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ABSTRACT
As airspace becomes ever more crowded, air traffic management
must reduce both space and time between aircraft to increase through-
put, making on-board collision avoidance systems ever more im-
portant. These safety-critical systems must be extremely reliable,
and as such, many resources are invested into ensuring that the pro-
tocols they implement are accurate. Still, it is challenging to guar-
antee that such a controller works properly under every circum-
stance. In tough scenarios where a large number of aircraft must ex-
ecute a collision avoidance maneuver, a human pilot under stress is
not necessarily able to understand the complexity of the distributed
system and may not take the right course, especially if actions must
be taken quickly. We consider a class of distributed collision avoid-
ance controllers designed to work even in environments with arbi-
trarily many aircraft or UAVs. We prove that the controllers never
allow the aircraft to get too close to one another, even when new
planes approach an in-progress avoidance maneuver that the new
plane may not be aware of. Because these safety guarantees always
hold, the aircraft are protected against unexpected emergent behav-
ior which simulation and testing may miss. This is an important
step in formally verified, flyable, and distributed air traffic control.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

Keywords
formal verification; distributed aircraft controllers

1. INTRODUCTION
Verification of air traffic control is particularly challenging be-

cause it lies in the intersection of many fields which already give
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tough verification problems when examined independently. It is a
distributed system, with a large number of aircraft interacting over
an unbounded time horizon. Each aircraft has nonlinear continuous
dynamics combined with complex discrete controllers. And finally,
every protocol must be flyable (i.e. not cause the aircraft to enter a
stall, bank too sharply, or require it to turn on sharp corners).

In this paper, we investigate the safety of collision-avoidance
controllers for aircraft systems. We want to prove safety not just
for a single aircraft or a pair of aircraft, but for all aircraft oper-
ating simultaneously in the sky. Because this system is composed
of multiple independent computational agents that interact with the
physical world, it is called a distributed hybrid system. It is this
combination of continuous flight dynamics, discrete flight control
decisions, and distributed communication that causes verification
of aircraft control protocols to be extremely challenging.

Aircraft control systems are safety-critical, so they must be de-
signed with a high assurance of correctness. When the costs of
failure are high, system designers must be able to guarantee ahead
of time that their systems work as intended. Many methods, such
as testing and simulation, are used in combination to improve reli-
ability. While testing and simulation may reveal software bugs and
increase safety assurance, they are not able to prove safety guaran-
tees over the continuous and infinite state-spaces characteristic of
hybrid systems like flight control, where the aircraft move continu-
ously through space and time. The complexity of curved flight dy-
namics has been difficult for many analysis techniques [1–8], which
often resort to unflyable approximations of flight trajectories that
require aircraft to turn on corners. However, the formal verification
techniques described in this paper are able to provide guarantees for
flyable maneuvers over the entirety of this continuous state-space
and therefore over all evolutions of all aircraft movement.

These strong guarantees are especially important in a distributed
system with a large number of interacting participants. As in [1, 4,
7, 9, 10], many previous approaches to aircraft control have looked
into a relatively small number of agents. But with thousands of
aircraft flying through commercial airspace daily, this system is
already far too complex for humans to predict every scenario by
looking at interactions of only a few aircraft. And this challenge
increases when we examine controllers for Unmanned Aerial Vehi-
cles (UAVs), which are becoming increasingly autonomous and fly
even closer together, with less direct supervision by humans. As a
result, we must provide a good argument for why a controller will
always take the right action, even in extremely crowded airspace.

In this paper we specify and verify two control policies for pla-
nar aircraft avoidance maneuvers using automated theorem prover
KeYmaeraD to produce a proof of safety for each of them. We de-
sign these policies such that all aircraft adhere to a simple and easy-
to-implement separation principle: associated with each aircraft is



a disc, within which the aircraft must remain. In this way, the prob-
lem reduces to proving that i) sufficient separation is maintained
between pairs of discs, and ii) individual aircraft always remain in-
side their associated disc. We model 2D flight dynamics since they
are the relevant dynamics for planar maneuvers, but investigating
3D maneuvers and dynamics may make interesting future work.

The complexities which arise from the curved flight trajectories
of an arbitrary number of aircraft interacting in a distributed man-
ner, along with the tight coupling of discrete control and continuous
dynamics presently make KeYmaeraD the only verification tool ca-
pable of proving safety for this system. Our contributions are:
• We provide the first formally verified distributed system of

aircraft with curved flight dynamics.
• Our controller requires only flyable aircraft trajectories with

no corners or instantaneous changes of ground speed.
• We prove our controller is safe for an arbitrarily large num-

ber of aircraft. This guarantee is necessary for high-traffic
applications such as crowded commercial airspace, unmanned
aerial vehicle maneuvers, and robotic swarms.

• Other aircraft may enter an avoidance maneuver already in
progress and safety for all aircraft is guaranteed still.

• We use Arithmetic coding to reduce proof complexity and
branching.

• We prove that even when the interactions of many aircraft
cause unexpected emergent behaviors, all resulting control
choices are still safe.

• We present hierarchical and compositional techniques to re-
duce a very complex system into smaller, provable pieces.

2. RELATED WORK
Many methods for ensuring correctness have been researched,

each having different strengths in dealing with the various chal-
lenges posed by air traffic control. Pallottino et al. [11] proposed
a distributed collision avoidance policy that is closely related to
the systems we examine here. They provide a thorough empiri-
cal description of the system’s behavior, emphasizing simulation
and physical experiment. They formulate a liveness property and
give probabilistic evidence for it using Monte Carlo methods. They
also provide an informal proof of safety that is similar in high-level
ideas to our proofs, but does not consider a model for flight dy-
namics. However, since we provide formal proofs of safety based
directly on the control protocols and working with a continuous
model of flight dynamics, we provide a higher degree of assurance
and a clearer avenue to safely extend the systems.

Verification methods for systems with an arbitrary number of
agents behaving under distributed control fall primarily into one
of two categories: theorem proving and parameterized verification.
Johnson and Mitra [8] use parameterized verification to guaran-
tee that a distributed air traffic landing protocol (SATS) is collision
free. Using backward reachability, they prove safety in the SATS
landing maneuver given a bound on the number of aircraft that
can be engaged in the landing maneuver. The protocol divides the
airspace into regions and models the aircraft flight trajectory within
each region by a clock. We consider the complementary problem
of free flight instead of airport landing traffic, and we show that in
free space, arbitrarily many aircraft can join our maneuver, and we
model aircraft movement using flyable, curved flight dynamics.

Other provably safe systems with a specific (usually small) num-
ber of agents are presented in [1, 4, 7, 9]. The work by Umeno
and Lynch [4, 7] is complementary to ours; however while they
consider real-time properties of airport protocols using Timed I/O
Automata, we prove local properties of the actual hybrid system
flight dynamics. Duperret et al. [9] verify a roundabout maneu-

ver with three vehicles. Each vehicle is constrained to a specific,
pre-defined path, so physical dynamics are simplified to one di-
mension. Tomlin et al. [1] analyze competitive aircraft maneu-
vers game theoretically using numerical approximations of partial
differential equations. As a solution, they propose roundabout ma-
neuvers and give bounded-time verification results for up to four
aircraft using straight-line approximations of flight dynamics.

Flyability is identified as a major challenge in Košecká et al. [12],
where planning based on superposition of potential fields is used
to resolve air traffic conflicts. This planning does not guarantee
flyability but, rather, defaults to classical vertical altitude changes
whenever a nonflyable path is detected. The resulting maneuver
has not yet been verified. The planning approach has been pursued
by Bicchi and Pallottino [13] with numerical simulations.

Numerical simulation algorithms approximating discrete-time
Markov Chain approximations of aircraft behavior have been pro-
posed by Hu et al. [2]. They approximate bounded-time probabilis-
tic reachable sets for one initial state. We consider hybrid systems
combining discrete control choices and continuous dynamics in-
stead of uncontrolled, probabilistic continuous dynamics. Hwang
et al. [6] have presented a straight-line aircraft conflict avoidance
maneuver involving optimization over complicated trigonometric
computations, and validate it using random numerical simulation
and informal arguments. The work of Dowek et al. [3] and Galdino
et al. [5] shares many goals with ours. They consider unflyable,
straight-line maneuvers and formalize geometrical proofs in PVS.

Our approach has a different focus from complementary work:
• Our maneuver directly involves curved flight unlike [1–8].

This makes our maneuver more realistic since it is flyable,
but much more difficult to analyze.

• Unlike [2,6,12], we do not give results for a finite (sometimes
small) number of initial flight positions (as in simulation).
Instead, we verify uncountably many initial states and give
unbounded-time horizon verification results.

• Unlike [1, 2, 6, 12–14], we use symbolic computation so that
numerical and floating point errors can not violate soundness.

• Unlike [2–8, 13, 15], we analyze hybrid system dynamics di-
rectly, not approximations like clocks.

• Unlike [1,2,6,11–13,15] we produce formal, deductive proofs.
• In [3–7, 11], it is not proved that the hybrid dynamics and

flight equations follow the geometrical thoughts. In contrast,
our approach directly works for the hybrid flight dynamics.

• Unlike [1–3,5,6,9,10,12,13], we verify the case of arbitrar-
ily many aircraft, which is crucial for dense airspace.

• Unlike [13,14], we do not guarantee optimality of the result-
ing maneuver.

3. PRELIMINARIES

Quantified Hybrid Programs.
QHPs [16, 17] are defined by the following grammar (α, β are

QHPs, θ terms, i a variable of sort C, f a function symbol, s a term
with sort compatible to f , and H is a formula of first-order logic):

α, β ::= ∀i :C A | ∀i :C {D & H} | ?H | α ∪ β | α; β | α∗

where A is a list of assignments of the form f (s) := θ and nonde-
terministic assignments of the form f (s) := ∗C, and D is a list of
differential equations of the form f (s)′ = θ. When an assignment
list does not depend on the quantified variable i, we may elide the
quantification for clarity.

The effect of assignment f (s) := θ is a discrete jump assigning
θ to f (s). The effect of nondeterministic assignment f (s) := ∗C is



a discrete jump assigning any value in C to f (s). The effect of
quantified assignment ∀i :C A is the simultaneous effect of all as-
signments in A for all objects i of sort C. For example, the QHP
∀i :C ω(i) :=ω(i) + 1 expresses that all aircraft i of sort C simul-
taneously increase their angular velocity. The effect of quantified
differential equation ∀i : C{D&H} is a continuous evolution where,
for all objects i of sort C, all differential equations in D hold and
formula H holds throughout the evolution (i.e. the state remains
in the region described by evolution domain constraint H). The
dynamics of QHPs changes the interpretation of terms over time:
for an R-valued function symbol f , f (~s)′ denotes the derivative
of the interpretation of the term f (~s) over time during continuous
evolution, not the derivative of f (~s) by its argument ~s. For this
paper, f does not occur in ~s. In most cases, ~s is just i. For in-
stance, the following QHP expresses that all aircraft i of sort C
fly by ∀i :C x(i)′ = d(i), d(i)′ = ω(i)d(i) such that their position x(i)
changes continuously according to their respective direction d(i)
and their direction changes according to their angular velocity ω(i).

The effect of test ?H is a skip (i.e., no change) if formula H is
true in the current state and abort (blocking the system run by a
failed assertion), otherwise. Nondeterministic choice α ∪ β is for
alternatives in the behavior of the distributed hybrid system. In the
sequential composition α; β, QHP β starts after α finishes (β never
starts if α continues indefinitely). Nondeterministic repetition α∗

repeats α an arbitrary number of times, possibly zero times.

Quantified Differential Dynamic Logic.
The formulas of QdL [16, 17] are defined as in first-order dy-

namic logic plus many-sorted first-order logic by the following
grammar (φ, ψ are formulas, θ1, θ2 are terms of the same sort, i is a
variable of sort C, and α is a QHP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ

| ∀i :C φ | ∃i :C φ | [α]φ | 〈α〉φ

We use standard abbreviations to define ≤, >, <,→. The real num-
bers R form a distinguished sort, upon which are defined the rigid
functions + and ×. Sorts C , R have no ordering and hence θ1 = θ2

is the only relation allowed on them. For sort R, we abbreviate
∀x :R φ by ∀x φ. In the following, all formulas and terms have to
be well-typed. QdL formula [α]φ expresses that all states reach-
able by QHP α satisfy formula φ. Likewise, 〈α〉φ expresses that
there is at least one state reachable by α for which φ holds.

Proof Calculus and Prover.
The QdL proof calculus [16, 17] consists of proof rules that op-

erate on sequents, which are syntactic objects of the form Γ ⇒ ∆

where Γ and ∆ are finite sets of QdL formulas. Loos et al. [18] use
QdL to verify adaptive cruise control for arbitrarily many cars on a
highway, with simple continuous dynamics on a straight lane.

KeYmearaD is a theorem prover which mechanizes the use of the
QdL proof calculus. It has previously been used to verify a simple
car control system [19]. KeYmaeraD further implements quantified
differential invariants [20]. KeYmaeraD constructs proofs by fol-
lowing a user-created tactic script. When KeYmaeraD runs a tactic
script, it applies proof rules to the sequent based on tactics speci-
fied in the script which will ultimately reduce the sequent to several
problems in first-order real arithmetic. These simpler problems are
then sent to a backend decision procedure in Mathematica.

4. CASE STUDY SYSTEMS
In this section, we present two classes of aircraft controllers,

each of which maintains a guaranteed minimum distance p between

all aircraft. We then prove that both of these controller classes are
safe, (i.e. that the minimum distance p between aircraft is never vi-
olated). Each aircraft has a disc-shaped zone large enough to fly a
circle within and which no other aircraft will be allowed to enter.

In the first controller class (Section 4.1), each aircraft maintains
a larger buffer disc with the aircraft at its center. This disc allows
pilots some freedom during an avoidance maneuver, including the
choice of circling direction. We imagine this controller will be
useful when passenger comfort is a factor, as in commercial air-
lines. The second class of controllers (Section 4.2) uses smaller
buffer discs centered to the left or right of the aircraft. The smaller
discs allow the aircraft to fly closer together, but there may be little
choice in how a maneuver is executed. This is well suited to UAVs
which may fly very close together and are concerned only with flya-
bility, not passenger comfort. Additionally, since many UAVs may
be monitored and managed remotely by a small group of people, it
may be more desirable to have a specific collision avoidance ma-
neuver with little freedom and high predictability. Because the first
controller class requires a larger disc than the second, we call it Big
Disc, and appropriately we name the second class Small Discs.

We use two levels of abstraction to analyze the controllers. At the
higher abstraction level we model the buffer discs, which can freeze
instantaneously when they get within p distance of each other. At
the lower level, we model the movement of aircraft within their
discs, ensuring they always stay within the buffer zone while fol-
lowing flyable trajectories. In the proof, these two levels of abstrac-
tion are joined so that safety is assured for the system as a whole.

We model airspace as R2 and aircraft as points moving in this
space. Each aircraft i steers by adjusting its angular velocity ω(i).
When ω(i) is zero, the plane flies in a straight line. As angular
velocity increases, the plane flies in a tighter and tighter circle, so
we put an upper bound on the angular velocity Ω(i) based on the
smallest circle that aircraft i can fly while maintaining constant lin-
ear speed v(i). We keep linear speed v(i) constant for each aircraft.
We can determine the radius of each aircraft’s smallest flyable cir-
cle by the equation minr(i) = v(i)/Ω(i). This model is known as the
Dubins vehicle [21] and has been used previously for aircraft veri-
fication [1]. We allow an arbitrarily large number of aircraft to be
present in airspace, so long as there is enough space to pack their
discs. To our knowledge, no other method has been able to verify a
protocol or controller safe for an arbitrary number of aircraft using
a continuous model of their flight dynamics. This is not surprising,
since safety must be guaranteed even for unpredictable emergent
behaviors and in crowded, worst-case scenarios. Models written
as QHPs inherently have a compositional and hierarchical struc-
ture which makes them easier to decompose into smaller, provable
pieces by using sound proof rules. We also use nondeterminism in
the model of the controller, which means that our proof is robust to
variations in implementation on individual aircraft.

4.1 Big Disc
During normal free flight (i.e. whenever the aircraft is not en-

gaged in a collision avoidance maneuver), the buffer zone for an
aircraft i is a disc of radius 2minr(i) centered around the aircraft,
which is at planar position x(i) = (x1(i), x2(i)). So long as the air-
craft does not enter a collision avoidance maneuver, its buffer disc
remains centered on the aircraft. However, should aircraft i come
too close to another plane, it will enter collision avoidance mode
and begin circling at radius minr(i) to either the left or the right.
The disc allows just enough room for this maneuver; however, the
disc is big in the sense that it allows a considerable amount of free-
dom once the aircraft has gone halfway around this initial circle.
The beginning of one possible trajectory of a collision avoidance
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Figure 1: A possible collision avoidance trajectory of BigDisc.

maneuver is illustrated in Figure 1. The current direction of flight
of aircraft i is given by the indexed variable d(i) as a 2D unit vec-
tor. The variable disc(i) stores the position of the center of i’s buffer
disc. The aircraft need not always turn at the maximum angular ve-
locity Ω(i); we require only that the aircraft remain within the disc
by circling in its original direction. (Note: while it is possible for
the aircraft to change its circling direction while staying within the
disc by flying a figure eight or an ‘S’ shape, we disallow this be-
havior since it would increase the complexity of the controller.)

4.1.1 Formal Model
The Big Disc policy is presented formally in QHP 1 and we de-

scribe it in this section. The variable ca(i), indicates whether air-
craft i is in a collision avoidance maneuver. If ca(i) = 0 then i is
in free flight; if ca(i) = 1 then i is in an avoidance maneuver and
is circling within its disc. Each aircraft has the ability to enter col-
lision avoidance independently and asynchronously. This simpli-
fies collision avoidance maneuvers with more than two aircraft and
improves reliability, since no perfect synchronization is required,
which would be difficult to implement in a distributed system.

The variable side(i) indicates i’s circling direction when it en-
ters an avoidance maneuver. If side(i) = 1, i will circle counter-
clockwise; if side(i) = −1, i circles clockwise. We use ‖y‖ to denote
the Euclidean norm and we use y⊥ to denote the vector obtained by
rotating y ninety degrees counter-clockwise, y⊥ B (−y2, y1).

The quantified hybrid program BigDisc is a loop, which is rep-
resented in line 1 by ∗, the nondeterministic repetition operator.
Each iteration is either a control action as represented by Control
or an evolution of physics as represented by Plant. This loop
may repeat arbitrarily many times. In the Control branch, the
program nondeterministically selects an aircraft k (k B ∗A assigns
an arbitrary aircraft into k) and then allows k to perform some ac-
tion. The allowed actions depend on whether k is in a collision
avoidance maneuver. If it is (case CA), then k may either adjust its
angular velocity in the Steer branch, or exit the maneuver with
the Exit branch. The new angular velocity in the Steer branch
is arbitrary (ω(k) := ∗R, where ∗R is an arbitrary real number) but
bounded by −Ω(k) and Ω(k) due to the subsequent test. The aircraft
may only Exit the collision avoidance circling maneuver when
x(k) = disc(k), i.e., the aircraft must return to the center of the disc
before exiting the maneuver. If k is not in a collision avoidance
maneuver (case NotCA), then it may once again Steer, or it may
switch its circling direction with the Flip branch, or it may enter
collision avoidance with the Enter branch. In the Enter branch,
the aircraft sets its angular velocity so that it will circle with ra-
dius minr(k), thereby entering a collision avoidance. It also sets the
ca(k) flag to indicate internally that it has entered this maneuver.

The other branch in BigDisc’s main loop is Plant. The po-
sition of the aircraft, x(i), changes according to its direction, d(i),
which in turn changes according to its angular velocity, ω(i). This

Quantified Hybrid Program 1 Big Disc

BigDisc ≡ (Control ∪ Plant)∗ (1)
Control ≡ k B ∗A; (CA ∪ NotCA) (2)

CA ≡ ?(ca(k) = 1); (Steer ∪ Exit) (3)
NotCA ≡ ?(ca(k) = 0); (Steer ∪ Flip ∪ Enter) (4)
Steer ≡ ω(k) B ∗R; ?(−Ω(k) ≤ ω(k) ≤ Ω(k)) (5)
Exit ≡ ?(disc(k) = x(k)); ca(k) B 0 (6)
Enter ≡ ω(k) B side(k) ·Ω(k); ca(k) B 1 (7)
Flip ≡ side(k) B −side(k) (8)

Plant ≡ ∀i : A
(
x(i)′ = v(i) · d(i), d(i)′ = ω(i) · d(i)⊥, (9)

disc(i)′ =
(
1 − ca(i)

)
· v(i) · d(i) & EvDom

)
(10)

EvDom ≡ ∀ j : A (11)(
( j , i ∧ (ca(i) = 0 ∨ ca( j) = 0))→ Sep(i, j) (12)
∧ ||disc(i) − (x(i) + minr(i) · side(i) · d(i)⊥)||
≤ minr(i)

)
(13)

Sep(i, j) ≡ ‖disc(i) − disc( j)‖ ≥ 2minr(i) + 2minr( j) + p (14)

makes ω(i) our primary control variable. These physical dynamics
are modeled by the differential equation in line 9. The center of the
disc, disc(i), is stationary during a collision avoidance maneuver,
but otherwise it is equal to the aircraft position. This case distinc-
tion is achieved by using arithmetic coding, whereby we multiply
by (1 − ca(i)), in line 10. This reduces a branching of the system
which would be incurred if we were to use traditional if-else cod-
ing style, and thereby reduces the complexity of the safety proof.
When the aircraft is in free flight, ca(i) = 0, which causes disc(i)′

to equal x(i)′. But, when the aircraft is in a collision avoidance ma-
neuver, ca(i) = 1, causing disc(i)′ = 0, so the disc is stationary.
The evolution domain, EvDom, has two purposes. First, it monitors
the disc positions of other aircraft (line 12). Recall that in order for
the system to be considered safe, no aircraft can pass closer than
distance p to another. So, if the aircraft’s disc comes within p of
another disc (as quantified in line 14), it forces both aircraft to enter
collision avoidance. Second, while the aircraft has a great amount
of freedom in how it maneuvers during collision avoidance, it must
always be able to flyably remain within its buffer disc. We use the
inequality in line 13 to quantify this condition. It states that if the
aircraft turns in a tight circle with radius minr(i), the origin of that
tight circle is no more than minr(i) away from the point disc(i).

Our model allows for a huge amount of nondeterminism, both in
the discrete dynamics of the controller (e.g. which aircraft are con-
trolled (k B ∗A, line 2), how the aircraft steer (ω(k) B ∗R, line 5),
and whether to enter a collision avoidance maneuver), and in the
continuous dynamics of the plant (e.g. how long to wait between
control choices). This nondeterminism is a beneficial property of
our collision avoidance protocol, since it allows for each aircraft to
implement slightly different control algorithms without violating
the proof of safety for the entire system. As a result, we have veri-
fied a class of controllers, rather than one specific implementation.

4.1.2 Theorem Statement
In order to guarantee safety, we must prove that for all pairs of

distinct aircraft i, j, the distance between i and j is greater than or
equal to p. We can express this condition formally as

Safe ≡ ∀ i, j : A
(
i , j→ ‖x(i) − x( j)‖ ≥ p

)
.



We must show that Safe holds during all executions of BigDisc.
The QdL formula expressing this property is [BigDisc]Safe. We
must also ensure that the aircraft begin in a controllable state. This
means each aircraft must have a buffer disc (InitA), which is empty
(InitB), and within which it may flyably maneuver (InitC). For
aircraft i that are not in an avoidance maneuver, we ensure that i’s
disc is at the same point as i. Since ca(i) = 1 for aircraft in a ma-
neuver and ca(i) = 0 otherwise, we may write this property as

InitA ≡ ∀i : A (1 − ca(i)) · disc(i) = (1 − ca(i)) · x(i).

By again using this arithmetic coding style rather than an if-else
statement, we eliminate a significant branching factor in the result-
ing proof. We then show that the discs are empty by ensuring suf-
ficient separation between the discs as defined in QHP 1 line 14.

InitB ≡ ∀i, j : A
(
i , j→ Sep(i, j)

)
Finally, we ensure that aircraft in collision avoidance maneuvers

are able to flyably remain within their discs. We do this by proving
that the following formula is an invariant of our system. It states
that if i tightly circles in its current circling direction, the center of
this tight circle will be within distance minr(i) of disc(i).

InitC ≡ ∀i : A ||disc(i)− (x(i) + minr(i) · side(i) ·d(i)⊥)|| ≤ minr(i)

Note that these initial conditions all hold trivially if the aircraft be-
gin far enough apart that none is in a collision avoidance maneuver.

Theorem 1 (Safety of BigDisc). If the aircraft are initially
in a controllable state, then no two aircraft will come closer than
distance p while all aircraft follow Control; therefore safety of the
BigDisc controller is expressed by the provable QdL formula:

(InitA ∧ InitB ∧ InitC)→ [BigDisc]Safe

We proved Theorem 1 for all parameter values by showing that
InitA, B and C are maintained as invariants. This proof was gener-
ated using KeYmaeraD from a 330 line user-generated tactic script.
The tactic file and the KeYmaeraD theorem prover are available
online [22]. A discussion of the critical techniques needed to com-
plete this proof is presented in [23, Appendix A.1].

4.2 Small Discs
One drawback of the Big Disc policy is that it may trigger colli-

sion avoidance maneuvers that are not strictly necessary; the buffer
zones are larger than the required circling space of the aircraft. Our
second policy, Small Discs, aims to decrease the size of the disc.
The only way to do this is to abandon the assumption that the disc
must be centered on the aircraft during free flight. Instead, the
buffer zone, a disc of radius minr(i), is centered at a point with
distance minr(i) away from x(i), in a direction perpendicular to i’s
motion either to the left or the right. Thus the aircraft is always
on the edge of its disc, and during collision avoidance, the aircraft
follows the circumference of its disc. As with BigDisc, an aircraft
may flip its circling direction during free flight. This now makes
the disc jump to the other side of the aircraft, and before an aircraft
can flip its circling direction, it must check that it may do so safely.

Fig. 2 illustrates a situation where flipping the disc to the op-
posite side prevents an unnecessary collision avoidance maneuver.
Each aircraft has an active disc (solid discs in Fig. 2) that it will use
for collision avoidance if needed. We also illustrate the inactive
disc (dotted discs) as an alternative choice for the disc if the aircraft
decides to flip its circling direction. In Fig. 2, the active discs of air-
craft i and aircraft j are on a collision course. If nothing is done, at
the latest when the edges of the discs are separated by distance p,
both aircraft will enter collision avoidance by circling to the right

xHiL

xH jL

p xHkL

xHlL

xHmL

Figure 2: One possible scenario in the Small Discs policy

around the circumference of their respective discs. Notice that in
this case, the aircraft may pass as close as the minimum separation
distance p when aircraft i is at the top of its disc while aircraft j is
at the bottom. However, since aircraft i has free space to its left, it
may flip its circling disc to the opposite side and no collision avoid-
ance maneuvers are necessary. Aircraft j is unable to make such a
flip, since aircraft k’s disc occupies the necessary space. Only col-
lisions of active discs are a problem. The fact that the inactive discs
of k and m overlap is immaterial, because if collision avoidance is
necessary, every aircraft will follow the circumference of its active
disc. This also illustrates that aircraft must synchronize disc flip-
ping. If, to enable j to flip its disc, k flips its disc, but, at the same
time, and unaware of this, m flips its disc, then k and m would have
incompatible collision avoidance discs. Since purely discrete stan-
dard solutions exist for ensuring consistency in such discrete mode
changes, our model simply uses sequentialized flipping decisions.

4.2.1 Formal Model
The Small Discs policy is presented formally as SmallDiscs

in QHP 2. The overall structure is similar to that of BigDisc.
One notable difference is that SmallDiscs no longer uses the state
variable disc(i). During free flight, the center of an aircraft’s disc
moves with dynamics that are not easy to express in terms of other
variables; it is certainly not as easy as setting disc(i)′ = x(i)′, as we
did in BigDisc. The point disc(i) moves faster or slower than x(i),
depending on whether the aircraft is veering away from its active
disc, or towards it. As a result, disc(i) has very involved continu-
ous dynamics. Fortunately, however, the position of aircraft i’s disc
can be simply expressed in terms of other state variables. By using
differential-algebraic equations as in [24], we equate

disc(i) = x(i) + minr(i) · side(i) · d(i)⊥. (15)

In order to simplify the mathematics of the system, we directly
reduce the system to ordinary differential equations, which also
makes the connection to BigDisc more apparent. Thus, instead
of using (15) as part of a differential-algebraic equation [24], we
consider (15) as a definition and statically replace all occurrences
of disc(i) by the right-hand side of (15). The subsequent model
should be read with this in mind. The other major change in QHP
2 is the separation condition Sep and the newly introduced separa-
tion condition FlipSep for flipping the disc.

4.2.2 Theorem Statement
Here again we want to prove that under safe initial conditions,

the SmallDiscs controller is always Safe, where Safe is exactly as
we defined it for BigDisc. We need to modify the initial conditions
for SmallDiscs. There are two properties that we want to hold:
first, the discs are separated (InitD), and second, when an air-
craft is engaged in collision avoidance it is flying along the circum-



Quantified Hybrid Program 2 Small Discs

SmallDiscs ≡ (Control ∪ Plant)∗ (16)
Control ≡ k B ∗A; (CA ∪ NotCA) (17)

CA ≡ ?(ca(k) = 1); (Exit ∪ Skip) (18)
NotCA ≡ ?(ca(k) = 0); (Steer ∪ Flip ∪ Enter) (19)
Skip ≡ ?true (20)
Steer ≡ ω(k) B ∗R; ?(−Ω(k) ≤ ω(k) ≤ Ω(k)) (21)
Exit ≡ ca(k) B 0 (22)
Enter ≡ (ω(k) B side(k) ·Ω(k)); ca(k) B 1 (23)
Flip ≡ ?(∀ j : A ( j , k → FlipSep( j, k))); (24)

side(k) B −side(k) (25)
FlipSep(i, j) ≡ ‖(x(i) + minr(i) · side(i) · d(i)⊥) (26)

− (x( j) − minr( j) · side( j) · d( j)⊥)‖ (27)
≥ minr(i) + minr( j) + p (28)

Plant ≡ ∀i : A
(
x(i)′ = v(i) · d(i), d(i)′ = ω(i)d(i)⊥ (29)

& ∀ j : A
(
( j , i ∧ (ca(i) = 0 ∨ ca( j) = 0)) (30)

→ Sep(i, j)
))

(31)

Sep(i, j) ≡ ‖(x(i) + minr(i) · side(i) · d(i)⊥) (32)
− (x( j) + minr( j) · side( j) · d( j)⊥)‖ (33)
≥ minr(i) + minr( j) + p (34)

ference of its active disc (InitE). InitD is similar to InitB for
BigDisc, but it uses our new definition of Sep for SmallDiscs:

InitD ≡ ∀i, j : A
(
i , j→ Sep(i, j)

)
.

If i is in a collision avoidance maneuver, then i is turning at max-
imal angular velocity. This implication is expressed with arithmetic
coding by multiplying both sides with the indicator ca(i):

InitE ≡ ∀i : A
(
ω(i) · ca(i) = Ω(i) · side(i) · ca(i)

)
.

Theorem 2 (Safety of SmallDiscs). If the aircraft are initially
in a controllable state (i.e. where InitD and InitE hold), then
no aircraft will come closer than distance p to any other aircraft
so long as each aircraft follows Control; therefore safety of the
SmallDiscs controller is expressed by the provable QdL formula:

(InitD ∧ InitE)→ [SmallDiscs]Safe

We proved Theorem 2 in KeYmaeraD by showing InitD and
InitE are invariant. The accompanying tactic script is 309 lines in
length and is available online [22].
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