ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models

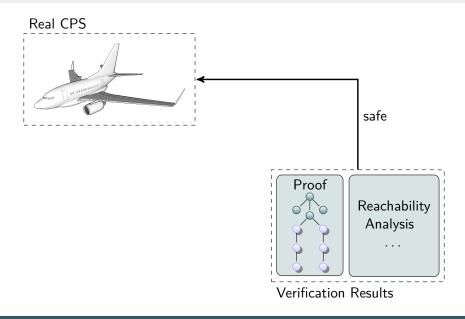
Stefan Mitsch André Platzer

Computer Science Department, Carnegie Mellon University

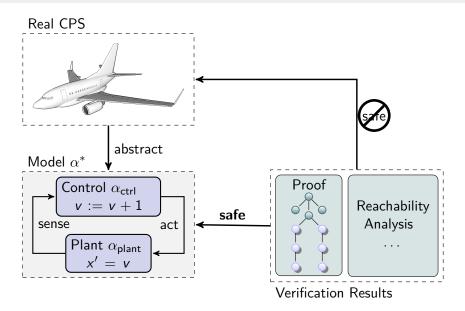
RV'14, Sept. 24, 2014

Simplex for Hybrid System Models

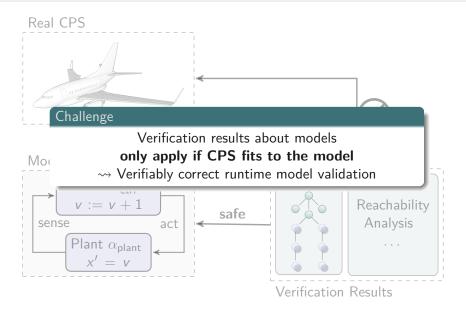
Formal Verification in CPS Development



Formal Verification in CPS Development

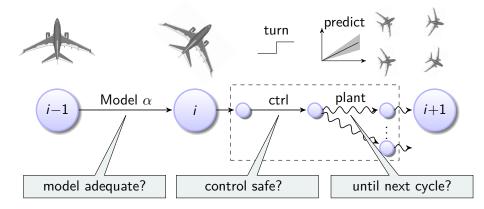


Formal Verification in CPS Development



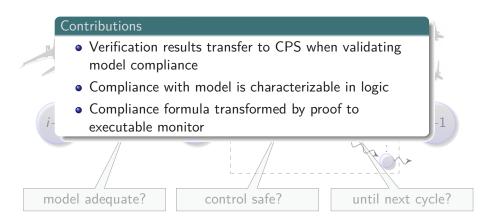
ModelPlex Runtime Model Validation

ModelPlex ensures that verification results about models apply to CPS implementations

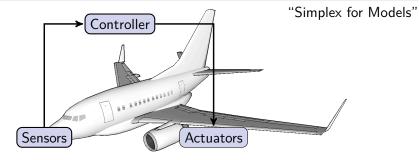


ModelPlex Runtime Model Validation

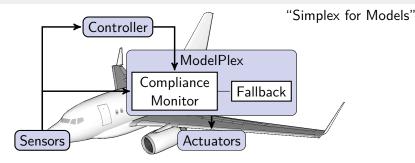
ModelPlex ensures that verification results about models apply to CPS implementations



ModelPlex at Runtime



ModelPlex at Runtime



Compliance Monitor Checks CPS for compliance with model at runtime

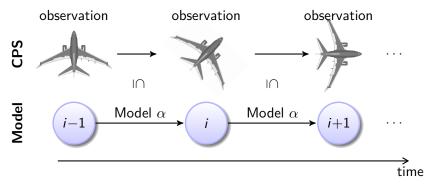
- Model Monitor: model adequate?
- Controller Monitor: control safe?
- Prediction Monitor: until next cycle?

Fallback Safe action, executed when monitor is not satisfied Challenge What conditions do the monitors need to check to be safe?

ModelPlex Approach

Is current CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes behavior of CPS between states

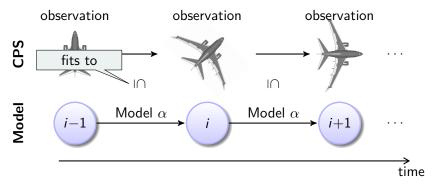


Detect non-compliance as soon as possible to initiate safe fallback actions

ModelPlex Approach

Is current CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes behavior of CPS between states

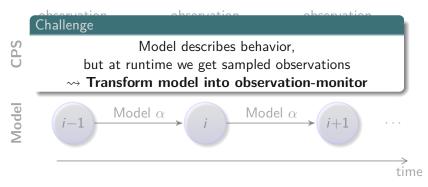


Detect non-compliance as soon as possible to initiate safe fallback actions

ModelPlex Approach

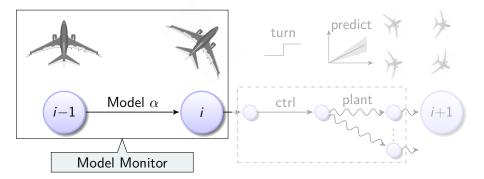
Is current CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes behavior of CPS between states

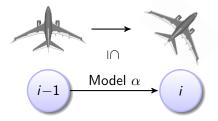


Detect non-compliance as soon as possible to initiate safe fallback actions

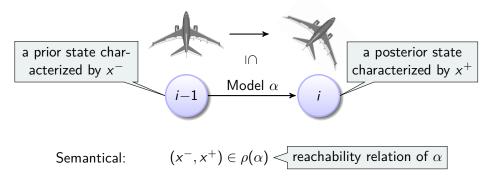
Outline

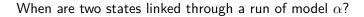


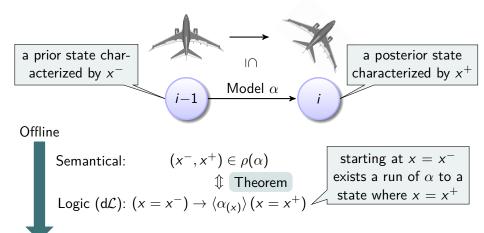
When are two states linked through a run of model α ?

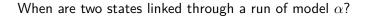


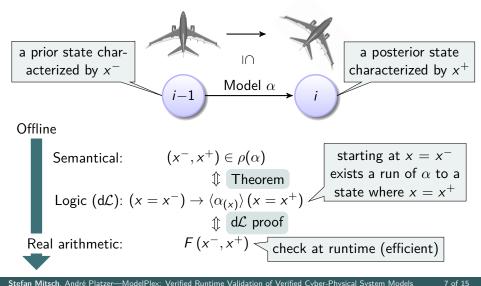
When are two states linked through a run of model α ?

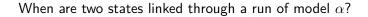


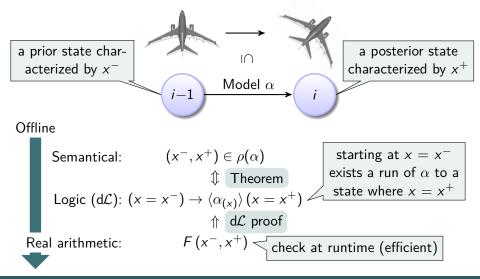






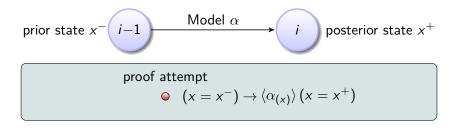




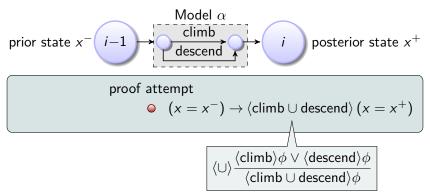


Stefan Mitsch, André Platzer-ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models

• Proof calculus of $d\mathcal{L}$ executes models symbolically



 \bullet Proof calculus of d $\!\mathcal L$ executes models symbolically



 \bullet Proof calculus of d $\!\mathcal L$ executes models symbolically

prior state
$$x^{-1}$$

proof attempt
 $\langle \text{climb} \rangle (x = x^{-}) \rightarrow \langle \text{climb} \cup \text{descend} \rangle (x = x^{+})$
 $\langle \text{climb} \rangle (x = x^{+}) \rightarrow \langle \text{descend} \rangle (x = x^{+})$

 \bullet Proof calculus of d $\!\mathcal L$ executes models symbolically

prior state
$$x^{-1}$$
 $\stackrel{\text{climb}}{\xrightarrow{\text{climb}}}$ i posterior state x^{+}
proof attempt
 $(x = x^{-}) \rightarrow \langle \text{climb} \cup \text{descend} \rangle (x = x^{+})$
 $\langle \text{climb} \rangle (x = x^{+})$
 $F_1(x^{-}, x^{+})$ $F_2(x^{-}, x^{+})$

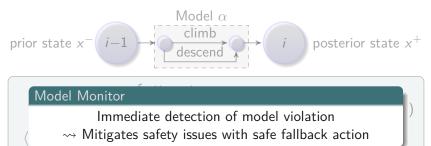
 \bullet Proof calculus of d $\!\mathcal L$ executes models symbolically

prior state
$$x^{-1}$$
 $\xrightarrow{i-1}$ \xrightarrow{climb} \xrightarrow{i} i posterior state x^{+}
proof attempt
 $(x = x^{-}) \rightarrow \langle \text{climb} \cup \text{descend} \rangle (x = x^{+})$
 $\langle \text{climb} \rangle (x = x^{+})$ $\langle \text{descend} \rangle (x = x^{+})$
 $F_1(x^{-}, x^{+})$ $F_2(x^{-}, x^{+})$

Monitor: $F_1(x^-, x^+) \lor F_2(x^-, x^+)$

 The subgoals that cannot be proved express all the conditions on the relations of variables imposed by the model → execute at runtime

 \bullet Proof calculus of d $\!\mathcal{L}$ executes models symbolically

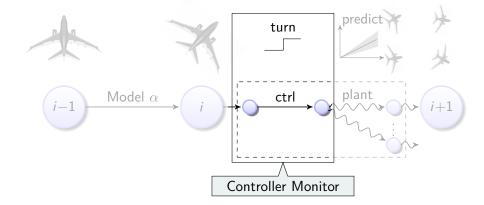


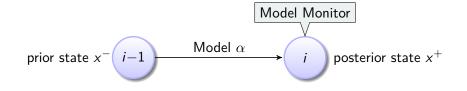
$$F_1(x^-, x^+)$$

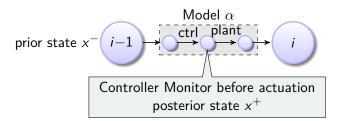
Monitor: $F_1(x^-, x^+) \lor F_2(x^-, x^+)$

• The subgoals that cannot be proved express all the conditions on the relations of variables imposed by the model \rightsquigarrow execute at runtime

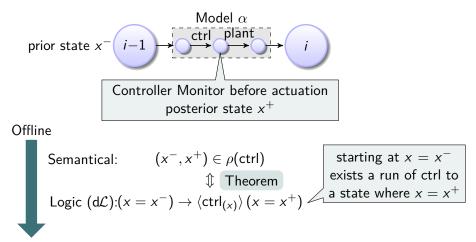
For typical models ctrl; plant we can check earlier

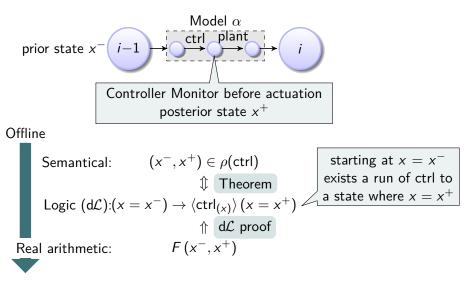


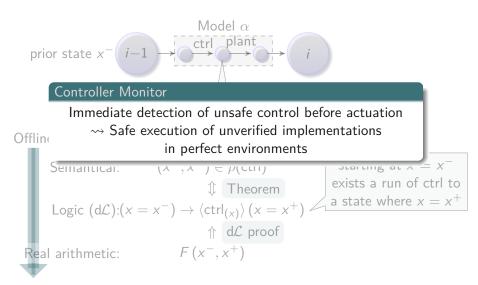




Semantical: $(x^-, x^+) \in \rho(\mathsf{ctrl}) \triangleleft \mathsf{reachability relation of ctrl}$

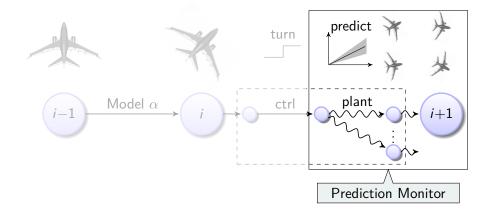


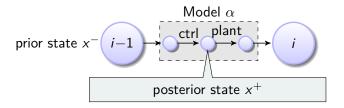


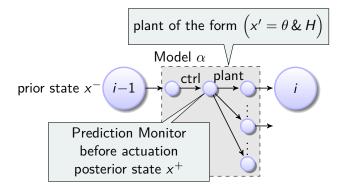


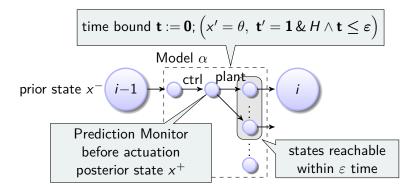
Outline

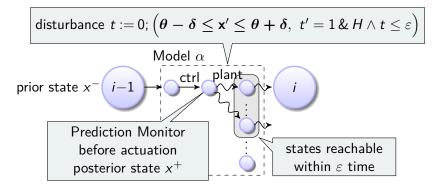
Safe despite evolution with disturbance?

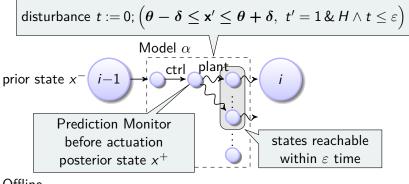








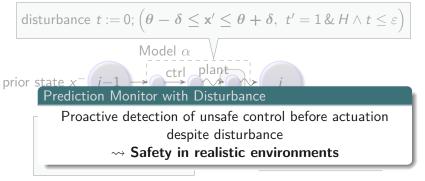




Offline

Logic (d
$$\mathcal{L}$$
): $(x = x^{-}) \rightarrow \langle \operatorname{ctrl}_{(x)} \rangle \left(x = x^{+} \land [\operatorname{plant}_{(x)}] \varphi \right)$

$$\uparrow d\mathcal{L} \text{ proof}$$
Invariant state φ implies safety (known from safety proof)



Offline

Logic (d
$$\mathcal{L}$$
): $(x = x^{-}) \rightarrow \langle \operatorname{ctrl}_{(x)} \rangle \left(x = x^{+} \land [\operatorname{plant}_{(x)}] \varphi \right)$
 $\uparrow d\mathcal{L} \operatorname{proof}$
eal arithmetic: $F(x^{-}, x^{+})$
[Invariant state φ implies safety
(known from safety proof)

Stefan Mitsch, André Platzer-ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 12 of 15

Evaluation

• Evaluated on hybrid system case studies

Water tank

Cruise control

Traffic control

Ground robots

C Black-I Robotics

Train control

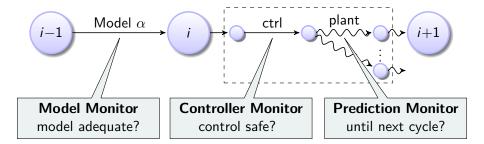
C Harald Eisenberge

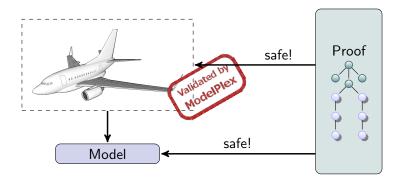
- Model sizes: 5–16 variables
- Monitor sizes: 20–150 operations
 - with automated simplification to remove redundant checks
 - improvement potential: simplification for any monitor
- Theorem: ModelPlex is decidable and monitor synthesis fully automated in important classes

Conclusion

ModelPlex ensures that proofs apply to real CPS

- Validate model compliance
- Characterize compliance with model in logic
- Prover transforms compliance formula to executable monitor





Stefan Mitsch

smitsch@cs.cmu.edu www.cs.cmu.edu/~smitsch

Theorems

- State Recall (Online Monitoring)
- Model Monitor Correctness
- Controller Monitor Correctness
- Prediction Monitor Correctness
- Decidability and Computability

State Recall

V set of variables whose state we want to recall $\Upsilon_V^- \equiv \bigwedge_{x \in V} x = x^-$ characterizes a state prior to a run of α (fresh variables x^- occur solely in Υ_V^- and recall this state) $\Upsilon_V^+ \equiv \bigwedge_{x \in V} x = x^+$ characterizes the posterior states (fresh x^+) Programs hybrid program α , α^* repeats α arbitrarily many times Assume all consecutive pairs of states $(\nu_{i-1}, \nu_i) \in \rho(\alpha)$ of $n \in \mathbb{N}^+$ executions, whose valuations are recalled with $\Upsilon^i_V \equiv \bigwedge_{x \in V} x = x^i$ and Υ^{i-1}_V are plausible w.r.t. the model α , i. e., $\models \bigwedge_{1 \le i \le n} \left(\Upsilon_V^{i-1} \to \langle \alpha \rangle \Upsilon_V^i \right)$ with $\Upsilon_V^- = \Upsilon_V^0$ and $\Upsilon^+_V = \Upsilon^n_V.$

Then the sequence of states originates from an α^* execution from Υ^0_V to Υ^n_V , i.e., $\models \Upsilon^-_V \to \langle \alpha^* \rangle \Upsilon^+_V$.

Model Monitor Correctness

 $\models \phi \to [\alpha^*] \psi \ \alpha^* \text{ is provably safe}$ Definitions Let $V_m = BV(\alpha) \cup FV(\psi)$; let $\nu_0, \nu_1, \nu_2, \nu_3 \ldots \in \mathbb{R}^n$ be a sequence of states, with $\nu_0 \models \phi$ and that agree on $\Sigma \setminus V_m$, i. e., $\nu_0|_{\Sigma \setminus V_m} = \nu_k|_{\Sigma \setminus V_m}$ for all k.
Model Monitor $(\nu, \nu_{i+1}) \models \chi_m$ as χ_m evaluated in the state resulting from ν by interpreting x^+ as $\nu_{i+1}(x)$ for all $x \in V_m$, i. e., $\nu_{x^+}^{\nu_{i+1}(x)} \models \chi_m$ Correctness If $(\nu_i, \nu_{i+1}) \models \chi_m$ for all i < n then we have $\nu_n \models \psi$ where

$$\chi_{\rm m} \equiv \left(\phi |_{\rm const} \rightarrow \langle \alpha \rangle \Upsilon^+_{V_{\rm m}} \right)$$

and $\phi|_{\text{const}}$ denotes the conditions of ϕ that involve only constants that do not change in α , i. e., $FV(\phi|_{\text{const}}) \cap BV(\alpha) = \emptyset$.

Controller Monitor Correctness

|= φ → [α*]ψ α* is provably safe with invariant φ
Definitions Let α of the canonical form α_{ctrl}; α_{plant}; let ν ⊨ φ|_{const} ∧ φ, as checked by χ_m; let ν̃ be a post-controller state.
Controller Monitor (ν, ũ) ⊨ χ_c as χ_c evaluated in the state resulting from ν by interpreting x⁺ as ũ(x) for all x ∈ V_c, i. e., ν_{x+}^{ũ(x)} ⊨ χ_c
Correctness If (ν, ũ) ⊨ χ_c where

$$\chi_{\mathsf{c}} \equiv \phi|_{\mathsf{const}} \to \langle \alpha_{\mathsf{ctrl}} \rangle \Upsilon^+_{V_c}$$

then we have that $(\nu, \tilde{\nu}) \in \rho(\alpha_{ctrl})$ and $\tilde{\nu} \models \varphi$.

Prediction Monitor Correctness

 $\models \phi \to [\alpha^*] \psi \ \alpha^* \text{ is provably safe with invariant } \varphi$ Definitions Let $V_p = BV(\alpha) \cup FV([\alpha]\varphi)$. Let $\nu \models \phi|_{\text{const}} \land \varphi$, as checked by χ_{m} . Further assume $\tilde{\nu}$ such that $(\nu, \tilde{\nu}) \in \rho(\alpha_{\text{ctrl}})$, as checked by χ_{c} .

Prediction Monitor $(\nu, \tilde{\nu}) \models \chi_p$ as χ_p evaluated in the state resulting from ν by interpreting x^+ as $\tilde{\nu}(x)$ for all $x \in V_p$, i. e., $\nu_{x^+}^{\tilde{\nu}(x)} \models \chi_p$ Correctness If $(\nu, \tilde{\nu}) \models \chi_p$ where

$$\chi_{\mathsf{p}} \equiv (\phi|_{\mathsf{const}} \wedge \varphi) \rightarrow \langle lpha_{\mathsf{ctrl}} \rangle (\Upsilon^+_{V_{\!\!P}} \wedge [lpha_{\delta \mathsf{plant}}] \varphi)$$

then we have for all $(\tilde{\nu}, \omega) \in \rho(\alpha_{\delta plant})$ that $\omega \models \varphi$

Decidability and Computability

Assumptions

- \bullet canonical models $\alpha\equiv\alpha_{\rm ctrl};\alpha_{\rm plant}$ without nested loops
- \bullet with solvable differential equations in $\alpha_{\rm plant}$
- \bullet disturbed plants $\alpha_{\delta {\rm plant}}$ with constant additive disturbance δ

Decidability Monitor correctness is decidable, i. e., the formulas

•
$$\chi_{\rm m} \rightarrow \langle \alpha \rangle \Upsilon_V^+$$

• $\chi_{\rm c} \rightarrow \langle \alpha_{\rm ctrl} \rangle \Upsilon_V^+$
• $\chi_{\rm p} \rightarrow \langle \alpha \rangle (\Upsilon_V^+ \wedge [\alpha_{\delta {\rm plant}}] \phi)$

are decidable

Computability Monitor synthesis is computable, i. e., the functions

- synth_m : $\langle \alpha \rangle \Upsilon^+_V \mapsto \chi_m$
- synth_c : $\langle \alpha_{ctrl} \rangle \Upsilon^+_V \mapsto \chi_c$
- synth_p : $\langle \alpha \rangle (\Upsilon_V^+ \wedge [\alpha_{\delta \text{plant}}]\phi) \mapsto \chi_p$

are computable

Water Tank Example: Monitor Conjecture

Variables

x current level	arepsilon control cycle
<i>m</i> maximum level	<i>f</i> flow

Model and Safety Property

$$\underbrace{0 \le x \le m \land \varepsilon > 0}_{\phi} \rightarrow \begin{bmatrix} (f := *; ?(-1 \le f \le \frac{m - x}{\varepsilon}); \\ t := 0; (x' = f, t' = 1 \& x \ge 0 \land t \le \varepsilon))^* \end{bmatrix}_{\psi}$$

Model Monitor Specification Conjecture

$$\underbrace{\varepsilon > 0}_{\phi|_{\text{const}}} \to \left\langle \begin{array}{l} f := *; ? \left(-1 \le f \le \frac{m-x}{\varepsilon} \right); \\ t := 0; \ (x' = f, \ t' = 1 \ \& \ x \ge 0 \land t \le \varepsilon) \right\rangle \overbrace{\left(x = x^+ \land f = f^+ \land t \right)}^{\Upsilon_{V_m}^+}$$

Water Tank Example: Nondeterministic Assignment

Proof Rules

$$(\langle * \rangle) \frac{\exists X \langle x := X \rangle \phi}{\langle x := * \rangle \phi} {}^{1} \quad (\exists \mathsf{r}) \frac{\Gamma \vdash \phi(\theta), \exists x \phi(x), \Delta}{\Gamma \vdash \exists x \phi(x), \Delta} {}^{2} \quad (\mathsf{W}\mathsf{r}) \frac{\Gamma \vdash \Delta}{\Gamma \vdash \phi, \Delta}$$

- ¹ X is a new logical variable
- ² θ is an arbitrary term, often a new (existential) logical variable X.

Sequent Deduction

$$\begin{array}{c} \phi \vdash \langle f := F \rangle \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ \forall \phi \vdash \exists F \langle f := F \rangle \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ \langle * \rangle \ \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plant \rangle \Upsilon^+ \\ & \forall \phi \vdash \langle f := *; ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle plan$$

Water Tank Example: Differential Equations

Proof Rules

$$(\langle ' \rangle) \frac{\exists T \ge 0 \left((\forall 0 \le \tilde{t} \le T \langle x := y(\tilde{t}) \rangle H \right) \land \langle x := y(T) \rangle \phi)}{\langle x' = \theta \& H \rangle \phi} \ ^{1} \quad (\mathsf{QE}) \frac{\mathsf{QE}(\phi)}{\phi} \ ^{2}$$

¹ T and \tilde{t} are fresh logical variables and $\langle x := y(T) \rangle$ is the discrete assignment belonging to the solution y of the differential equation with constant symbol x as symbolic initial value

² iff $\phi \equiv QE(\phi)$, ϕ is a first-order real arithmetic formula, $QE(\phi)$ is an equivalent quantifier-free formula

Sequent Deduction

$$\begin{array}{l} \varphi \vdash F = f^+ \wedge x^+ = x + Ft^+ \wedge t^+ \geq 0 \wedge x \geq 0 \wedge \varepsilon \geq t^+ \geq 0 \wedge Ft^+ + x \geq 0 \\ \hline \varphi \vdash \forall 0 \leq \tilde{t} \leq T \ (x + f^+ \tilde{t} \geq 0 \wedge \tilde{t} \leq \varepsilon) \wedge F = f^+ \wedge x^+ = x + Ft^+ \wedge t^+ = t^+ \\ \exists r, \mathsf{Wr} \\ \hline \varphi \vdash \exists T \geq 0 ((\forall 0 \leq \tilde{t} \leq T \ (x + f^+ \tilde{t} \geq 0 \wedge \tilde{t} \leq \varepsilon)) \wedge F = f^+ \wedge (x^+ = x + FT \wedge t^+ = T)) \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ \hline \varphi \vdash \langle f := F; t := 0 \rangle \langle \{x' = f, t' = 1 \ \& x \geq 0 \wedge t \leq \varepsilon\} \rangle \Upsilon^+ \end{array}$$

Evaluation

	Case Study		Model		Monitor			
		dim.	proof size (branches)	dim.	dimsteps (open seq.)w/ Opt. 1 auto		proof steps (branches)	size
	Water tank	5	38 (4)	3	16 (2)	20 (2)	64 (5)	32
χ^m	Cruise control	11	969 (124)	7	127 (13)	597 (21)	19514 (1058)	1111
\sim	Speed limit	9	410 (30)	6	487 (32)	5016 (126)	64311 (2294)	19850
	Water tank	5	38 (4)	1	12 (2)	14 (2)	40 (3)	20
0	Cruise control	11	969 (124)	7	83 (13)	518 (106)	5840 (676)	84
×	Ground robot	14	3350 (225)	11	94 (10)	1210 (196)	26166 (2854)	121
	ETCS safety	16	193 (10)	13	162 (13)	359 (37)	16770 (869)	153
χ_p	Water tank	8	80 (6)	1	135 (4)	N/A	307 (12)	43

• Theorem: ModelPlex is decidable and monitor synthesis can be automated in important classes

Monitor Synthesis Algorithm

1

Algorithm 1: ModelPlex monitor synthesis

input : A hybrid program α , a set of variables $\mathcal{V} \subseteq BV(\alpha)$, an initial condition ϕ such that $\models \phi \rightarrow [\alpha^*]\psi$. **output**: A monitor χ_m such that $\models \chi_m \equiv \phi|_{const} \rightarrow \langle \alpha \rangle \Upsilon^+$. begin $S \leftarrow \emptyset$ $\Upsilon^+ \longleftarrow \bigwedge_{x \in \mathcal{V}} x = x^+$ with fresh variables x_i^+ // Monitor conjecture $G \longleftarrow \{\vdash \phi \mid_{\text{const}} \to \langle \alpha \rangle \Upsilon^+ \}$ while $G \neq \emptyset$ do // Analyze monitor conjecture foreach $g \in G$ do $G \longleftarrow G - \{g\}$ if g is first-order then if $\not\models g$ then $S \longleftarrow S \cup \{g\}$ else $\widetilde{g} \longleftarrow$ apply d \mathcal{L} proof rule to g $G \longleftarrow G \cup \{\widetilde{g}\}$ $\chi_{\rm m} \leftarrow \bigwedge_{c \in S} s$ // Collect open sequents