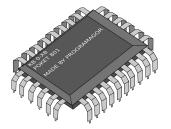
(Belief) Dynamic Doxastic Differential Dynamic Logic (d4L) for Belief-Aware Cyber Physical Systems

João G. Martins^{1,2}, André Platzer², João Leite¹

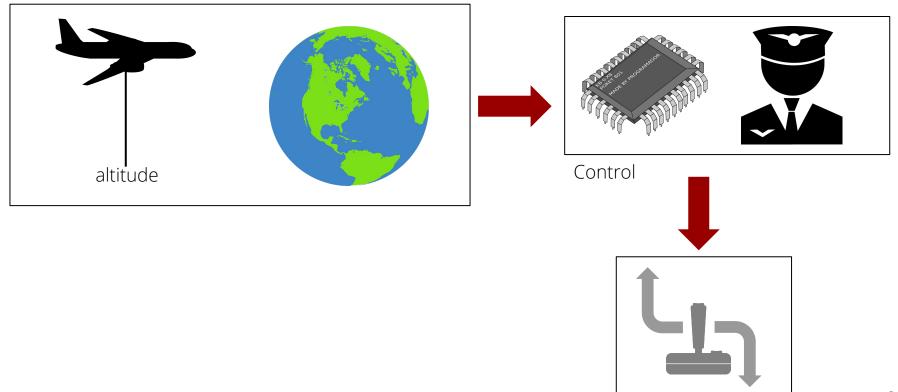
Cyber-Physical Systems (CPS)

Continuous movement

Discrete control



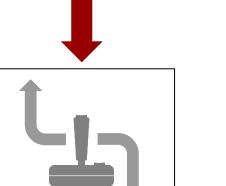
Belief-aware Cyber-Physical Systems



Belief-aware Cyber-Physical Systems

Information

- Sensors are noisy
- Incomplete information
- Imperfect information



Control

Belief-aware Cyber-Physical Systems First principles approach

- 1. Real arithmetic
- 2. World change
- 3. Beliefs
- 4. Belief change
- 5. Sequent calculus

Belief-aware Cyber-Physical Systems What we want

ctrl; phys **obs**; **bt**ctrl; phys

6

Belief-aware CPS Logic Foundations: first order real arithmetic

Arithmetic operators: $+, -, \times, \div$

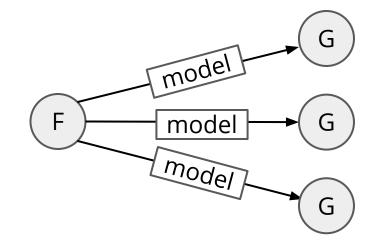
Propositions: $<, \leq, >, \geq, =$

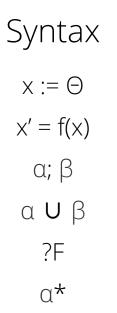
Connectives: $\Lambda, V, \rightarrow, \neg$

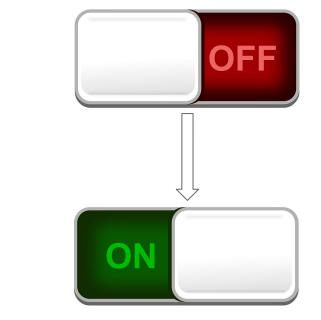
Quantifiers: ∀, ∃

Semantics

 $F \rightarrow [model] G$







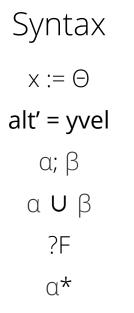
Syntax

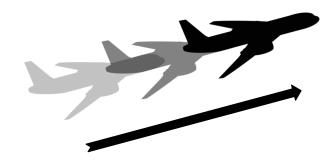
autopilot := 1

x' = f(x) α; β α **U** β

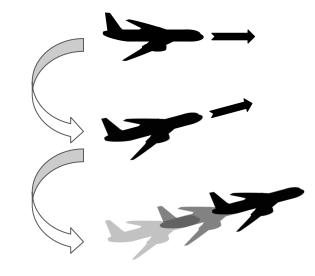
?F

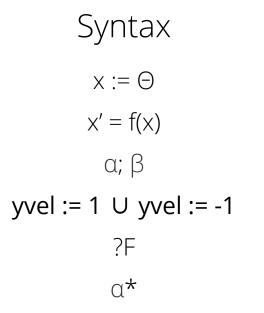
α*

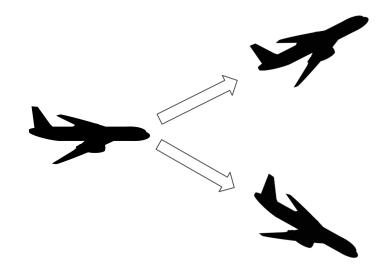




Syntax x := Θ x' = f(x)yvel := 1; alt' = yvel α U β ?F α*

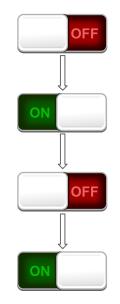




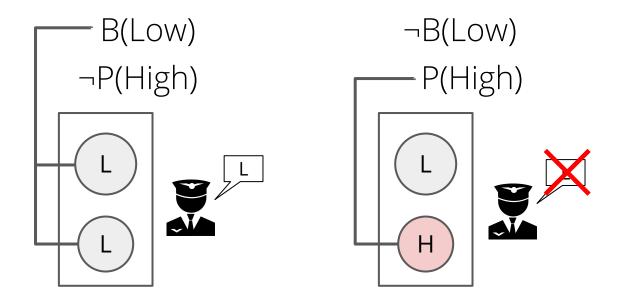


Syntax x := Θ x' = f(x)α; β α U β ?yvel < 1 α*

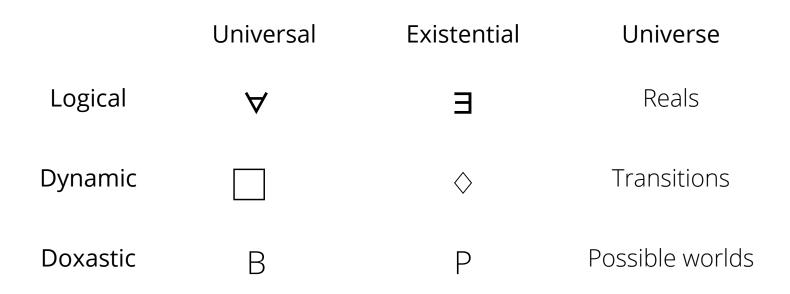
Syntax x := Θ x' = f(x)α; β α U β ?F (autopilot := 1 - autopilot)*



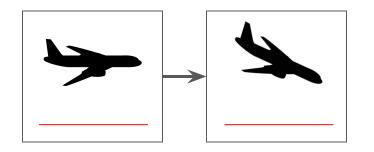
Belief-aware CPS Logic Belief: possible world semantics

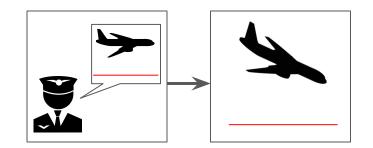


Belief-aware CPS Logic Modalities: overview



Belief-aware CPS Logic Belief-triggered control





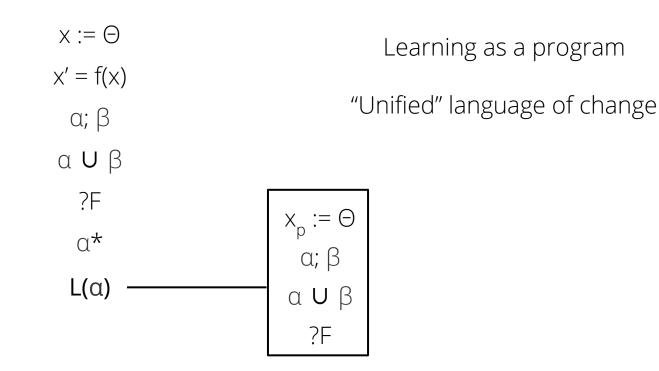
?alt > 10; yinput := -1

?B(alt > 10); yinput := -1

Belief-aware CPS Logic Belief: guiding principles

How to learn new information?

Belief-aware CPS Logic Learning operator



Belief-aware CPS Logic Learning operator

L(α)

• Suspect α happened

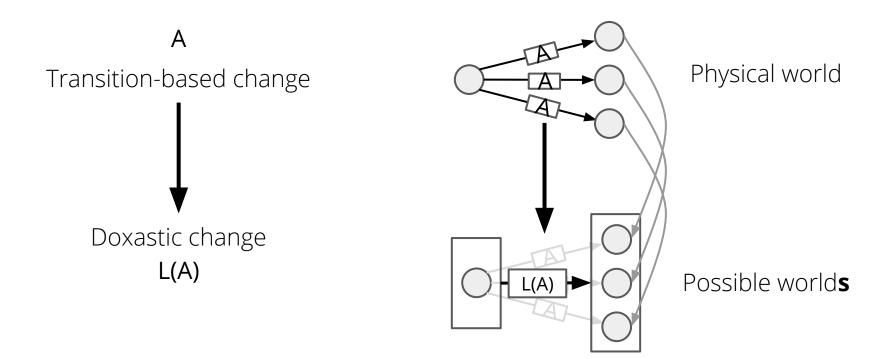
- All outcomes of a possible
- World does not change

L($\alpha \cup \beta$) a or β : but which?

a; L(a)

Observable action

Belief-aware CPS Logic Learning operator

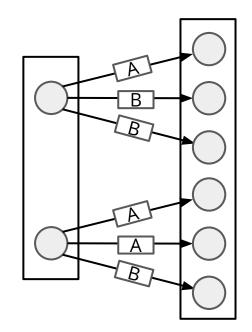


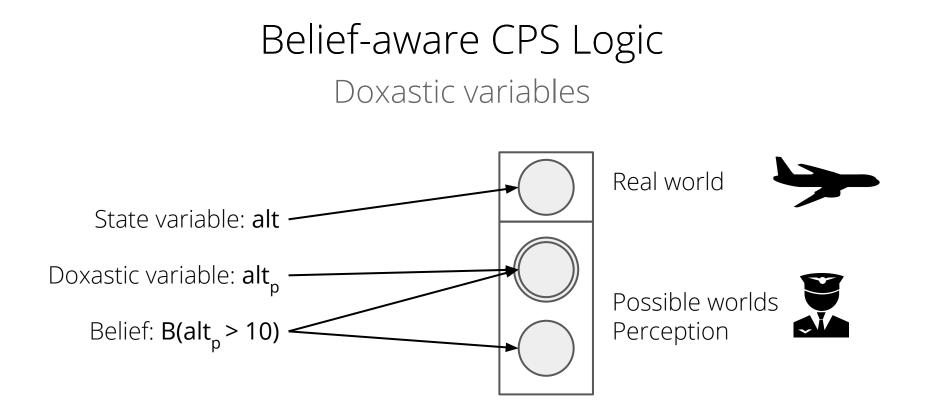
Belief-aware CPS Logic Learning new information

[L(A U B)] F

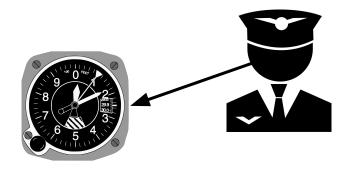
Multiple possible worlds

- Execute at each world
- All transition
- All outcomes indistinguishable





Belief-aware CPS Logic Learning and sensors



Perfect sensor

$$L(?alt_p = alt)$$

 $L(alt_p := alt)$

Imperfect sensor L(?|alt_p - alt| < ϵ)

Belief-aware CPS Logic Calculus for belief change

Proof rules for learned programs $x_p := \Theta$ $\alpha; \beta$ $\alpha \cup \beta$?F

Belief-aware CPS Logic Calculus for belief change: assignment

Sound rule

 $\mathsf{C} \vdash \mathsf{F}(\Theta)$

 $C \vdash [L(x_p := \Theta)] F(x_p)$

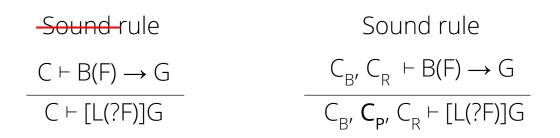
- Syntactic substitution = semantic substitution
- Under admissibility
- Technically complex

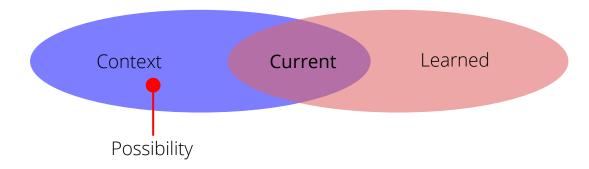
Belief-aware CPS Logic Calculus for belief change: sequential composition

Sound rule C ⊢ [L(α) ; L(β)] F C ⊢ [L(α ; β)] F

• Reduced to non-learned sequential composition

Belief-aware CPS Logic Calculus for belief change: test

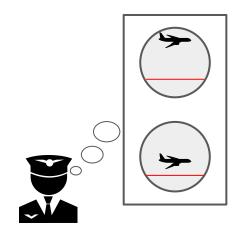


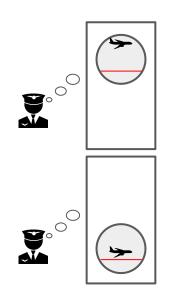


Belief-aware CPS Logic Calculus for belief change: choice

L(?high U ?low)

L(?high) U L(?low)





Belief-aware CPS Logic Calculus for belief change: choice

Traditional choice rules

 $C \vdash [\alpha] F \land [\beta] F$ $C \vdash [\alpha \cup \beta] F$

 $C \vdash \langle \alpha \rangle F \lor \langle \beta \rangle F$ $C \vdash \langle \alpha \cup \beta \rangle F$

No longer work Need case distinction

Belief-aware CPS Logic Calculus for belief change: choice

Sound rules

Most conservative of:

- Dynamic modality
- Doxastic modality

 $\frac{C \vdash [L(\alpha)] \ B(F) \land [L(\beta)] \ B(F)}{C \vdash [L(\alpha \cup \beta)] \ B(F)} \quad []B, []P, \langle\rangle B$

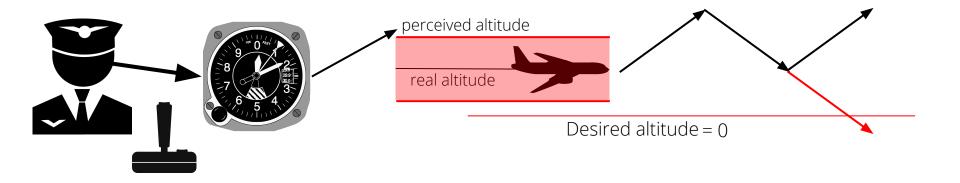
 $\frac{C \vdash \langle L(\alpha) \rangle P(F) \lor \langle L(\beta) \rangle P(F)}{C \vdash \langle L(\alpha \cup \beta) \rangle P(F)} \langle \rangle P$

Belief-aware CPS Logic Calculus for belief change

Theorem: the calculus for world change is sound. [1] Theorem: the calculus for belief change is sound.

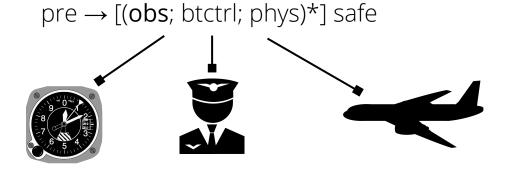
[1] Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)

Case study: altitude control Overview



Case study: altitude control A new standard pattern

Safety



Case study: altitude control Full model

$$T > 0 \land alt > 0 \land \epsilon > 0 \rightarrow [($$

obs ______ L(?alt_p - alt < ϵ); btctrl ______ ?B(alt_p - T - ϵ > 0); yv := -1 U ?P(alt_p - T - ϵ ≤ 0); yv := 1 phys ______ t := 0; t' = 1, alt' = yv & t < T)*] alt > 0 Case study: altitude control Devil's advocate: modeling trick

$$\top > 0 \land alt > 0 \land \varepsilon > 0 \rightarrow [($$

obs ______ L(?alt_p - alt <
$$\epsilon$$
);
btctrl ______ ?B(alt_p - T - ϵ > 0); yv := -1 U ?P(alt_p - T - ϵ ≤ 0); yv := 1
phys ______ t := 0; t' = 1, alt' = yv & t < T
)*] alt > 0

Case study: altitude control Modeling trick: limitations

Relies on modal resolution of nondeterminism

● Only for safet, not liveness ◇

Changes arithmetic

- $?P(alt_p T \varepsilon > A)$ becomes $?alt_p T + \varepsilon > A$
- Obscures doxastic intuitions
- Quickly becomes complex

Conclusion d4L: a logic for verifying belief-aware CPS

Theoretical

- Semantics for changing belief in a changing world
- General learning operator
- Sequent calculus in the reals

Practical

- Belief-triggered controllers
- First principles verification for belief-aware CPS

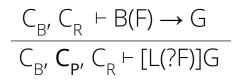
Thank you

Questions?

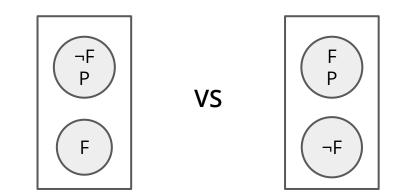
Appendix Suggested questions ;)

- Test, possibility & completeness
- Beliefs about beliefs
- <u>Repeated contraction of possible worlds</u>
- Learning in uncountable domains
- Doxastic assignment, $x_n := \Theta vs x := \Theta$
- <u>Learning operator semantics</u>

Appendix Possibility & completeness



Hard to know which P to keep



Appendix Belief: requirements

Desired axiom

 $B_a(F) \rightarrow [L_b(\alpha)] B_a(F)$

Impossible in Kripke models

No calculus, but easy semantics

Appendix Belief: contraction of possible worlds

Nondeterministic assignment

Nondeterministic doxastic assignment

$$x := * \equiv x' = 1; x' = -1$$

$$L(x_p := *; ?F(x_p))$$

Appendix Learning in uncountable domains

Action model/Epistemic actions

$$[A,e]G \leftrightarrow \bigwedge_{eRf} [A,f]G$$

Conjunction of all possible worlds

• Impossible for reals

Appendix Doxastic assignment vs regular assignment

Unsound proof rule

Still unsound proof rule

 $C \vdash [L(x := \Theta); L(\beta(x))] F$

 $\mathsf{C} \vdash [\mathsf{L}(\mathsf{x} := \Theta; \beta(\mathsf{x}))] \mathsf{F}$

 $C \vdash [L(x := \Theta) ; L(\beta(x_p))] F$

 $C \vdash [L(x := \Theta; \beta(x))] F$

Appendix Learning operator semantics

• $(\omega, \omega') \in \rho_{\eta}(L(\gamma))$ if: r' = r, $W' = \{\nu : \text{ there is } t \in \omega \text{ s.t. } (\omega \oplus t, \nu) \in \rho_{\eta}(\gamma)\},$ $\omega'(\nu) = \mathrm{DV}(\nu) \text{ for all } \nu \in \omega', \text{ and } \mathrm{DW}(\mathrm{DW}(\omega')) = \mathrm{DW}(\omega).$