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Automated Factory

ey

fy

xb
(lx , ly )

ex fx

(rx , ry )

Model

(x , y): coordinates of
the robot

(vx , vy ): velocities

conveyor belts
instantaneously
increase the velocity
of the robot

Primary objectives of the robot

Leave within ε time units.

Do not leave .

Challenges

Distributed, physical environment

Possibly conflicting secondary objectives

Is there a strategy for the robot to stay safe?
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Modelling Language

Differential equations for robot movement

x ′ = vx , v ′x = ax ,

y ′ = vy , v ′y = ay

Guards/Constraints

lx ≤ x ≤ rx , v2
x ≤ 2A(rx − fx)

Discrete Assignments

ax := −A, vx := vx + cx ,
(
s := v2

2b

)
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Modelling Language

Hybrid Program | Effect

α; β sequential composition
α ∪ β nondeterministic choice
α∗ nondeterministic repetition
x := θ discrete assignment (jump)
x := ∗ nondeterministic assignment(
x ′1 = θ1, . . . , x

′
n = θn&F

)
continuous evolution of xi

?F assert that formula F holds

Platzer, André
Differential dynamic logic for hybrid systems.
J. Autom. Reasoning 41(2) (2008) 143–189
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Differential Dynamic Game Logic dDGL
Hybrid Program | Effect

α; β sequential composition
α ∪ β nondeterministic choice
α∗ nondeterministic repetition
x := θ discrete assignment (jump)
x := ∗ nondeterministic assignment(
x ′1 = θ1, . . . , x

′
n = θn&F

)
continuous evolution of xi

?F assert that formula F holds

Platzer, André
Differential dynamic logic for hybrid systems.
J. Autom. Reasoning 41(2) (2008) 143–189

Definition (Hybrid Game)

G ::= [α] | 〈α〉 | (G1 ∩ G2) | (G1 ∪ G2) | (G1G2) | (G )[∗] | (G )〈∗〉

Falsifier vs. Verifier
Definition (dDGL Formula)

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | ∀x φ | G φ
; FOLR + Hybrid Games
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Game Rules

Hybrid Game (informal) Rules

[α] Falsifier plays α

〈α〉 Verifier plays α

(G1 ∩ G2) Falsifier decides whether to play G1 or G2

(G1 ∪ G2) Verifier decides whether to play G1 or G2

(G )[∗] Repeat G n times, where n is chosen in advance by Falsifier

(G )〈∗〉 Repeat G n times, where n is chosen in advance by Verifier
(G1G2) Play G1 followed by G2
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Game Illustration

Example (Repetition with advance notice semantics)

([α])〈∗〉

•
[α]

•

[α]

[α]

•

[α]

[α]

[α]

•

. . .

Observations
1 Countably infinite branching

2 Every path has finite depth
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Game Illustration

Example (Explicit branching)

[α] 〈β〉 ∪ 〈β〉 [α]

[α] 〈β〉 〈β〉 [α]

〈β〉 [α]

• •
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Game Illustration

Example (State)

State ν : V → R[α] 〈β〉 ∪ 〈β〉 [α]@ν

[α] 〈β〉@ν 〈β〉 [α]@ν

〈β〉@ν0
. . .

∀(ν, νi ) ∈ ρ(α)

〈β〉@νr [α]@ν0
. . .

∀(ν, νi ) ∈ ρ(β)

[α]@νr

Observations
1 Uncountably infinite branching

2 Every path has finite depth
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Differential Dynamic Game Logic dDGL
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Differential dynamic logic for hybrid systems.
J. Autom. Reasoning 41(2) (2008) 143–189

Definition (Hybrid Game)

G ::= [α] | 〈α〉 | (G1 ∩ G2) | (G1 ∪ G2) | (G1G2) | (G )[∗] | (G )〈∗〉

Falsifier vs. Verifier

Definition (dDGL Formula)

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | ∀x φ | G φ
; FOLR + Hybrid Games
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Strategy, Play, and Winning
Example (Strategy)

[α] 〈β〉 ∪ 〈β〉 [α]@ν

[α] 〈β〉@ν 〈β〉 [α]@ν

〈β〉@ν0
. . .

∀(ν, νi ) ∈ ρ(α)

〈β〉@νr [α]@ν0
. . .

∀(ν, νi ) ∈ ρ(β)

[α]@νr

Definition (Strategy)

1 Strategy s : G × Sta(V )→ (G ∪ {•,⊥,>})× Sta(V ) maps game
positions to followup positions.

2 s is compatible with G if ((g@ν)→ s(g@ν)) ∈ [[G ]] f.a. g ∈ cl(G )
and f.a. ν ∈ Sta(V ).

cl(G ): closure under subgame
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Strategy, Play, and Winning

Definition (Play)

G ∈ G, ν ∈ Sta(V ), two compatible strategies (f for Falsifier and v for
Verifier), a play pf,v(G@ν) is defined by:

while G 6∈ {•,⊥,>} do
Match form of G:

Case [α], G1 ∩ G2, or (G1)[∗] ⇒ G@ν := f(G@ν) //Falsifier chooses

Case 〈α〉, G1 ∪ G2, or (G1)〈∗〉⇒ G@ν := v(G@ν) //Verifier chooses

Case G1G2 ⇒ do
G@ν := pf,v(G1@ν) //play G1

If G = • then G := G2 fi //if G1 terminated with • move to G2

od

od
return G@ν
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Strategy, Play, and Winning
Example (Winning)

[α] 〈β〉 ∪ 〈β〉 [α]@ν

[α] 〈β〉@ν 〈β〉 [α]@ν

〈β〉@ν0
. . .

∀(ν, νi ) ∈ ρ(α)

〈β〉@νr [α]@ν0
. . .

∀(ν, νi ) ∈ ρ(β)

[α]@νr

v

f v

v v f f

•@ω
v

ω
?

|= φ

Definition (Winning)

Winning condition: dDGL formula φ

Initial state ν

G is won by Verifier iff G ends in a position H@ω where

H = • and ω |= φ
or H = >.
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Extension

Theorem

dDGL is a conservative extension of dL, i.e.
for a dL formula φ holds:

|=dDGL φ iff |=dL φ

Jan-David Quesel, André Platzer Playing Hybrid Games with KeYmaera IJCAR 2012 12 / 19



Proof Calculus for dL
10 propositional rules

(P1)
` φ
¬φ `

(P2)
φ `
` ¬φ

(P3)
φ ` ψ
` φ→ ψ

(P4)
φ, ψ `
φ ∧ ψ `

(P5)
` φ ` ψ
` φ ∧ ψ

(P6)
` φ ψ `
φ→ ψ `

(P7)
φ ` ψ `
φ ∨ ψ `

(P8)
` φ, ψ
` φ ∨ ψ

(P9)
φ ` φ

(P10)
` φ φ `
`

Jan-David Quesel, André Platzer Playing Hybrid Games with KeYmaera IJCAR 2012 13 / 19



Proof Calculus for dL
13 dynamic rules

(D1)
φ ∧ ψ
〈?φ〉ψ

(D2)
φ→ ψ

[?φ]ψ

(D3)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

(D4)
[α]φ ∧ [β]φ

[α ∪ β]φ

(D5)
φ ∨ 〈α;α∗〉φ
〈α∗〉φ

(D6)
φ ∧ [α;α∗]φ

[α∗]φ

(D7)
〈[α]〉〈[β]〉φ
〈[α;β]〉φ

(D8)
φθx

〈[x := θ]〉φ

(D9)
∃t≥0 (χt ∧ 〈x := yx(t)〉φ)

〈x ′ = θ&χ〉φ

(D10)
∀t≥0 (χt → [x := yx(t)]φ)

[x ′ = θ&χ]φ

(D11)
φ ` ψ

〈[α]〉φ ` 〈[α]〉ψ
(D12)

φ ` [α]φ

φ ` [α∗]φ
(D13)

φ(x) ` 〈α〉φ(x − 1)

∃v φ(v) ` 〈α∗〉∃v≤0φ(v)
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Proof Calculus for dL
6 quantifier rules

(F1)
` φ(s(X1, . . ,Xn))

` ∀x φ(x)

(F2)
φ(s(X1, . . ,Xn)) `
∃x φ(x) `

(F3)
` QE(∀X (Φ(X )→ Ψ(X )))

Φ(s(X1, . . ,Xn)) ` Ψ(s(X1, . . ,Xn))

(F4)
` φ(X )

` ∃x φ(x)

(F5)
φ(X ) `
∀x φ(x) `

(F6)
` QE(∃X

∧
i (Φi → Ψi ))

Φ1 ` Ψ1 . . . Φn ` Ψn

Jan-David Quesel, André Platzer Playing Hybrid Games with KeYmaera IJCAR 2012 13 / 19



Proof Calculus for dDGL

Calculus (dDGL specific rules)

(G1)
G1φ ∨ G2φ

(G1 ∪ G2)φ
(G2)

G1φ ∧ G2φ

(G1 ∩ G2)φ
(G3)

G1(G2φ)

(G1G2)φ

(G4)
` ∀G (φ→ ψ)

Gφ ` Gψ

(G5)
` ∀G (φ→ Gφ)

φ ` (G )[∗]φ
(G6)

` ∀G∀n > 0(φ(n)→ G (φ(n − 1)))

∃nφ(n) ` (G )〈∗〉∃n(n ≤ 0 ∧ φ(n))

∀G : universal closure over variables in G

φ φ φ φ
G G G

(G )[∗]
φ(n) φ(n − 1) φ(n − 2) φ(n − 3)

G G G

(G )〈∗〉
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Sound but Incomplete

Theorem (Soundness)

The sequent calculus for dDGL is sound.

Theorem (Incompleteness)

The sequent calculus for dDGL is incomplete.

Proof Sketch (incompleteness)

1 x is a natural number iff

〈y := 0; (y := y + 1)∗〉y = x

2 FOLR + natural numbers: incompletness of the calculus follows by
Gödel’s incompletness theorem

Jan-David Quesel, André Platzer Playing Hybrid Games with KeYmaera IJCAR 2012 15 / 19



Relative Completeness

Propositional Dynamic Logic (PDL)

Game Logic: Game extension of PDL

Game Logic is strictly more express than PDL:
PDL cannot express the absence of an infinite g -branch
(
〈
(gd)∗

〉
false).

Parikh, R.:
The logic of games and its applications.
In: Annals of Discrete Mathematics. pp. 111–140. Elsevier (1985)

dL encoding of ([α])〈∗〉false

∃n ∈ N : ∀Z : ∃0 ≤ i < n ∈ N :
[
~x := Z (i);α

]
~x 6= Z (i+1)

where Z is interpreted as a sequence of real numbers.

Observation

Implicit quantification over states in games
; completeness modulo dL unclear.
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Propositional Dynamic Logic (PDL)

Game Logic: Game extension of PDL

Game Logic is strictly more express than PDL:
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〈
(gd)∗
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false).

Parikh, R.:
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In: Annals of Discrete Mathematics. pp. 111–140. Elsevier (1985)
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Automated Factory

ey

fy

xb
(lx , ly )

ex fx

(rx , ry )

Model

(x , y): coordinates of
the robot

(vx , vy ): velocities

conveyor belts
instantaneously
increase the velocity
of the robot

Primary objectives of the robot

Leave within ε time units.

Do not leave .

Challenges

Distributed, physical environment

Possibly conflicting secondary objectives

Is there a strategy for the robot to stay safe?
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Robotic Factory Automation (RF )

Example (Environment vs. Robot)(
[ ?true ∪ (?(x < ex ∧ y < ey ∧ eff1 = 1); vx := vx + cx ; eff1 := 0)

∪ (?(ex ≤ x ∧ y ≤ fy ∧ eff2 = 1); vy := vy + cy ; eff2 := 0) ]

〈ax := ∗; ?(−A ≤ ax ≤ A);

ay := ∗; ?(−A ≤ ay ≤ A);

ts := 0 〉

(

[x ′ = vx , y
′ = vy , v

′
x = ax , v

′
y = ay , t

′ = 1, t ′s = 1&ts ≤ ε ]

∪(〈?axvx ≤ 0 ∧ ayvy ≤ 0;

if vx = 0 then ax := 0 fi;

if vy = 0 then ay := 0 fi 〉
[x ′ = vx , y

′ = vy , v
′
x = ax , v

′
y = ay , t

′ = 1, t ′s = 1

&ts ≤ ε ∧ axvx ≤ 0 ∧ ayvy ≤ 0])
)

)[∗]
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Results

Proposition (Robot stays in 2)

|= (x = y = 0 ∧ vx = vy = 0∧ Controllability Assumptions )
→ (RF )(x ∈ [lx , rx ] ∧ y ∈ [ly , ry ])

Note: KeYmaera proof has 2471 proof steps on 742 branches (159
interactive steps)

Proposition (Stays in 2 + leaves shaded region in time)

RF |x : RF projected to the x-axis

|= (x = 0 ∧ vx = 0∧ Controllability Assumptions )
→ (RF |x)(x ∈ [lx , rx ] ∧ (t ≥ ε→ (x ≥ xb)))

Note: KeYmaera proof has 375079 proof steps on 10641 branches (1673
interactive steps)
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Summary

We . . .

defined a logic for hybrid games (dDGL).

proved that dDGL is a conservative
extension of dL.

presented a proof calculus for the logic.

implemented the calculus in KeYmaera.

showed a factory automation case study.

proved the existence of a survival strategy
for an robot in an hostile environment.
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Structural Operational Semantics
Falsifier rules

(F1)
(ν, ω) ∈ ρ(α)

[α]@ν → •@ω
(F2)

ρ(α) = ∅
[α]@ν → >@ν

(F3)
G@ν → G ′@ω

G ∩ H@ν → G ′@ω

(F4)
G ∩ H@ν → G ′@ω

H ∩ G@ν → G ′@ω
(F5)

n ∈ N
(G )[∗]@ν → G n@ν

Verifier rules

(V1)
(ν, ω) ∈ ρ(α)

〈α〉@ν → •@ω
(V2)

ρ(α) = ∅
〈α〉@ν → ⊥@ν

(V3)
G@ν → G ′@ω

G ∪ H@ν → G ′@ω

(V4)
G ∪ H@ν → G ′@ω

H ∪ G@ν → G ′@ω
(V5)

n ∈ N
(G )〈∗〉@ν → G n@ν

Sequential rules

(S1)
G@ν → •@ω

(G H)@ν → H@ω
(S2)

G@ν → ⊥@ω

(G H)@ν → ⊥@ω
(S3)

G@ν → >@ω

(G H)@ν → >@ω

Back
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Results (detailed)

Assumptions

xb <
1

2
Aε2 ∧ cx > 0 ∧ (cx + 4Aε)2 ≤ 2A(rx − fx) (1)

cy > 0 ∧ c2
y ≤ 2A(ry − ly ) (2)

lx = ly = 0∧ rx = ry = 10∧ex = 2∧ey = 1∧ fx = 3∧ fy = 10∧A = 2 (3)

Proposition

|= (x = y = 0 ∧ vx = vy = 0 ∧ (1) ∧ (2) ∧ (3))
→ (RF )(x ∈ [lx , rx ] ∧ y ∈ [ly , ry ])

Proposition

|= (x = 0∧ vy = 0∧ (1)∧ (3))→ (RF |x)(x ∈ [lx , rx ]∧ (t ≥ ε→ (x ≥ xb)))

RF projected to the x-axis (denoted RF |x) Invariant Return
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Invariant

Invariant

eff1 ∈ {0, 1} ∧ x ≥ lx ∧ vx ≥ 0 ∧ (t ≥ ε→ x ≥ xb)

∧(vx + cxeff1)2 ≤ 2A(rx − x)

∧
(
x < xb → t ≤ ε ∧

(
xb − x ≤ 1

2
Aε2 − 1

2
At2

∧ (eff1 = 1→ vx = At) ∧ (eff1 = 0→ vx = At + cx)

∧ rx − x ≥ (vx + eff1cx)2

2A
+ A(2ε− t)2 + 2(2ε− t)(vx + eff1cx)

))
Return
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