Playing Hybrid Games with KeYmaera

Jan-David Quesel¹ André Platzer²

1. University of Oldenburg, Department of Computing Science, Germany

2. Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA

The 6th International Joint Conference on Automated Reasoning 26th June 2012

UNIVERSITÄT OLDENBURG

UNIVERSITÄT DES SAARI ANDES

Outline

2 Differential Dynamic Game Logic (dDGL)

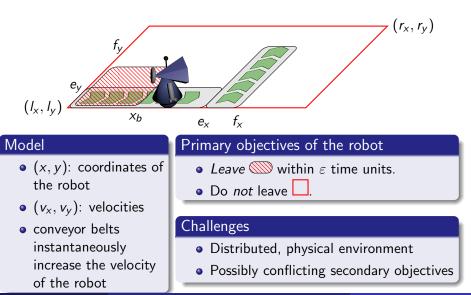
3 Proof Calculus

Outline

2 Differential Dynamic Game Logic (dDGL)

3 Proof Calculus

Automated Factory



Jan-David Quesel, André Platzer

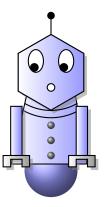
Automated Factory



Is there a strategy for the robot to stay safe?

Differential equations for robot movement

$$\begin{array}{ll} x' = v_x, & v'_x = a_x, \\ y' = v_y, & v'_y = a_y \end{array}$$



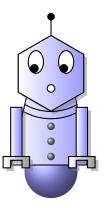
Differential equations for robot movement

$$\begin{aligned} x' &= v_x, & v'_x = a_x, \\ y' &= v_y, & v'_y = a_y \end{aligned}$$

Guards/Constraints

I,

$$x_x \leq x \leq r_x, \qquad v_x^2 \leq 2A(r_x - f_x)$$



Differential equations for robot movement

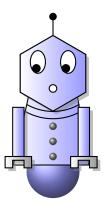
$$\begin{array}{ll} x' = v_x, & v'_x = a_x, \\ y' = v_y, & v'_y = a_y \end{array}$$

Guards/Constraints

$$V_x \leq x \leq r_x$$
, $v_x^2 \leq 2A(r_x - f_x)$

Discrete Assignments

$$a_x := -A$$
, $v_x := v_x + c_x$, $\left(s := rac{v^2}{2b}
ight)$



Hybrid Program

Effect

 $\begin{array}{l} \alpha; \ \beta \\ \alpha \ \cup \ \beta \\ \alpha^* \\ x := \theta \\ x := * \\ \left(x_1' = \theta_1, \dots, x_n' = \theta_n \& F \right) \\ ?F \end{array}$

sequential composition nondeterministic choice nondeterministic repetition discrete assignment (jump) nondeterministic assignment continuous evolution of x_i assert that formula F holds

Platzer, André

Differential dynamic logic for hybrid systems.

J. Autom. Reasoning **41**(2) (2008) 143–189

Outline

Motivation

2 Differential Dynamic Game Logic (dDGL)

3 Proof Calculus

4 Case Study

5 Conclusion

Differential Dynamic Game Logic dDG \mathcal{L}

Hybrid Program	Effect
lpha; eta	sequential composition
$\alpha \cup \beta$	nondeterministic choice
$lpha^*$	nondeterministic repetition
$x := \theta$	discrete assignment (jump)
x := *	nondeterministic assignment
$(x_1' = \theta_1, \ldots, x_n' = \theta_n \& F)$	continuous evolution of x_i
?F	assert that formula F holds

Platzer, André

Differential dynamic logic for hybrid systems. J. Autom. Reasoning **41**(2) (2008) 143–189

Differential Dynamic Game Logic dDG \mathcal{L}

Hybrid Program	Effect
$\alpha; \beta$	sequential composition
$\alpha ~\cup~ \beta$	nondeterministic choice
$lpha^*$	nondeterministic repetition
$x := \theta$	discrete assignment (jump)
x := *	nondeterministic assignment
$(x_1' = \theta_1, \ldots, x_n' = \theta_n \& F)$	continuous evolution of x_i
?F	assert that formula F holds

Definition (Hybrid Game)

 $G ::= [\alpha] \mid \langle \alpha \rangle \mid (G_1 \cap G_2) \mid (G_1 \cup G_2) \mid (G_1 G_2) \mid (G)^{[*]} \mid (G)^{\langle * \rangle}$

Falsifier vs. Verifier

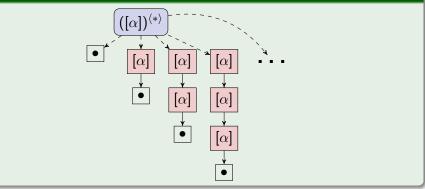
Hybrid Game (informal) Rules		
$[\alpha]$	Falsifier plays α	
$(G_1 \cap G_2)$	Falsifier decides whether to play G_1 or G_2	
(G) ^[*]	Repeat G <i>n</i> times, where <i>n</i> is chosen in advance by Falsifier	

Hybrid Game (informal) Rules		
$[\alpha]$	Falsifier plays α	
$\langle \alpha \rangle$	Verifier plays α	
$(G_1 \cap G_2)$	Falsifier decides whether to play G_1 or G_2	
$(G_1 \cup G_2)$	Verifier decides whether to play G_1 or G_2	
$(G)^{[*]}$	Repeat G n times, where n is chosen in advance by Falsifier	
$(G)^{\langle * \rangle}$	Repeat G n times, where n is chosen in advance by Verifier	

Hybrid Game (informal) Rules		
$[\alpha]$	Falsifier plays α	
$\langle lpha angle$	Verifier plays α	
$(G_1 \cap G_2)$	Falsifier decides whether to play G_1 or G_2	
$(G_1 \cup G_2)$	Verifier decides whether to play G_1 or G_2	
$(G)^{[*]}$	Repeat G n times, where n is chosen in advance by Falsifier	
$(G)^{\langle * \rangle}$	Repeat G n times, where n is chosen in advance by Verifier	
(G_1G_2)	Play G_1 followed by G_2	

Game Illustration

Example (Repetition with advance notice semantics)



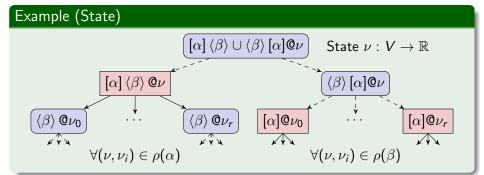
Observations

- Ountably infinite branching
- every path has finite depth

Game Illustration

Example (Explicit branching) $\begin{array}{c} \left[\alpha\right]\langle\beta\rangle \cup \langle\beta\rangle \left[\alpha\right] \\ \left[\alpha\right]\langle\beta\rangle \\ \left[\alpha\right] \\ \left[\alpha\right]$

Game Illustration



Observations

- Uncountably infinite branching
- 2 Every path has finite depth

Differential Dynamic Game Logic dDG \mathcal{L}

Hybrid Program	Effect
$\alpha; \beta$	sequential composition
$\alpha ~\cup~ \beta$	nondeterministic choice
$lpha^*$	nondeterministic repetition
$x := \theta$	discrete assignment (jump)
x := *	nondeterministic assignment
$(x_1' = \theta_1, \ldots, x_n' = \theta_n \& F)$	continuous evolution of x_i
?F	assert that formula F holds

Definition (Hybrid Game)

 $G ::= [\alpha] \mid \langle \alpha \rangle \mid (G_1 \cap G_2) \mid (G_1 \cup G_2) \mid (G_1 G_2) \mid (G)^{\langle * \rangle}$

Falsifier vs. Verifier

Differential Dynamic Game Logic dDG \mathcal{L}

Hybrid Program	Effect
α ; β	sequential composition
$\alpha \ \cup \ \beta$	nondeterministic choice
$lpha^*$	nondeterministic repetition
$x := \theta$	discrete assignment (jump)
x := *	nondeterministic assignment
$(x_1' = \theta_1, \ldots, x_n' = \theta_n \& F)$	continuous evolution of x_i
?F	assert that formula F holds

Definition (Hybrid Game)

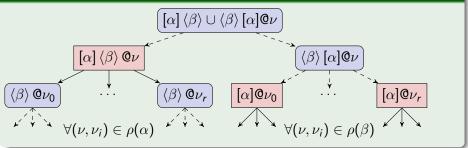
 $G ::= [\alpha] \mid \langle \alpha \rangle \mid (G_1 \cap G_2) \mid (G_1 \cup G_2) \mid (G_1 G_2) \mid (G)^{[*]} \mid (G)^{\langle * \rangle}$

Definition (dDGL Formula)

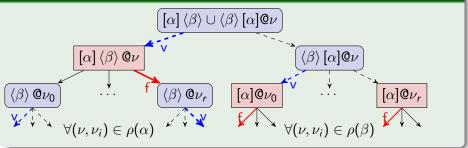
$$\phi ::= \theta_1 \sim \theta_2 \mid \neg \phi \mid \phi \land \psi \mid \forall x \phi \mid G \phi$$
$$\sim FOL_{\mathbb{R}} + \text{Hybrid Games}$$

Jan-David Quesel, André Platzer

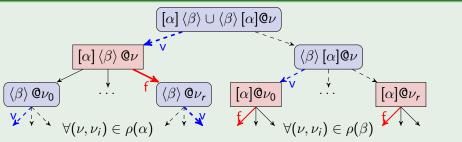
Example (Strategy)



Example (Strategy)



Example (Strategy)



Definition (Strategy)

- Strategy s : G × Sta(V) → (G ∪ {•, ⊥, ⊤}) × Sta(V) maps game positions to followup positions.
- ② s is compatible with G if $((g@\nu) \rightarrow s(g@\nu)) \in \llbracket G \rrbracket$ f.a. $g \in cl(G)$ and f.a. $\nu \in Sta(V)$.

cl(G): closure under subgame

Definition (Play)

 $G \in \mathcal{G}, \nu \in Sta(V)$, two compatible strategies (**f** for Falsifier and **v** for Verifier), a play $p_{\mathbf{f},\mathbf{v}}(G@\nu)$ is defined by:

while $G \notin \{\bullet, \bot, \top\}$ do Match form of G:

od return $G@\nu$

Definition (Play)

 $G \in \mathcal{G}, \nu \in Sta(V)$, two compatible strategies (**f** for Falsifier and **v** for Verifier), a play $p_{\mathbf{f},\mathbf{v}}(G@\nu)$ is defined by:

while $G \notin \{\bullet, \bot, \top\}$ do Match form of G: Case [α], $G_1 \cap G_2$, or $(G_1)^{[*]} \Rightarrow G@\nu := f(G@\nu) //Falsifier chooses$

od return $G@\nu$

Definition (Play)

 $G \in \mathcal{G}, \nu \in Sta(V)$, two compatible strategies (**f** for Falsifier and **v** for Verifier), a play $p_{\mathbf{f},\mathbf{v}}(G@\nu)$ is defined by:

while $G \notin \{\bullet, \bot, \top\}$ do Match form of G: Case $[\alpha], G_1 \cap G_2$, or $(G_1)^{[*]} \Rightarrow G@\nu := \mathbf{f}(G@\nu) //Falsifier chooses$ Case $\langle \alpha \rangle, G_1 \cup G_2$, or $(G_1)^{\langle * \rangle} \Rightarrow G@\nu := \mathbf{v}(G@\nu) //Verifier chooses$

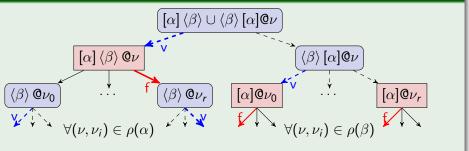
od return $G@\nu$

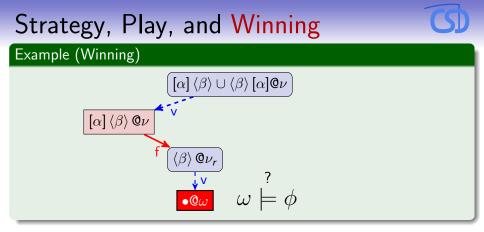
Definition (Play)

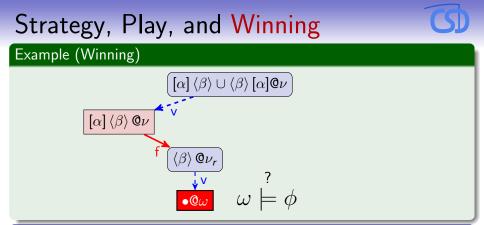
 $G \in \mathcal{G}, \nu \in Sta(V)$, two compatible strategies (**f** for Falsifier and **v** for Verifier), a play $p_{\mathbf{f},\mathbf{v}}(G@\nu)$ is defined by:

while
$$G \notin \{\bullet, \bot, \top\}$$
 do
Match form of G:
Case $[\alpha], G_1 \cap G_2$, or $(G_1)^{[*]} \Rightarrow G@\nu := \mathbf{f}(G@\nu) //Falsifier chooses$
Case $\langle \alpha \rangle, G_1 \cup G_2$, or $(G_1)^{\langle * \rangle} \Rightarrow G@\nu := \mathbf{v}(G@\nu) //Verifier chooses$
Case $G_1G_2 \Rightarrow$ do
 $G@\nu := p_{\mathbf{f},\mathbf{v}}(G_1@\nu) //play G_1$
If $G = \bullet$ then $G := G_2$ fi //if G_1 terminated with \bullet move to G_2
od
od
return $G@\nu$

Example (Winning)







Definition (Winning)

- Winning condition: dDG $\mathcal L$ formula ϕ
- Initial state ν
- G is won by Verifier iff G ends in a position $H@\omega$ where

•
$$H = \bullet$$
 and $\omega \models \phi$

• or
$$H = \top$$
.

Outline

Motivation

2 Differential Dynamic Game Logic (dDGL)

3 Proof Calculus

5 Conclusion

Theorem

dDG*L* is a conservative extension of d*L*, i.e. for a d*L* formula ϕ holds:

 $\models_{\mathsf{dDG}\mathcal{L}} \phi \text{ iff } \models_{\mathsf{d}\mathcal{L}} \phi$

Jan-David Quesel, André Platzer

Playing Hybrid Games with KeYmaera

IJCAR 2012 12 / 19

Proof Calculus for $d\mathcal{L}$

10 propositional rules

$$(P1) \frac{\vdash \phi}{\neg \phi \vdash} \qquad (P4) \frac{\phi, \psi \vdash}{\phi \land \psi \vdash} \qquad (P7) \frac{\phi \vdash \psi \vdash}{\phi \lor \psi \vdash}$$

$$(P2) \frac{\phi \vdash}{\vdash \neg \phi} \qquad (P5) \frac{\vdash \phi \vdash \psi}{\vdash \phi \land \psi} \qquad (P8) \frac{\vdash \phi, \psi}{\vdash \phi \lor \psi}$$

$$(P3) \frac{\phi \vdash \psi}{\vdash \phi \rightarrow \psi} \qquad (P6) \frac{\vdash \phi \quad \psi \vdash}{\phi \rightarrow \psi \vdash} \qquad (P9) \frac{}{\phi \vdash \phi}$$

$$(P10) \frac{\vdash \phi \quad \phi \vdash}{\vdash}$$

Proof Calculus for $d\mathcal{L}$

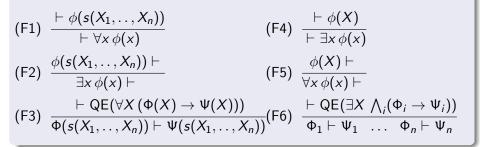
13 dynamic rules

$$\begin{array}{ll} (D1) & \frac{\phi \land \psi}{\langle ? \phi \rangle \psi} & (D5) & \frac{\phi \lor \langle \alpha; \alpha^* \rangle \phi}{\langle \alpha^* \rangle \phi} & (D9) & \frac{\exists t \ge 0 \left(\chi t \land \langle x := y_x(t) \rangle \phi \right)}{\langle x' = \theta \& \chi \rangle \phi} \\ (D2) & \frac{\phi \to \psi}{[?\phi]\psi} & (D6) & \frac{\phi \land [\alpha; \alpha^*]\phi}{[\alpha^*]\phi} & (D10) & \frac{\forall t \ge 0 \left(\chi t \to [x := y_x(t)]\phi \right)}{[x' = \theta \& \chi]\phi} \\ (D3) & \frac{\langle \alpha \rangle \phi \lor \langle \beta \rangle \phi}{\langle \alpha \cup \beta \rangle \phi} & (D7) & \frac{\langle \alpha \rangle \langle \beta \rangle \phi}{\langle \alpha; \beta \rangle \phi} \\ (D4) & \frac{[\alpha]\phi \land [\beta]\phi}{[\alpha \cup \beta]\phi} & (D8) & \frac{\phi^{\theta}_x}{\langle x := \theta \rangle \phi} \\ (D11) & \frac{\phi \vdash \psi}{\langle \alpha \rangle \phi \vdash \langle \alpha \rangle \psi} & (D12) & \frac{\phi \vdash [\alpha]\phi}{\phi \vdash [\alpha^*]\phi} & (D13) & \frac{\phi(x) \vdash \langle \alpha \rangle \phi(x-1)}{\exists v \phi(v) \vdash \langle \alpha^* \rangle \exists v \le 0 \phi(v)} \end{array}$$

Proof Calculus for $d\mathcal{L}$

S

6 quantifier rules



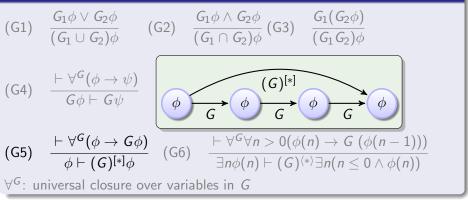
Calculus (dDGL specific rules)

(G1)
$$\frac{G_1\phi \vee G_2\phi}{(G_1\cup G_2)\phi}$$
 (G2) $\frac{G_1\phi \wedge G_2\phi}{(G_1\cap G_2)\phi}$ (G3) $\frac{G_1(G_2\phi)}{(G_1G_2)\phi}$

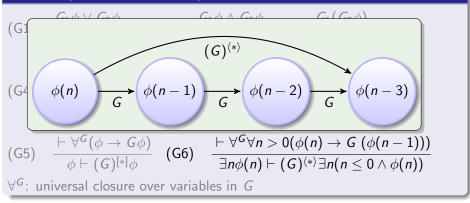
(G4)
$$\frac{\vdash \forall^{G}(\phi \to \psi)}{G\phi \vdash G\psi}$$

(G5)
$$\frac{\vdash \forall^{G}(\phi \to G\phi)}{\phi \vdash (G)^{[*]}\phi} \quad (G6) \quad \frac{\vdash \forall^{G}\forall n > 0(\phi(n) \to G(\phi(n-1)))}{\exists n\phi(n) \vdash (G)^{\langle * \rangle} \exists n(n \le 0 \land \phi(n))}$$
$$\forall^{G}: \text{ universal closure over variables in } G$$

Calculus (dDGL specific rules)



Calculus (dDGL specific rules)



Sound but Incomplete

Theorem (Soundness)

The sequent calculus for dDGL is sound.

Theorem (Incompleteness)

The sequent calculus for dDGL is incomplete.

Proof Sketch (incompleteness)

x is a natural number iff

$$\langle y := 0; (y := y + 1)^* \rangle y = x$$

O $FOL_{\mathbb{R}}$ + natural numbers: incompletness of the calculus follows by Gödel's incompletness theorem

Relative Completeness

Propositional Dynamic Logic (PDL)

- Game Logic: Game extension of PDL
- Game Logic is strictly more express than PDL: PDL cannot express the absence of an infinite g-branch $(\langle (g^d)^* \rangle false).$

Parikh, R.:

The logic of games and its applications.

In: Annals of Discrete Mathematics. pp. 111-140. Elsevier (1985)

Relative Completeness

Propositional Dynamic Logic (PDL)

- Game Logic: Game extension of PDL
- Game Logic is strictly more express than PDL: PDL cannot express the absence of an infinite g-branch (⟨(g^d)*⟩ false).

d \mathcal{L} encoding of $([\alpha])^{\langle * \rangle}$ false

$$\exists n \in \mathbb{N} : \forall Z : \exists 0 \leq i < n \in \mathbb{N} : \left[\vec{x} := Z^{(i)}; \alpha \right] \vec{x} \neq Z^{(i+1)}$$

where Z is interpreted as a sequence of real numbers.

Observation

Implicit quantification over states in games

 \rightsquigarrow completeness modulo d ${\cal L}$ unclear.

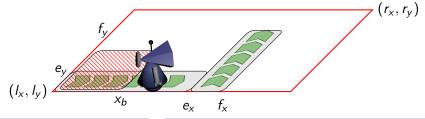
Motivation

2 Differential Dynamic Game Logic (dDGL)

3 Proof Calculus

5 Conclusion

Automated Factory



Model

- (x, y): coordinates of the robot
- (v_x, v_y) : velocities
- conveyor belts instantaneously increase the velocity of the robot

Primary objectives of the robot

- Leave \bigcirc within ε time units.
- Do *not* leave .

Challenges

- Distributed, physical environment
- Possibly conflicting secondary objectives

Example (Environment vs. Robot)

 $([?true \cup (?(x < e_x \land y < e_y \land eff_1 = 1); v_x := v_x + c_x; eff_1 := 0)$

 \cup (?($e_x \le x \land y \le f_y \land \mathsf{eff}_2 = 1$); $v_y := v_y + c_y$; $\mathsf{eff}_2 := 0$)]

)[*]

Example (Environment vs. Robot)

 $\left([?true \cup (?(x < e_x \land y < e_y \land eff_1 = 1); v_x := v_x + c_x; eff_1 := 0) \\ \cup (?(e_x \le x \land y \le f_y \land eff_2 = 1); v_y := v_y + c_y; eff_2 := 0) \right] \\ \langle a_x := *; ?(-A \le a_x \le A); \\ a_y := *; ?(-A \le a_y \le A); \\ t_s := 0 \rangle$

Example (Environment vs. Robot)

 $([?true \cup (?(x < e_x \land y < e_y \land eff_1 = 1); v_x := v_x + c_x; eff_1 := 0)$ $\cup (?(e_x \le x \land y \le f_y \land eff_2 = 1); v_y := v_y + c_y; eff_2 := 0)]$ $\langle a_x := *; ?(-A \le a_x \le A);$ $a_y := *; ?(-A \le a_y \le A);$ $t_s := 0 \rangle$ $[x' = v_x, y' = v_y, v'_x = a_x, v'_y = a_y, t' = 1, t'_s = 1 \& t_s \le \varepsilon]$

Example (Environment vs. Robot)

$$\left(\left[?true \cup (?(x < e_x \land y < e_y \land eff_1 = 1); \ v_x := v_x + c_x; \ eff_1 := 0 \right) \\ \cup (?(e_x \le x \land y \le f_y \land eff_2 = 1); \ v_y := v_y + c_y; \ eff_2 := 0) \right] \\ \left\langle a_x := *; \ ?(-A \le a_x \le A); \\ a_y := *; \ ?(-A \le a_y \le A); \\ t_s := 0 \right\rangle \\ \left(\left[x' = v_x, y' = v_y, v'_x = a_x, v'_y = a_y, t' = 1, t'_s = 1\&t_s \le \varepsilon \right] \\ \cup \left(\left\langle ?a_x v_x \le 0 \land a_y v_y \le 0; \\ if \ v_x = 0 \ then \ a_x := 0 \ fi; \\ if \ v_y = 0 \ then \ a_y := 0 \ fi \right\rangle \\ \left[x' = v_x, y' = v_y, v'_x = a_x, v'_y = a_y, t' = 1, t'_s = 1 \\ \& t_s \le \varepsilon \land a_x v_x \le 0 \land a_y v_y \le 0 \right] \right) \right)^{[*]}$$

Results

Proposition (Robot stays in □)

$$\models (x = y = 0 \land v_x = v_y = 0 \land \bigcirc \text{Controllability Assumptions} \\ \rightarrow (RF)(x \in [l_x, r_x] \land y \in [l_y, r_y])$$

Note: KeYmaera proof has 2471 proof steps on 742 branches (159 interactive steps)

Proposition (Stays in \Box + leaves shaded region in time)

 $RF|_{x}$: RF projected to the x-axis

 $\models (x = 0 \land v_x = 0 \land \bullet \text{Controllability Assumptions})$ $\rightarrow (RF|_x)(x \in [I_x, r_x] \land (t \ge \varepsilon \rightarrow (x \ge x_b)))$

Note: KeYmaera proof has 375079 proof steps on 10641 branches (1673 interactive steps)

Jan-David Quesel, André Platzer

Motivation

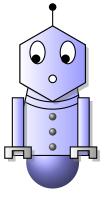
2 Differential Dynamic Game Logic (dDGL)

3 Proof Calculus

We ...

Summary

- defined a logic for hybrid games (dDG \mathcal{L}).
- proved that dDGL is a conservative extension of dL.
- presented a proof calculus for the logic.
- implemented the calculus in KeYmaera.
- showed a factory automation case study.
- proved the existence of a survival strategy for an robot in an hostile environment.



7 Hybrid Games

Structural Operational Semantics

Falsifier rules

$$\begin{array}{ll} (F1) & \frac{(\nu,\omega) \in \rho(\alpha)}{[\alpha]@\nu \to \bullet@\omega} & (F2) & \frac{\rho(\alpha) = \emptyset}{[\alpha]@\nu \to \top@\nu} & (F3) & \frac{G@\nu \to G'@\omega}{G \cap H@\nu \to G'@\omega} \\ (F4) & \frac{G \cap H@\nu \to G'@\omega}{H \cap G@\nu \to G'@\omega} & (F5) & \frac{n \in \mathbb{N}}{(G)^{[*]}@\nu \to G^n@\nu} \end{array}$$

Structural Operational Semantics

Falsifier rules

(F1)
$$\frac{(\nu,\omega) \in \rho(\alpha)}{[\alpha]@\nu \to \bullet@\omega} (F2) \quad \frac{\rho(\alpha) = \emptyset}{[\alpha]@\nu \to \top@\nu} (F3) \quad \frac{G@\nu \to G'@\omega}{G \cap H@\nu \to G'@\omega}$$

(F4)
$$\frac{G \cap H@\nu \to G'@\omega}{H \cap G@\nu \to G'@\omega} (F5) \quad \frac{n \in \mathbb{N}}{(G)^{[*]}@\nu \to G^{n}@\nu}$$

Verifier rules

$$\begin{array}{ll} (\mathsf{V1}) & \frac{(\nu,\omega) \in \rho(\alpha)}{\langle \alpha \rangle @\nu \to \bullet @\omega} & (\mathsf{V2}) & \frac{\rho(\alpha) = \emptyset}{\langle \alpha \rangle @\nu \to \bot @\nu} & (\mathsf{V3}) & \frac{G@\nu \to G'@\omega}{G \cup H@\nu \to G'@\omega} \\ (\mathsf{V4}) & \frac{G \cup H@\nu \to G'@\omega}{H \cup G@\nu \to G'@\omega} & (\mathsf{V5}) & \frac{n \in \mathbb{N}}{(G)^{\langle * \rangle}@\nu \to G^n@\nu} \end{array}$$

Structural Operational Semantics

Falsifier rules

$$\begin{array}{ll} (\mathsf{F1}) & \frac{(\nu,\omega) \in \rho(\alpha)}{[\alpha]@\nu \to \bullet@\omega} & (\mathsf{F2}) & \frac{\rho(\alpha) = \emptyset}{[\alpha]@\nu \to \top@\nu} & (\mathsf{F3}) & \frac{G@\nu \to G'@\omega}{G \cap H@\nu \to G'@\omega} \\ (\mathsf{F4}) & \frac{G \cap H@\nu \to G'@\omega}{H \cap G@\nu \to G'@\omega} & (\mathsf{F5}) & \frac{n \in \mathbb{N}}{(G)^{[*]}@\nu \to G^n@\nu} \end{array}$$

Verifier rules

$$\begin{array}{ll} (\mathsf{V1}) & \frac{(\nu,\omega) \in \rho(\alpha)}{\langle \alpha \rangle @\nu \to \bullet @\omega} & (\mathsf{V2}) & \frac{\rho(\alpha) = \emptyset}{\langle \alpha \rangle @\nu \to \bot @\nu} & (\mathsf{V3}) & \frac{G@\nu \to G'@\omega}{G \cup H@\nu \to G'@\omega} \\ (\mathsf{V4}) & \frac{G \cup H@\nu \to G'@\omega}{H \cup G@\nu \to G'@\omega} & (\mathsf{V5}) & \frac{n \in \mathbb{N}}{(G)^{\langle * \rangle}@\nu \to G^n@\nu} \end{array}$$

Sequential rules

(S1)
$$\frac{G@\nu \to \bullet@\omega}{(G H)@\nu \to H@\omega}(S2) \quad \frac{G@\nu \to \bot@\omega}{(G H)@\nu \to \bot@\omega}(S3) \quad \frac{G@\nu \to \top@\omega}{(G H)@\nu \to \top@\omega}$$

Playing Hybrid Games with KeYmaera

Hybrid Games

Results (detailed)

S

Assumptions

$$x_b < \frac{1}{2}A\varepsilon^2 \wedge c_x > 0 \wedge (c_x + 4A\varepsilon)^2 \le 2A(r_x - f_x)$$
(1)

$$c_y > 0 \wedge c_y^2 \leq 2A(r_y - l_y) \tag{2}$$

$$I_x = I_y = 0 \land r_x = r_y = 10 \land e_x = 2 \land e_y = 1 \land f_x = 3 \land f_y = 10 \land A = 2$$
 (3)

Proposition

$$\models (x = y = 0 \land v_x = v_y = 0 \land (1) \land (2) \land (3)) \rightarrow (RF)(x \in [l_x, r_x] \land y \in [l_y, r_y])$$

Proposition

 $\models (x = 0 \land v_y = 0 \land (1) \land (3)) \to (RF|_x)(x \in [I_x, r_x] \land (t \ge \varepsilon \to (x \ge x_b)))$

RF projected to the x-axis (denoted $RF|_x$)

Jan-David Quesel, André Platzer

Playing Hybrid Games with KeYmaera

IJCAR 2012 21 / 19

Invariant

Invariant

$$\begin{aligned} \mathsf{eff}_1 \in \{0,1\} \land x \ge l_x \land v_x \ge 0 \land (t \ge \varepsilon \to x \ge x_b) \\ \land (v_x + c_x \mathsf{eff}_1)^2 \le 2A(r_x - x) \\ \land (x < x_b \to t \le \varepsilon \land (x_b - x \le \frac{1}{2}A\varepsilon^2 - \frac{1}{2}At^2 \\ \land (\mathsf{eff}_1 = 1 \to v_x = At) \land (\mathsf{eff}_1 = 0 \to v_x = At + c_x) \\ \land r_x - x \ge \frac{(v_x + \mathsf{eff}_1 c_x)^2}{2A} + A(2\varepsilon - t)^2 + 2(2\varepsilon - t)(v_x + \mathsf{eff}_1 c_x)) \end{aligned}$$

Return