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Abstract. The differential temporal dynamic logic dTL2 is a logic to specify
temporal properties of hybrid systems. It combines differential dynamic logic
with temporal logic to reason about the intermediate states reached by a hybrid
system. The logic dTL2 supports some linear time temporal properties of LTL.
It extends differential temporal dynamic logic dTL with nested temporalities. We
provide a semantics and a proof system for the logic dTL2, and show its use-
fulness for nontrivial temporal properties of hybrid systems. We take particular
care to handle the case of alternating universal dynamic and existential temporal
modalities and its dual, solving an open problem formulated in previous work.

1 Introduction

A major task of computer science is to program objects of our physical world: cars,
trains, airplanes, robots, etc. — often grouped under the denomination of cyber-physical
systems (CPS). A CPS is governed by its programmable controllers, but also by the laws
of physics. To fully verify it, one thus needs to model the controllers and their software
as well as the relevant laws of physics in the same system. Such a system then becomes
hybrid: the controllers are discrete while the laws of physics are continuous.

In recent years, a number of systems have been explored to reason about such hy-
brid systems. In particular, this paper is based on differential dynamic logic [14], [16,
chapter 4], a logic based on dynamic logic [15,17], [16, chapter 2] and including pro-
grams enabling discrete assignments and discrete control structures, but also execution
of differential equations. Differential dynamic logic comes with a semantics as well as
a proof system, which is sound and relatively complete.

Based on dynamic logic, differential dynamic logic only reasons about the end state
of a system. However, to ensure that a system always stays within some structural limits,
or always accomplishes a certain task, one needs to reason about its intermediate states
as well. CPSs that are safe when their systems terminate but have been unsafe in the
middle of the program run are still not safe to use. The idea is to use both dynamic logic
— to quantify over possible executions — and temporal logic — to quantify over the
states in the trace of each execution. This is not a new idea, but previous work [1,14]
focuses only on the non-alternating cases: “some property is always verified during all
executions” and “something happens during some execution.”

In this paper, we are developing a differential temporal dynamic logic dTL2 inspired
from LTL, and we are focusing on correctly handling the more complex alternating
cases: “something happens during all executions” and “there is an execution where
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some property is always verified,” as well as nested temporal modalities. In particular,
a property checking that a task is always accomplished can now be checked. This logic
is an important stepping stone towards full dTL∗, the differential analog of CTL∗.

As a simple example, let us look at a satellite with position x trying to leave the solar
system, avoiding planets. To simplify, let us consider only two planets with radiuses r1
and r2, at (evolving) positions p1 and p2. The satellite can be controlled either by a
pilot who can set its steering ω to left or right then let x evolve according to differential
equation flight(ω), or by an autopilot following a PID controller with target direction set
to d. During each evolution, the positions of the planets continue to evolve, following
differential equation planets(p1, p2). The program of the satellite and its safety property
φ — expressing that there exists a steering avoiding all planets — can be expressed as:

satellite ::=(((ω := left ∪ ω := right);x′ = flight(ω), (p′1, p
′
2) = planets(p1, p2))

∪ (d := ∗;x′ = PID(d), (p′1, p
′
2) = planets(p1, p2)))

∗;

control := lost; d := ∗;x′ = PID(d), (p′1, p
′
2) = planets(p1, p2)

φ ::= 〈satellite〉�(dist(x, p1) > r1 ∧ dist(x, p2) > r2 ∧ control 6= lost)

This example shows several features of hybrid programs and the logic dTL2. Under
the pilot’s command, the variable ω can be assigned to either left or right, following a
nondeterministic choice ∪. Then x, p1 and p2 follow a differential equation modeling
the continuous evolution of the system, including movement of the planets. Under the
autopilot’s command, d is nondeterministically assigned (d := ∗). There is a nondeter-
ministic choice between the two commands, followed by a star ∗ representing repetition.
In case of mechanical or communication failure, control could be lost, which we repre-
sent by a variable assignment, and the system continues to evolve. The formula φ says
that there exists a possible evolution (〈satellite〉) such that throughout this evolution
(�), the satellite does not hit any planet; namely, the evolution avoiding planets where
control is never lost. The formula φ is expressible in dTL2, and shows how dTL2 han-
dles alternating and nested program (〈satellite〉) and temporal modalities (� and ♦).
The focus of this paper is to create a semantics and a proof calculus for dTL2.

There are three main contributions to this paper. First, we show how to correctly
handle the alternating cases of a universal dynamic modality followed by an existential
temporal modality, and its dual an existential dynamic modality followed by a universal
temporal modality. This solves an open problem identified in 2001 [1] and identified as
a problem for hybrid systems in 2007 [14], [16, chapter 4]. Second, we offer a treatment
where programs are not duplicated by proof rules, solving another open problem formu-
lated in [14], [16, chapter 4]. This is significant for proving hybrid systems in practice,
because previous approaches led to a duplication of proof effort, once for intermedi-
ate and once for final states. Third and finally, we extend the logic to nested temporal
quantifiers, show that all formulas of interest are equivalent to formulas containing at
most two quantifiers — thus the name dTL2 — by identifying the resemblance to modal
system S4.2, and develop a logic and proof calculus for the new temporal formulas.

The paper is organized as follows. After presenting the syntax and semantics of
Differential Temporal Dynamic Logic dTL2 in Section 2, we show how to normalize
trace formulas and how to axiomatize dTL2 in Section 3. We study alternative proof
systems in Section 4 and related work in Section 5, before concluding in Section 6.
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2 Differential Temporal Dynamic Logic dTL2

This section defines the syntax and semantics of hybrid programs and trace formulas
formally. The development mostly follows and extends previous work on differential
temporal dynamic logic [14], [16, chapter 4]; we explicitly point out differences and
extensions from the previous work.

2.1 Hybrid Programs

We use hybrid programs (HP) [15,17], [16, chapter 2] α, β to model hybrid systems.
Syntactically, hybrid programs can be atomic hybrid programs or compound hybrid pro-
grams. Atomic hybrid programs can be discrete jump assignments (x := θ), tests (?χ)
and differential equations evolving within an evolution domain constraint χ— meaning
that the system can evolve following a solution of the differential equation as long as χ
remains true (x′ = θ & χ). Terms θ are polynomials with rational coefficients, and con-
ditions χ are first-order formulas of real arithmetic.1 Compound hybrid programs are
nondeterministic choice (α ∪ β), sequential composition (α;β) and nondeterministic
finite repetition (α∗):

α, β ::= x := θ | ?χ | x′ = θ & χ | α ∪ β | α;β | α∗

The trace semantics of hybrid programs assigns to each program α a set of traces
τ(α). The set of states Sta is the set of (total) functions from variables to the reals R. In
addition, we consider a separate stateΛ (not in Sta) denoting a failure of the system. For
v ∈ Sta or v = Λ, we denote by v̂ the function σ : {0} → {v}, 0 7→ v, defined only on
the singleton interval [0, 0]. A trace is a (nonempty) finite sequence σ = (σ0, σ1, ..., σn)
of functions σi. For 0 ≤ i < n, the piece σi is a function σi : [0, ri] → Sta, where
ri ≥ 0 is the duration of this step. For i = n, the piece σn is either a function:

– σn : [0, ri]→ Sta; we then say that σ is a terminating trace; or
– σn : [0,+∞)→ Sta; we then say that σ is an infinite trace; or
– σn : {0} → {Λ}, 0 7→ Λ, for n ≥ 1;2 we then say that σ is an error trace.

We often collectively refer to infinite and error traces as nonterminating; thus when we
refer to terminating traces, we only refer to those traces that terminate but not with an
error state Λ. We write Tra for the set of all traces. A position of σ is a pair (i, ζ) with
0 ≤ i ≤ n and ζ in the domain of definition of σi; the state of σ at (i, ζ) is σi(ζ). For
any trace σ, we denote by first σ the state σ0(0); we informally say that “σ starts with
v” to say that v = first σ. If σ = (σ0, . . . , σn) terminates (and only in that case), we
also denote by last σ the state σn(rn); when σ does not terminate, last σ is undefined.
We denote by val(v, θ) the value of term θ in state v, and by v[x 7→ r] the valuation
assigning variable x to r ∈ R and matching with v on all other variables. We also write
v � χ if state v satisfies condition χ, and v 6� χ otherwise.

1 using first-order formulas or real arithmetic results in a poor-test version of the logic. Our
results generalize to a rich-test version, where a condition χ is instead defined as any formula
φ of dTL2 (see Section 2.2).

2 We impose n ≥ 1 so that (Λ̂) is not considered a trace
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Given two traces σ = (σ0, . . . , σn) and ρ = (ρ0, . . . , ρm), we say that ρ is a prefix
of σ if it describes the trace σ truncated at some position. Formally, ρ is a prefix of σ if
and only if ρ = σ — a condition ensuring that nonterminating traces are also suffixes
of themselves — or there exists a position (i, ζ) of σ such that:

– traces (σ0, . . . , σi−1) and (ρ0, . . . , ρm−1) are identical.3 In particular this imposes
that i = m; and

– the domain of definition of ρm is exactly [0, ζ] and is included in the domain of
definition of σm, and for all d ∈ [0, ζ], σm(d) = ρm(d).

Symmetrically, we say that ρ is a suffix of σ if it starts at some position of σ then follows
σ. Formally, ρ is a suffix of σ if and only if there exists a position (i, ζ) of σ such that:

– if σi has domain of definition [0, ri], then the domain of definition of ρ0 is exactly
[0, ri − ζ] and for all d ∈ [ζ, ri], σi(d) = ρ0(d − ζ); and in the case where σi has
domain of definition [0,+∞), the domain of definition of ρ0 is also [0,+∞) and
for all d ∈ [ζ,+∞), σi(d) = ρ0(d− ζ); and

– (σi+1, . . . , σn) and (ρ1, . . . , ρm) are identical, which imposes that n− i = m.

Definition 1 (Trace Semantics of Hybrid Programs). The trace semantics τ(α) ⊆
2Tra of a hybrid program α is then defined inductively as follows:

– τ(x := θ) = {(v̂, ŵ) | w = v[x 7→ val(v, θ)]};
– τ(x′ = θ & χ) = {(σ) : σ is a state flow of order 1 [15] defined on [0, r] or
[0,+∞) solution of x′ = θ, and for all t in its domain of definition, σ(t) � χ}
∪ {(v̂, Λ̂) : v 6� χ};4

– τ(?χ) = {(v̂) : v � χ} ∪ {(v̂, Λ̂) : v 6� χ};
– τ(α ∪ β) = τ(α) ∪ τ(β);
– τ(α;β) = {σ ◦ ρ : σ ∈ τ(α), ρ ∈ τ(β) when σ ◦ ρ is defined};

where the composition σ ◦ ρ of σ = (σ0, . . . , σn) and ρ = (ρ0, . . . , ρm) is
• σ ◦ ρ = (σ0, . . . , σn, ρ0, . . . , ρm) if σ terminates and last σ = first ρ (since σ

terminates, last σ is well-defined);
• σ if σ does not terminate;
• undefined otherwise;

– τ(α∗) =
⋃
n∈N τ(α

n), where α0 is defined as ?true, α1 is defined as α and αn+1

is defined as αn;α for n ≥ 1.

An important property of this trace semantics is that for all programs α and states
v, there exists a trace σ of α starting with v (even if it might be an error trace). This
property will be key to proving the soundness of assignment rules.

Aside from the correction on τ(x′ = θ & χ), this definition is slightly different from
[14], [16, chapter 4] in two ways: these previous papers also consider infinite sequences
σ = (σ0, σ1, . . .), but infinite sequences are not part of the semantics of any program;
and these papers do not consider infinite traces in the semantics. Still, we can prove
that the interpretation of trace formulas (Section 2.2) is the same on the subset of trace
formulas they consider.

3 if i = m = 0, (σ0, . . . , σi−1) and (ρ0, . . . , ρm−1) are empty and thus not formally traces, but
we still consider the condition fulfilled.

4 this case is corrected from [14], [16, chapter 4], which wrongly forget the error traces of
ordinary differential equations — when χ is initially false.
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2.2 State and Trace Formulas

To reason about hybrid programs, we use state formulas and trace formulas. State for-
mulas express properties about states, while trace formulas express properties about
traces; their definitions are mutually inductive. A state formula φ, ψ can be a compar-
ison of terms (θ1 ≥ θ2); a negation of a state formula (¬φ); a conjunction (φ ∧ ψ) or
a disjunction (φ ∨ ψ) of state formulas; a universally quantified (∀x φ) or existentially
quantified (∃x φ) state formula — quantification of a variable x is over the set of reals
R. Finally, a state formula can also be a program necessity ([α]π) — expressing that all
traces of hybrid program α starting at the current state satisfy trace formula π — or its
dual, a program possibility (〈α〉π) — expressing that there is a trace of α starting at the
current state satisfying trace formula π.

A trace formula π can be a state formula (φ); a negation of a trace formula (¬π);
a temporal necessity of a trace formula (�π) — expressing that every suffix of the
current trace satisfies π — or its dual, a temporal possibility of a trace formula (♦π) —
expressing that there is a suffix of the current trace satisfying π. The syntax of state and
trace formulas is thus given by:

φ, ψ ::= θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀x φ | ∃x φ | [α]π | 〈α〉π
π ::= φ | ¬π | �π | ♦π

Additionally, as in classical logic, the implication φ → ψ is defined as ¬φ ∨ ψ. When
a trace formula also happens to be a state formula φ, the formula ¬φ means the same
whether it is seen as a state or trace formula; in the rest of the paper we collude the two.
We are now ready to define satisfaction of state and trace formulas.

Definition 2 (Satisfaction of dTL2 Formulas). For state formulas, we write v � φ
to say that state v ∈ Sta satisfies state formula φ. Satisfaction of state formulas with
respect to a state v is defined inductively as follows:

– v � θ1 ≥ θ2 if and only if val(v, θ1) ≥ val(v, θ2)
– v � ¬φ if and only if v � φ does not hold.
– v � φ ∧ ψ if and only if v � φ and v � ψ.
– v � φ ∨ ψ if and only if v � φ or v � ψ.
– v � ∀xφ if and only if v[x 7→ d] � φ holds for all d ∈ R.
– v � ∃xφ if and only if v[x 7→ d] � φ holds for some d ∈ R.
– for φ a state formula, v � [α]φ if and only if for each trace σ ∈ τ(α) that starts in

first σ = v, if σ terminates, then last σ � φ.
– for φ a state formula, v � 〈α〉φ if and only if there is a trace σ ∈ τ(α) starting in

first σ = v such that σ terminates and last σ � φ.
– If π is not a state formula, v � [α]π if and only σ � π for each trace σ ∈ τ(α) that

starts in first σ = v.
– If π is not a state formula, v � 〈α〉π if and only σ � π for some trace σ ∈ τ(α)

that starts in first σ = v.

For trace formulas, we write σ � π to say that trace σ ∈ Tra satisfies trace formula π.
Satisfaction of trace formulas with respect to a trace σ is defined inductively as follows:
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– σ � φ if and only if first σ � φ.
– σ � ¬π if and only if σ � π does not hold.
– σ � �π if and only if ρ � π holds for all suffixes ρ of σ that are different from (Λ̂).
– σ � ♦π if and only if ρ � π holds for some suffix ρ of σ that is different from (Λ̂).

This definition follows the intuition given when presenting the syntax of state and trace
formulas, except for one point. Note that in the definitions of σ � �π and σ � ♦π,
the suffix ρ of σ does not have to be proper, and we can have ρ = σ. When seen as a
trace formula, a state formula φ can express a property on a trace σ. We then say that
σ satisfies φ if and only if the first state of σ satisfies φ (condition first σ � φ in the
definition of σ � φ). However, there is an exception to this definition: when φ appears
directly after a program necessity (as in [α]φ) or a program possibility (as in 〈α〉φ), φ
only refers to terminating traces, and we say that σ satisfies φ if and only if the last state
of σ satisfies φ (condition σ � last φ in the definitions of σ � 〈α〉φ and σ � [α]φ). This
discontinuity in the definition of the satisfaction of φ enables following both the usual
semantics of dynamic logic and of temporal logic, and was also adopted in previous
work [7,14], [16, chapter 4]. It is also useful for proof rules as temporal properties often
reduce to what happens after a program.

The syntax of dTL2 formulas extends the syntax of trace formulas given in [14],
[16, chapter 4] by allowing nesting of temporal modalities, and otherwise agrees with
it. The satisfaction of dTL2 formulas given in Def. 2, although presented in a slightly
different way, agrees with the definitions given in [14], [16, chapter 4] on trace formulas
without nested temporal modalities.

3 Proof Calculus

3.1 Equivalence of Trace Formulas

Trace formulas follow the axioms of modal system S4.2 [9], therefore there are only
four proper affirmative modalities �φ, ♦φ, �♦φ or ♦�φ. Intuitively, because formulas
¬�π and ♦¬π are equivalent — in the sense that they are satisfied by the same traces —
formulas can always be expressed in a way where only state formulas have negations.
Similarly, formulas �π and ��π are equivalent, therefore a trace formula containing
exclusively � temporalities followed by a state formula φ is equivalent to �φ. More-
over, a formula containing both � and ♦ temporalities, finishing by a ♦ temporality
followed by a state formula φ is equivalent to �♦φ. Similar properties are true for their
duals. This is formalized by the following lemma, proved in [10].

Lemma 1 (Equivalence of Trace Formulas). For any trace formula π1, there exists a
trace formula π2 of the form φ, �φ, ♦φ, �♦φ or ♦�φ such that σ � π1 if and only if
σ � π2. Such a π2 can be computed from π1 in linear time in the number of temporal
modalities and negations in π1.

Remark 1. Lemma 1 tells us that the only interesting trace formulas of our system are
those of the form φ, �φ, ♦φ, �♦φ and ♦�φ. For any trace σ, the intuitive meaning
of σ � π for π of the form φ, �φ or ♦φ is clear: we have σ � φ if and only if σ
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starts in a state satisfying φ; we have σ � �φ if and only if all non-error states of
the trace σ satisfy φ; and we have σ � ♦φ if and only if there is a non-error state of
trace σ satisfying φ. When π is of the form �♦φ and ♦�φ, we get a better intuition by
distinguishing cases:

– if σ is a terminating trace, σ � ♦�φ if and only if last σ � φ, and σ � �♦φ if and
only if last σ � φ as well;

– if σ is an error trace, σ can be written (σ0, . . . , σn−1, Λ̂). Let ρ = (σ0, . . . , σn−1),
then ρ is a terminating trace and a prefix of σ. Moreover, both σ � ♦�φ and
σ � �♦φ are equivalent to last ρ � φ;

– if σ is an infinite trace, σ � ♦�φ holds if and only if φ holds on all states of σ after
some position, and σ � �♦φ holds if and only if any state of σ has a later state
satisfying φ (if we did not have continuous dynamics, this would be the same as φ
being true infinitely often along σ; but here it is not sufficient).

3.2 Normalization of Trace Formulas

The primary goal of this paper is to establish a proof system for differential temporal
dynamic logic dTL2. As for dL and dTL, rules typically decompose programs syntac-
tically. Let us look at the state formula 〈α;β〉�φ, and to simplify, let us only consider
terminating traces for now. Intuitively, this formula says that there exists a trace in
τ(α;β) throughout which φ holds. Considering only terminating traces, this is true as
long as there exists a trace σ of α throughout which φ is true, and a trace ρ of β starting
at last σ throughout which φ is also true. It is thus tempting to write the following rule:

〈α〉�φ ∧ 〈α〉〈β〉�φ
〈α;β〉�φ

(unsound)

This rule is unsound because α is possibly nondeterministic. Its premise says that there
is a trace σ of α throughout which φ is true, and a trace σ′ of α followed by a trace ρ of
β throughout which φ is true. But σ and σ′ do not have to be the same trace; the trick
is that φ is not necessarily true throughout σ′. To fix this rule, we need to express that
traces σ and σ′ are the same, thus writing a premise resembling:

〈α〉(�φ ∧ 〈β〉�φ) (1)

Unfortunately, this is not directly expressible with dTL2, without using the program
α;β again: the missing piece is the expressibility of a conjunction on traces that simul-
taneously talks about temporal properties like �φ and properties true at the end of the
trace. To achieve this expressibility, we extend the logic with normalized trace formulas
to make conjunction of temporal formulas expressible as needed in (1).

A normalized trace formula ξ can be of different forms: for terminating traces, the
formula φu�ψ captures the conjunction of ending in a state satisfying φ, and satisfying
�ψ; and the formula φ t ♦ψ captures the disjunction of ending in a state satisfying φ,
or satisfying ♦ψ. For nonterminating traces, φ u�ψ is the same as �ψ, and φ t ♦ψ is
the same as ♦ψ, because there is no terminal state in which it makes sense to evaluate φ.
Additionally, the formula φ��♦ψ captures ending in a state satisfying φ if terminating,
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and satisfying �♦ψ otherwise; and similarly, the formula φ� ♦�ψ captures ending in
a state satisfying φ if terminating, and satisfying ♦�ψ otherwise.

Formulas φ� ♦�ψ and φ��♦ψ play the same role for formulas ♦�ψ and �♦ψ
as formulas φ u�ψ and φ t ♦ψ play for formulas �ψ and ♦ψ: they allow us to define
premises of modular inference rules for sequential composition as in (1). Like standard
trace formulas, normalized trace formulas can appear after a program necessity [α] or a
program possibility 〈α〉. We therefore extend state formulas to accept normalized trace
formulas, and define normalized trace formulas as:

φ, ψ ::= . . . | [α]ξ | 〈α〉ξ
ξ ::= φ u�ψ | φ t ♦ψ | φ��♦ψ | φ� ♦�ψ

Sometimes we will also use the notation φ � π, with the understanding that in such
cases π can only be of the form �♦ψ or ♦�ψ.

Coming back to our example, a sound rule for 〈α;β〉�φ can be expressed as:

〈α〉(〈β〉�φ u�φ)
〈α;β〉�φ

(〈;〉�)

In the form of its dual [;]♦, this rule will be discussed later and proved sound in [10].
Observe how 〈;〉� does not even duplicate α and β.

Extending Def. 2, the satisfaction of trace formulas [α]ξ and 〈α〉ξ is defined in the
same way as trace formulas [α]π and 〈α〉π (if π is not a state formula):

– v � [α]ξ if and only σ � ξ for each trace σ ∈ τ(α) that starts in first σ = v.
– v � 〈α〉ξ if and only σ � ξ for some trace σ ∈ τ(α) that starts in first σ = v.

Satisfaction of normalized trace formulas carefully distinguishes between terminating
and nonterminating traces, and is defined as follows.

Definition 3 (Semantics of Normalized dTL2 Trace Formulas). For normalized trace
formulas, we write σ � ξ to say that trace σ satisfies normalized state formula ξ. Satis-
faction of normalized trace formulas with respect to a trace σ is defined inductively:

σ � φ t ♦ψ if and only if
{

last σ � φ or σ � ♦ψ
σ � ♦ψ

if σ terminates
otherwise

σ � φ u�ψ if and only if
{

last σ � φ and σ � �ψ
σ � �ψ

if σ terminates
otherwise

σ � φ� π if and only if
{

last σ � φ
σ � π

if σ terminates
otherwise

Not only can normalized trace formulas help express rules like 〈;〉�, they can also,
along with state formulas, express all possible trace formulas. In Lemma 1, we have
shown how to express any trace formula in the form φ, �φ, ♦φ, �♦φ or ♦�φ. Building
on this result, we now show how to normalize every trace formula into a state formula
or a normalized trace formula. To this effect, we define a relation ; between the set
of state formulas and trace formulas, and the set of state formulas and normalized trace
formulas. This simplifies the axiomatization of dTL2 by allowing us to only consider
cases containing normalized trace formulas.



300 Jean-Baptiste Jeannin and André Platzer

�φ; true u�φ (;u) ♦φ; false t ♦φ (;t)
�♦φ; φ��♦φ (;��) ♦�φ; φ� ♦�φ (;�♦)

φ; φ (;φ)
π1 ∼ π2 π2 ; ξ

π1 ; ξ
(∼;)

Fig. 1. Normalization rules for trace formulas
The normalization is sound, meaning that two related formulas are satisfied by the

same trace. Additionally, every trace formula is related to either a state formula or a
normalized trace formula, which can be found in linear time.

Lemma 2 (Soundness of Normalization). If π ; ξ then for all traces σ, σ � π if and
only if σ � ξ.

Proof. Soundness of ; φ is trivial. Soundness of proof rules ; u, ; t, ;�� and
;�♦ is true by Def. 3, keeping in mind the intuition given in Remark 1. Soundness of
proof rule ∼; is by induction and using Lemma 1. ut

Lemma 3 (Existence of a Normalized Form). For any trace formula π there exists a
state formula φ such that π ; φ, or a normalized trace formula ξ such that π ; ξ.
Such a φ or ξ can be computed from π in linear time.

Proof. This lemma is a direct consequence of Lemma 1, using the identities of Fig. 1.
Unless π is itself a state formula φ, it is related to a normalized trace formula ξ. ut

Lemma 3 concludes our study of normalized forms. Since every trace formula is
related (and thus semantically equivalent by Lemma 2) to a state formula or a normal-
ized trace formula, we can limit our axiomatization to the study of state formulas and
normalized trace formulas. Formulas of the form [α]φ or 〈α〉φ involving state formulas
have already been axiomatized in dL [15,17], [16, chapter 2]. The rest of this paper
focuses on axiomatizing formulas of the form [α]ξ or 〈α〉ξ involving normalized trace
formulas. In [10], we come back to trace formulas to study a direct treatment of proof
rules for state formulas of the form [α]π and 〈α〉π in order to make the system more
efficient.

3.3 Proof Calculus for dTL2

In this section we present a proof calculus for dTL2 for verifying temporal properties of
hybrid programs specified in the differential temporal dynamic logic dTL2. The basic
idea of the proof calculus is symbolic decomposition. The calculus progressively trans-
forms formulas to simpler formulas, often by inductively decomposing programs that
are in program modalities. In particular, the temporal rules progressively transform tem-
poral formulas to temporal-free formulas, in order to leverage the nontemporal rules of
dL. The proof system inherits its nontemporal rules from the dL proof system [15,17],
[16, chapter 2], and adds its own temporal rules. As is the case for dL, the basis of our
proof system is real arithmetic, and we integrate it as in dL [15,17], [16, chapter 2].
We first present how to use the rules, then a brief overview on the inherited nontem-
poral rules from dL, and finally a detailed account of the new temporal rules of dTL2,
summarized in Fig. 2.
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Usage of the Rules. Rules are to be used in the same way as in the dL calculus. We do,
however, use a new double bar notation by writing some rules in the form

φ

ψ

This notation denotes equivalence of the premise and its conclusion. This means that
there exists a dual rule, hence the two following rules are true

φ

ψ

¬φ
¬ψ

For space reasons we do not list dual rules explicitly but give them in [10].

Inherited Nontemporal Rules. On top of the temporal rules presented in Fig. 2, the proof
calculus of dTL2 also inherits the rules of the proof calculus of dL. Since the seman-
tics of dTL2 conservatively extends the semantics of dTL, which itself conservatively
extends the semantics of dL [14], [16, chapter 4], it is sound to inherit the dL calculus.
While we inherit the nontemporal rules of dL, we do not inherit — but rather reformu-
late with normalized trace formulas — the temporal rules of dTL [14], [16, chapter 4],
thus enabling more efficient proofs by exploiting normalized trace formulas.

Temporal Rules. The temporal rules of the proof calculus of dTL2 are presented in
Fig. 2, in which they are grouped by program construct. Rules [ ]; and 〈 〉; lift trace
formula normalization to program modalities. Rule [∪]ξ for nondeterministic choice
easily extends corresponding rule [∪] of dL, and assignment rules behave as expected,
largely because assignments always terminate.

The sequential composition rules exhibit how nicely the normalized formula interact
with sequential composition; remember that sequential composition is one of the main
technical difficulties of a calculus handling alternating program and temporal modali-
ties. Normalized trace formulas were designed for these rules, and particular care was
taken in considering nonterminating traces. Rule [;]u expresses that all traces of the
composition of two programs α and β satisfies φ u �ψ if and only if all traces of α
satisfy �ψ, and for terminating traces of α, if all following traces of β satisfy φ u�ψ.
In particular, this rule improves on the corresponding rule [;]� of dTL by not duplicat-
ing program modality [β], thus eliminating proofs that are exponential in the number
of sequential compositions. Rule [;]t is the main rule for alternating program and tem-
poral modalities in the context of sequential composition. It expresses that all traces of
the composition of two programs α and β satisfies φ u ♦ψ if and only if all traces of α
either satisfy ♦ψ, or are terminating and followed only by traces of β satisfying φt♦ψ.
Finally, rule [;]� similarly handles sequential compositions followed by a � operator.

For the test rules, let us remember that a test trace terminates only if the test passes,
and is otherwise an error trace. Any trace of test ?χ satisfies φ u �ψ if and only if
its initial state satisfies φ ∧ ψ when it terminates, or satisfies just ψ when it doesn’t
terminate; this can be summarized as (¬χ∨ φ)∧ψ as in rule [?]u. Rule [?]t is similar.
Any trace of test ?χ satisfies φ � ♦�ψ if and only if it terminates and its initial state
satisfied φ, or it doesn’t terminate and its initial state satisfied ψ; this can be summarized
as (χ ∧ φ) ∨ (¬χ ∧ ψ) as in rule [?]� ♦. Rule [?]�� is similar.
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Normalization of Trace Formulas π ; ξ [α]ξ

[α]π
([ ];)

π ; ξ 〈α〉ξ
〈α〉π (〈 〉;)

Sequential Composition

[α]([β](φ u�ψ) u�ψ)

[α;β](φ u�ψ)
([;]u)

[α]([β](φ t ♦ψ) t ♦ψ)

[α;β](φ t ♦ψ)
([;]t)

[α]([β](φ� π)� π)
[α;β](φ� π)

([;]�)

Nondeterministic Choice

[α]ξ ∧ [β]ξ

[α ∪ β]ξ
([∪]ξ)

Test (¬χ ∨ φ) ∧ ψ
[?χ](φ u�ψ)

([?]u)
(χ ∧ φ) ∨ (¬χ ∧ ψ)
[?χ](φ� ♦�ψ)

([?]�♦)

(χ ∧ φ) ∨ ψ
[?χ](φ t ♦ψ)

([?]t)
(χ ∧ φ) ∨ (¬χ ∧ ψ)
[?χ](φ��♦ψ)

([?]��)

Assignment

ψ ∧ [x := θ](φ ∧ ψ)
[x := θ](φ u�ψ)

([:=]u)
ψ ∨ [x := θ](φ ∨ ψ)
[x := θ](φ t ♦ψ)

([:=]t)
[x := θ]φ

[x := θ](φ� π)
([:=]�)

Ordinary Differential Equation ψ ∧ [x′ = θ & χ](φ ∧ ψ)
[x′ = θ & χ](φ u�ψ)

(
[′]u

)
(χ ∨ ψ) ∧ [x′ = θ & (χ ∧ ¬ψ)]φ ∧ 〈x′ = θ〉(¬χ ∨ ψ)

[x′ = θ & χ](φ t ♦ψ)

(
[′]t

)
(χ ∨ ψ) ∧ [x′ = θ & χ]φ ∧ (〈x′ = θ〉(¬χ) ∨ 〈x′ = θ〉[x′ = θ]ψ)

[x′ = θ & χ](φ� ♦�ψ)

(
[′]�♦

)
(χ ∨ ψ) ∧ [x′ = θ & χ]φ ∧ (〈x′ = θ〉(¬χ) ∨ [x′ = θ]〈x′ = θ〉ψ)

[x′ = θ & χ](φ��♦ψ)

(
[′]��

)
Repetition φ ∧ [α∗][α](φ u�ψ)

[α∗](φ u�ψ)
([∗]u)

ψ ∨ (φ ∧ [α;α∗](φ t ♦ψ))

[α∗](φ t ♦ψ)
([∗n]t)

∀α(φ→ [α](φ t ♦ψ))
φ→ [α∗](φ t ♦ψ)

(indt)
φ ∧ [α∗][α](φ� π)

[α∗](φ� π)
([∗]�)

∀α∀r > 0 (ϕ(r)→ 〈α〉(ϕ(r − 1) u�ψ))
(∃r ϕ(r)) ∧ ψ → 〈α∗〉((∃r ≤ 0 ϕ(r)) u�ψ)

(conu)

Fig. 2. Rule schemata of the proof calculus for dTL2

Ordinary differential equations have terminating traces, but also infinite and error
traces. Additionally, the execution can exit a differential equation at any moment, even
if the evolution constraint domain it still verified; thus formulas like [x′ = θ & χ]φ and
[x′ = θ & χ]�φ are equivalent in a state satisfying χ. Rules for ordinary differential
equations transform formulas into temporal-free formulas, on which the dL proof cal-
culus and in particular differential invariants can be used. In rule [′]u, the first conjunct
ψ is necessary to handle error traces, when χ is initially false. In rule [′]t, the first
conjunct χ ∨ ψ expresses that the differential equation can evolve or has satisfied ♦ψ
initially. The second conjunct handles traces that never satisfy ψ and thus have to satisfy
φ, and the third conjunct makes sure there is either no infinite trace (〈x′ = θ〉¬χ), or
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that such an infinite trace satisfies ♦ψ (condition 〈x′ = θ〉ψ, equivalent to 〈x′ = θ〉♦ψ).
The first conjunct of rule [′] � ♦ again handles error traces as in rule [′]t. The second
conjunct ensures all terminating traces finish in a state satisfying φ, and its third con-
junct handles infinite traces by making sure they don’t exist (〈x′ = θ〉¬χ) or that they
satisfy ♦�ψ (condition 〈x′ = θ〉[x′ = θ]ψ). Rule [′]�� is similar.

In some way, repetition rules are easier because as long as a repetition only repeats a
terminating trace, it is itself terminating. Rules [∗]u and [∗]� are particularly satisfying
because their premise no longer contains a temporal property of a loop, but only a non-
temporal postcondition of a loop, which is thus provable by ordinary, non-temporal
induction. Only the postcondition still has a temporal property but no more loops. That
is, these rules reduce temporal properties of loops to nontemporal properties of loops,
or more complicated temporal properties on a program without the loop. In rule [∗]u,
the first disjunct expresses that ♦ψ holds without repeating if ψ holds initially. The
first conjunct φ of the second disjunct is necessary when α repeats zero times; while
the second conjunct executes α any number of times n, then checks that the (n + 1)-
st execution of α also satisfies φ u �ψ. The treatment of rule [∗]� is similar. Rule
[∗n] is less satisfying because it leaves an α∗ inside a program modality followed by a
normalized trace formula. If ψ is true then the conclusion trivially holds; otherwise the
rule relies on the fact that α∗ is equivalent to ?true ∪ α;α∗ and just unwinds the loop
once. Program α;α∗ in the modality could as well be the equivalent α∗;α. The same
thing is not true for rule [∗]u, where [α∗][α](φ u �φ) ensures progress of the proof,
while writing [α][α∗](φu�φ) would not. Rules indt and conu extend induction (ind)
and convergence (con) rules of dL to normalized trace formulas. As in dL, they are
not equivalences; and also as in dL, they use the notation ∀α, which quantifies over all
variables possibly assigned by α in assignments or differential equations. Rule indt
shows that φ is inductive with exit clause ♦ψ, i.e., φ holds after all traces of α from
any state where φ holds, except when exit condition ψ was true at some point during
that trace. If ψ was true initially, rule [∗n] applies instead. Rule conu proves that ϕ is
a variant of some trace of α (i.e., its level r decreases) during which ψ always holds
true. Then starting from some initial r (assumption of conclusion), an r for which ϕ(r)
holds will ultimately be ≤0 without having violated when repeating α∗ often enough.

3.4 Meta-Results

Soundness. The following result shows that verification with the dTL2 calculus always
produces correct results about the temporal behavior of hybrid systems, i.e., the dTL2

calculus presented in Fig. 2 is sound. Theorem 1 is proved in [10].

Theorem 1 (Soundness of dTL2). The dTL2 calculus presented in Fig. 2 is sound, i.e.,
derivable state formulas are valid, i.e., valid in every state.

Incompleteness of dTL2. In [15,17], [16, chapter 2] it was shown that the discrete and
continuous fragments of dL are non-axiomatizable. An extension of dL, the logic dTL is
also non-axiomatizable [14], [16, chapter 4]. Since dTL2 is a conservative extension of
both dL and dTL, those results lift to dTL2. Therefore the discrete and continuous frag-
ments of dTL2, even if only containing nontemporal formulas are non-axiomatizable.
In particular dTL2 is non-axiomatizable.
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Relative Completeness for Star-Free Expressions. We now show how to lift the relative
completeness result of dL [15,17], [16, chapter 2] to dTL2; this completeness result is
relative to first order logic of differential equations (FOD), i.e., first-order real arithmetic
augmented with formulas expressing properties of differential equations [15,17], [16,
chapter 2].

Theorem 2 (Relative completeness for star-free expressions). The dTL2 calculus re-
stricted to ∗-free programs is complete relative to FOD, i.e., every valid dTL2 formula
with only star-free programs can be derived from FOD tautologies.

Theorem 2 is proved in [10]. We conjecture that the proof system of dTL2 is also rela-
tively complete relative to FOD for all expressions, including repetitions.

4 Alternative Proof Systems

Normalizing all temporal formulas before applying the rules of Fig. 2 can sometimes
result in longer proofs than necessary. In [10] we study a proof system directly handling
(non-normalized) trace formulas. This extended proof system alleviates the need for
normalizing all trace formulas, and is thus more efficient.

Another alternative, that we also study in [10], is to suppress all the [ ]u rules of
Fig. 2 (rules [; ]u, [?]u, [:=]u, [′]u and [∗]u) and replace them by rules directly handling
formulas of the form [α]�φ, and the following rule:

[α]φ ∧ [α]�ψ

[α](φ u�ψ)
([ ]u)

This results in a simpler system, because some of the rules are less complicated. How-
ever the system is not as efficient, because it duplicates the symbolic execution of α.

5 Related Work

In this section we study work related specifically to temporal reasoning of hybrid sys-
tems. For a more general account of previous work on verification of hybrid systems
we refer to [15,17], [16, chapter 2].

This paper is based on work by Platzer introducing a temporal dynamic logic for
hybrid systems [14], extending previous work by Beckert and Schlager [1] to hybrid
programs. Both papers present a relatively complete calculus; however Beckert and
Schlager only consider discrete state spaces, and only study temporal formulas of the
form [α]�φ and its dual 〈α〉♦φ, leaving out any mixed cases alternating program and
temporal modalities [α]♦φ or [α]�♦φ. Platzer proposes to handle mixed cases by non-
local program transformation, but does not show how to handle them compositionally.

Process logic [7,12,13,20] initially used temporal logic [6,19] in the context of dy-
namic logic [8] to reason about temporal behavior of programs. It is well studied, but
limited to discrete programs. It also only considers an abstract notion of atomic pro-
gram, without explicitly considering assignments and tests.
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Davoren and Nerode [5] study hybrid systems and their topological aspects in the
context of the propositional modal µ-calculus. Davoren, Coulthard, Markey and Moor [4]
also give a semantics in general flow systems for a generalization of CTL∗. In both [5]
and [4], the authors provide Hilbert-style calculi to prove formulas of their systems, but
in a propositional — not first-order — system, without specific proof rules to handle or-
dinary differential equations. Zhou, Ravn and Hansen [21] present a duration calculus
extended by mathematical expressions with derivatives of state variables. Their system
requires external mathematical reasoning about derivatives and continuity.

Other authors have studied temporal properties of hybrid systems in the context
of model checking. Mysore, Piazza and Mishra [11] study model checking of semi-
algebraic hybrid systems for TCTL (Timed Computation Tree Logic) properties and
prove undecidability. They do bounded model checking for differential equations with
polynomial solutions only, while we handle more general polynomial differential equa-
tions and unbounded safety verification. Additionally TCTL does not allow nesting of
temporal modalities as we do. Cimatti, Roveri and Tonetta [3] present HRELTL, a lin-
ear temporal logic with regular expressions for hybrid traces. Their work is inspired
by requirements validation for the European Train Control System, and uses bounded
model checking and satisfiability modulo theory. More recently, Bresolin [2] develops
HyLTL, a temporal logic for model checking hybrid systems, and shows how to solve
the model checking problem by translating formulas into equivalent hybrid automata.

6 Conclusion and Future Work

In this paper we have presented a proof calculus for dTL2, extending dTL by allowing
nesting of temporal modalities. We showed proof rules for handling compositionally
alternating program and temporal modalities, solving an open problem formulated in
2001 [1] and identified as a problem for hybrid systems in 2007 [14], [16, chapter 4].
We also offered a treatment where programs are not duplicated by proof rules, solving
another open problem formulated by [14], [16, chapter 4]. We showed that the system
is relatively complete with respect to FOD for ∗-free hybrid programs. The treatment of
infinite traces is crucial to make the logic interesting, as temporal properties on termi-
nating and error traces simplify greatly (Remark 1).

Future work includes proving our conjecture that the system is relatively complete
with respect to FOD for all expressions; extending the semantics and the proof system
to allow repetition — and not just differential equations — to create infinite traces; and
implementing our proof rules in a tool such as KeYmaera [18].

A number of extensions to dTL2 should be explored, such as inclusion of the tem-
poral Until operator, or nested conjunctions and disjunctions inside temporal formulas.
Some of these extensions can be handled by program transformations [14], [16, chapter
4], but a compositional proof system such as the one presented here would be more
interesting. The proof system of dTL2 is an important step towards a more general sys-
tem dTL∗, extending dTL2 with formulas of CTL∗, and expressing formulas such as
[α]�(♦φ ∧ ψ). We would like to develop a semantics and a proof system for dTL∗.
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