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Assumptions and Requirements 

•  Safety: At all times, the aircraft must be separated by 
distance greater than p. 
•  Aircraft trajectories must always be flyable. 
•  An arbitrary number of aircraft may enter the maneuver 
at any time. 

Requirements 

•  Aircraft maintain constant velocity. 
•  Sensors are accurate and have no delay. 
•  Collision avoidance maneuvers are executed on the 2D plane.  

Assumptions 

4/10 



2 4 6 8 10 t
0.2

0.4

0.6

0.8

1.0
d

2 4 6 8 10 t

1

2

3

p

2 4 6 8 10 t

!0.2

!0.1

0.1

0.2

0.3

0.4

0.5
Ω

d2 

Hybrid Dynamics 
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Aircraft are controlled by steering, 
through discrete changes in angular 
velocity    . 
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• Leaves maneuverability to pilot discretion. 
• Requires large buffer disc. 
• Requires aircraft to return to the center of the 
disc before completing avoidance maneuver. 
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• Deterministic control makes it well suited for UAVs. 
• Smaller discs allow aircraft to fly closer together. 
• Aircraft may exit maneuver as soon as it is safe to 
do so.  

Small Discs Control 
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Challenges Solutions 

!  Infinite, continuous, and 
evolving state space,  

!  Continuous dynamics 
!  Discrete control decisions 
!  Distributed dynamics 
!  Arbitrary number of 

aircraft 
!  Emergent behaviors 

!  Quantifiers for distributed 
dynamics  

!  Compositionality – using small 
problems to solve the big ones 

!  Hierarchical and modular proofs 
!  Non-linear flight paths allow 

flyable maneuvers 

Conclusions 
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