2} is not tae
safe

23 / 1



Conclusion

• PdTL formalizes the notion of safety “almost
everywhere in time”

• Next up. . . more relaxed notions of PHS?

24 / 1



Conclusion

• PdTL formalizes the notion of safety “almost
everywhere in time”

• Next up. . . more relaxed notions of PHS?

24 / 1



Questions?

Thank you!
25 / 1


