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Abstract. Autonomous cyber-physical systems are systems that com-
bine the physics of motion with advanced cyber algorithms to act on their
own without close human supervision. The present consensus is that rea-
sonable levels of autonomy, such as for self-driving cars or autonomous
drones, can only be reached with the help of artificial intelligence and
machine learning algorithms that cope with the uncertainties of the real
world. That makes safety assurance even more challenging than it al-
ready is in cyber-physical systems (CPSs) with classically programmed
control, precisely because AI techniques are lauded for their flexibility in
handling unpredictable situations, but are themselves harder to predict.
This paper identifies the logical path toward autonomous cyber-physical
systems in multiple steps. First, differential dynamic logic (dL) provides a
logical foundation for developing cyber-physical system models with the
mathematical rigor that their safety-critical nature demands. Then, its
ModelPlex technique provides a logically correct way to tame the subtle
relationship of CPS models to CPS implementations. Finally, the re-
sulting logical monitor conditions can then be exploited to safeguard the
decisions of learning agents, guide the optimization of learning processes,
and resolve the nondeterminism frequently found in verification models.
Overall, logic leads the way in combining the best of both worlds: the
strong predictions that formal verification techniques provide alongside
the strong flexibility that the use of AI provides.
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1 Introduction

Autonomous cyber-physical systems (autonomous CPS) use sophisticated soft-
ware to control the physics of motion. They plan their own goals and actions in
pursuit of them. And if things go wrong, they react to situation changes in order
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to prevent problems on their own without close human supervision. Autonomous
cyber-physical systems are a technological dream come true. Or are they?

Well, for one thing, cyber-physical systems have found frequent use, but are
not yet operated very autonomously. Certainly, the prospects that autonomous
cyber-physical systems promise are very appealing, but it is precisely their goal of
autonomy and lack of human supervision that also makes them fairly challenging
to build just right. Granted, it is also challenging to design an ordinary CPS
with human supervision because humans need sufficiently early warning to gain
situational awareness and react, which, in turn, requires ample foresight in the
CPS design. But the desire for autonomy changes the state of affairs considerably.

From a performance perspective, the biggest difference compared to ordinary
CPS is that autonomous CPS do not need to be monitored all the time, but “do
the right thing” on their own. The biggest difference from a safety perspective
is that it’s not clear what the right thing is and humans cannot save the day
if the autonomous CPS goes awry, because the whole point is that they are
not supervised closely. Autonomy benefits from the help of artificial intelligence
and machine learning algorithms that cope with the uncertainties of the real
world [27]. Of course, the added flexibility in handling unpredictable situations
makes the safety impact of the addition of AI themselves harder to predict.

Formal methods provide ways of establishing safety properties for ordinary
CPS [2, 17, 19, 26, 28, 34, 36, 40], and AI provides ways of giving autonomy to
CPS. This calls for a combination of formal methods and artificial intelligence
[1,9,13,14,16], just not by a friendly ignorance of one another. Instead, the trick
is to combine both in a way that each field actually retains its benefits for the
CPS in the end. This paper surveys an approach for Safe AI in CPS in which
logic leads the way in combining the best of both worlds.

2 Challenge

Cyber-Physical Systems combine cyber capabilities such as communication,
computation and control with physical capabilities such as the motion of robots,
cars, or aircraft. Mathematical models for such CPS are based on hybrid systems,
which combine discrete dynamical systems with continuous dynamical systems,
e.g., because discrete change one step at a time fits well to computation, while
continuous dynamics along differential equations fits well to their motion.

Formal Verification uses the descriptive models of hybrid systems for predict-
ing, with the help of model checking [8, 11] or proof [31, 36], whether all their
behavior satisfies safety properties of interest, such as collision freedom. Espe-
cially in the case of logical proofs, formal methods enable very strong guarantees
about all behavior of the mathematical models from a small reasoning basis [35].
In order to overcome complexity challenges, it is often important to work with
models that use simplifying abstractions, because models that include literally
all implementation detail quickly become prohibitively expensive to analyze.
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Machine Learning forgoes the principle of explicitly programming all behav-
ior of a system and, instead, uses learning algorithms that generalize responses
from static data (e.g., a set of labeled images to classify) or from dynamic expe-
rience (e.g., responses to trial and error). Reinforcement learning (RL) [39], for
example, repeatedly tries out an action, observes what the overall outcome of a
sequence of actions was, and then increases the probability with which its policy
decides for actions that have had large fractions of good outcomes so far. The
big advantage of reinforcement learning is that it can be used with very minimal
assumptions on the system to be controlled. All it takes is a black-box way of
executing actions and reliably observing the outcome, e.g., in a simulator. In
practice, learning systems are also lauded for their flexibility in responding to
situations that were not directly programmed into the system design. Learning
is, thus, presently considered crucial to reach reasonable levels of autonomy.

Of course, guarantees are harder to come by. At the very least, one has to
assume that the outcomes observed for the individual actions in the individual
states are strongly correlated (in fact, Markovian) with outcomes at other times.
Under suitable assumptions, finite-state cases provide elegant theoretical guar-
antees [39]. But the infinite-state case of CPSs is significantly more complex,
because even the luxury of an arbitrary countable amount of experiments is not
enough to try all actions in all states. Indeed, black-box uses require fairly strong
additional assumptions to enable any correct predictions at all [6, 37, 41], and
many of those assumptions need to be provided as explicit inputs into safety
analysis algorithms for soundness. In particular, a white-box model is required
to obtain guarantees even if only an executable model is needed during learning.

Safety for Autonomous CPS requires direct attention to the interplay of
learning systems with hybrid system models. Even if the combination of learn-
ing algorithms with the CPS dynamics formally are hybrid systems again, they
cannot be considered quite as näıvely due to the resulting scale. Without sum-
marizing symbolic abstractions, it would have been completely infeasible, for
example, to verify the hybrid systems model of the next-generation Airborne
Collision Avoidance System ACAS X [18] defined by interpolation of a Markov
Decision Process policy on its half a trillion different discretized state regions.
Instead, the computational complexities call for approaches that establish safety
from simpler models that do not include full detail on the learning while still
benefiting from the flexibility advantages of learning without risking unsafety.

3 Approach

As a foundation for the safe design of autonomous CPS, this approach uses
differential dynamic logic dL [30, 31, 33, 36] which provides modalities [α] and
〈α〉 for every hybrid system model α such that the dL formula [α]φ is true in a
state whenever the postcondition φ is true after all runs of α (safety) and the
dL formula 〈α〉φ is true in a state whenever φ is true after at least one run of
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α (liveness). Besides serving as a flexible specification language, dL also comes
with axiomatizations [30,32,33,35] that enable its use for verification purposes.

CPS Modeling is the first step and culminates in a hybrid system α describ-
ing all possible behavior of the CPS. For both complexity control reasons and
flexibility reasons, it is best not to describe completely accurately under which
exact circumstance the learning system decides upon which exact control action.
Instead, the hybrid system α describes all actions that are possible as well as
the continuous dynamics of the system.

Elaborate modeling advice can be found elsewhere [36,38], but nondetermin-
ism is frequently used for this purpose. For example, a hybrid systems model(

(β ∪ γ);x′ = f(x)
)∗

(1)

expresses that the CPS can nondeterministically choose (by operator ∪) to either
run control action β or control action γ and will then (after the ; operator)
follow the continuous dynamics of the differential equation x′ = f(x) for a certain
period of time, before repeating (by operator ∗ for repetition) the sequence of
discrete and continuous actions any number of times. For example, β could be
the action of accelerating while γ could be braking (additional actions such as
turning left add more ∪ operators, accordingly). A model of this shape is fairly
noncommittal, because its use of nondeterminism in action choices, differential
equation durations, and repetition counts deliberately leaves open how exactly
it is run, giving the learning CPS a lot of flexibility in filling in these choices at
its leisure later without requiring any change in the model.

KeYmaera X: Hybrid Systems Model Safety can be established by prov-
ing in the tool KeYmaera X [12] a dL safety property of the form

φ→ [α]ψ (2)

which, if proved, implies that, if the system starts in any initial state satisfying
formula φ, then all states reached after all runs of the hybrid systems model α
satisfy formula ψ. Formal proofs of dL formulas such as (2) are highly trustworthy,
not just because of the clever design of KeYmaera X that reduces its soundness-
critical core to less than 2000 lines of code [12] but also because of the cross-
verification of the soundness of dL in both Isabelle/HOL and Coq [3].

A formal proof of (2) justifies that all behavior of α satisfies the safety prop-
erty. The most valuable takeaway lesson besides the formal proof itself are the
additional requirements inevitably found during the proof, which characterize
when it is even safe to use the various control actions in the model α. For ex-
ample, in the initial model (1), actions β and γ were unconstrained, but it may
not always be safe to accelerate without first checking a condition C that, e.g.,
relates the obstacle distance to the present velocities and braking capabilities:(

((?C;β) ∪ γ);x′ = f(x)
)∗

(3)
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This refined hybrid system (3) includes an additional test (written ?C) that needs
to pass since C holds true before running action β. If C is true in the present
state, then both β and γ can be run by a nondeterministic choice (∪), otherwise
only γ is available, because the condition ?C would fail. All such additional
constraints that are required for safety will be discovered during the proof of (2),
because a sound proof could not otherwise succeed, and dL is sound [30,32,35].

ModelPlex: Model Safety Transfer provides the correctness bridge between
a verified hybrid systems model and its implementation by synthesizing correct-
by-construction runtime monitors. A dL proof of formula (2) in KeYmaera X is a
great achievement, but, due to its (desirable) modeling simplifications, does not
provide an answer for the full complexities of a learning CPS. Usually, there is a
discrepancy between the implementation detail of the autonomous CPS and the
simplified descriptions that were chosen to be included in the verified model. For-
tunately, the ModelPlex procedure [24] can overcome such discrepancies. Given
a verified dL model, ModelPlex synthesizes a monitor along with a dL correctness
proof for it, saying that the real implementation is safe as long as it satisfies that
runtime monitor (and will always remain safe when continuing the model).

The same relationship between verified model and runtime monitor also is the
cornerstone to safeguard the decisions of learning agents [14], which is crucial to
obtain safety after deployment unless ModelPlex has already been used during
learning to guide the learning process toward safe answers (which speeds up
convergence). The logical monitor conditions obtained from a ModelPlex proof
can be directly exploited as a safety signal for learning. Since it is challenging
to implement learning algorithms in a provably correct way, the continued use
of ModelPlex monitors after deployment is advisable even if ModelPlex monitor
outputs were used to steer learning toward safe answers during training.

VeriPhy: Executable Proof Transfer synthesizes executable machine code
binaries (e.g., for x64 or ARM) that inherit the safety theorems such as (2) by a
chain of formal proofs in theorem provers [4]. The resulting executables are not
just formally verified to be safe for the CPS, but also accept control input from
unverified controllers that will be checked against ModelPlex monitors for safety
before execution and are vetoed otherwise. This input decides how to resolve
the nondeterminism in the hybrid systems model, e.g., whether to run β or γ in
(3). But the verified controller sandbox generated by VeriPhy only accepts β if
the condition C was true that was required for the safety proof. While the need
to test C when deciding on β was evident from the way model (3) was written,
other conditions are more difficult to read off, and the key is to find them all and
then prove safety of the control sandbox, which VeriPhy does automatically.

Safe Learning in CPSs is made possible by the combination of a hybrid
systems model verified in KeYmaera X [12], whose safety-critical monitor con-
ditions were extracted along with a proof of correctness by ModelPlex [24], and
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whose verified controller sandbox was synthesized along with a chain of correct-
ness proofs by VeriPhy [4]. This combination enables any reinforcement learning
algorithm to be run as a black box [14]. The VeriPhy output provides a verified
CPS sandbox within which the reinforcement learning can experiment safely.
The reinforcement learning algorithm can focus on identifying the most optimal
decisions, which is usually replaced by nondeterminism in verification for the
sake of simplicity. Convergence of the learning algorithm is improved, because
the ModelPlex monitors give immediate feedback about which individual action
might cause an unsafe future in which state. This is faster than having to wait un-
til an entire sequence of actions has been chosen that, say, lead to a collision, and
then facing the nontrivial task of retroactively identifying to what extent which
action contributed to this collision and back-propagate generalizable knowledge.

If the physical behavior was modeled adequately, then this approach leads
to a provably safe policy [14]. Otherwise, quantitative ModelPlex, which gives a
real-valued (instead of boolean-valued) degree of compliance, is experimentally
shown to guide the optimization of reinforcement learning (RL) off model to a
graceful recovery using the ability of boolean ModelPlex to reliably spot when the
real behavior is outside the verified model. The question is what could then prove
safety regardless, not just observe recovery. Clearly, if all model assumptions are
completely wrong, then no amount of analysis will make the system safe but
magic is needed instead. Yet, if there merely is uncertainty about which one of
a whole pile of models is the right one, yet they are not all wrong, then not
only is safety preserved, but learning can also optimize the system by actively
experimenting to find out which model accurately reflects the present reality
[15]. Conjunctions of the ModelPlex monitors for all plausible models keep the
learning AI safe. Solving for distinct monitor predictions makes it possible to
plan differentiating experiments to converge a.s. to the true model, if possible.
When the verified models are given together with a tactic that proves them, then
safety proofs can be reified, such that both the model and its safety proof can
be adapted to better fit observations with verification-preserving model updates.

4 Summary and Outlook

Overall, logic leads the way in combining the best of both worlds: the strong pre-
dictions that formal verification techniques provide for CPS alongside the strong
flexibility that the use of AI provides. Table 1 summarizes the logical technolo-

Table 1. Logical triumvirate of technologies for transitioning trustworthiness to au-
tonomous cyber-physical systems

dL Proof Technology RL Learning Technology

KeYmaera X: identify safe actions in CPS model RL optimizes action choice
ModelPlex: safe model to safe implementation safe reward signal for RL
VeriPhy: monitored sandbox to safe executables CPS sandbox for RL
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gies that enable the respective combinations, their uses in CPS design, and their
corresponding counterpart in AI. Each element of the safety transition stack
fulfills a different purpose and integrates the benefits of learning and proving in
different ways. They all share differential dynamic logic dL as a common logical
foundation and reinforcement learning RL as a learning foundation.

While logic paints a particularly clear picture of how to safely navigate the
path to autonomous CPSs, and while its efficacy has been demonstrated through-
out on small scale [5], numerous interesting challenges remain that go beyond
the ones of interest already for ordinary CPS [34]. The guarantees, even in the
presence of learning, are strong on the controls side of CPS. The safety-relevant
control error is provably reduced to zero thanks to the logical safety stack, but
only under the assumption of bounded deviations in sensing [24].

The picture is not so rosy on the sensing side of CPS. And I argue that this
is not a coincidence. Of course, no amount of reasoning can bypass the sensory
illusions of the Cartesian Demon that fooled all but René Descartes’ existence of
thoughts [7]. If literally all sensors and actuators of a CPS could be arbitrarily
wrong, then no connection can be made between the suspected and real state
of the system. But even if sensors are almost always a little wrong, they are
not usually all that wrong, which enables a logical angle of attack [21, 23, 25]
for guarantees despite bounded sensor errors. Now, how can concrete bounds be
substantiated for sensor errors with as little doubt as possible? An answer to
this question is the true challenge beyond recent progress in verified perception
[10,29].
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11. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 379–395.
Springer, Berlin (2011). doi: 10.1007/978-3-642-22110-1 30

12. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An ax-
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