
Uniform Substitution for
Differential Game Logic?

André Platzer

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
aplatzer@cs.cmu.edu

Abstract. This paper presents a uniform substitution calculus for dif-
ferential game logic (dGL). Church’s uniform substitutions substitute a
term or formula for a function or predicate symbol everywhere. After
generalizing them to differential game logic and allowing for the substi-
tution of hybrid games for game symbols, uniform substitutions make it
possible to only use axioms instead of axiom schemata, thereby substan-
tially simplifying implementations. Instead of subtle schema variables
and soundness-critical side conditions on the occurrence patterns of logi-
cal variables to restrict infinitely many axiom schema instances to sound
ones, the resulting axiomatization adopts only a finite number of ordinary
dGL formulas as axioms, which uniform substitutions instantiate soundly.
This paper proves soundness and completeness of uniform substitutions
for the monotone modal logic dGL. The resulting axiomatization admits
a straightforward modular implementation of dGL in theorem provers.

1 Introduction

Church’s uniform substitution is a classical proof rule for first-order logic [2,
§35/40]. Uniform substitutions uniformly instantiate function and predicate sym-
bols with terms and formulas, respectively, as functions of their arguments. If φ
is valid, then so is any admissible instance σφ for any uniform substitution σ:

(US)
φ

σφ

Uniform substitution σ = {p(·) 7→ x+·2 ≥ ·}, e.g. turns φ ≡ (p(4y)→∃y p(x2+y))
into σφ ≡ (x+ (4y)2 ≥ 4y → ∃y x+ (x2 + y)2 ≥ x2 + y). The introduction of x
is sound, but introducing variable y via σ = {p(·) 7→ y + ·2 ≥ ·} would not be.
The occurrence of the variable y of the argument x2+y that was already present
previously, however, can correctly continue to be used in the instantiation.

Differential game logic (dGL), which is the specification and verification logic
for hybrid games [5], originally adopted uniform substitution for predicates, be-
cause they streamline and simplify completeness proofs. A subsequent inves-
tigation of uniform substitutions for differential dynamic logic (dL) for hybrid

? This material is based upon work supported by the National Science Foundation
under NSF CAREER Award CNS-1054246.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAI 2018, LNAI 10900, pp. 211–227, 2018.
DOI: 10.1007/978-3-319-94205-6 15

https://doi.org/10.1007/978-3-319-94205-6_15

212 André Platzer

systems [6] confirmed how impressively Church’s original motivation for uniform
substitutions manifests in significantly simplifying prover implementations.

Church developed uniform substitutions to relate the study of (object-level)
axioms to that of (meta-level) axiom schemata (which stand for an infinite fam-
ily of axioms). Beyond their philosophical considerations, uniform substitutions
significantly impact prover designs by eliminating the usual gap between a logic
and its prover. After implementing the recursive application of uniform substi-
tutions, the soundness-critical part of a theorem prover reduces to providing a
copy of each concrete logical formula that the logic adopts as axioms. Uniform
substitutions provide a modular interface to the static semantics of the logic, be-
cause they are the only soundness-critical part of the prover that needs to know
free or bound variables of an expression. This simplicity is to be contrasted with
the subtle soundness-critical side conditions that usually infest axiom schema
and proof rule schema implementations, especially for the more involved bind-
ing structures of program logics. The beneficial impact of uniform substitutions
on provers made it possible to reduce the size of the soundness-critical core of
the differential dynamic logic prover KeYmaera X [3] down to 2% compared to
the previous prover KeYmaera [8] and formally verify dL in Isabelle and Coq [1].

This paper generalizes uniform substitution to the significantly more expres-
sive differential game logic for hybrid games [5]. The modular structure of the
soundness argument for dL is sufficiently robust to work for dGL: i) prove correct-
ness of the static semantics, ii) relate syntactic effect of uniform substitution to
semantic effect of its adjoint interpretation, iii) conclude soundness of rule US,
and iv) separately establish soundness of each axiom. The biggest challenge is
that hybrid game semantics cannot use state reachability, so correctness notions
and their uses for the static semantics need to be phrased as functions of winning
condition projections. The interaction of game operators with repetitions causes
transfinite fixpoints instead of the arbitrary finite iterations in hybrid systems.
Relative completeness follows from previous results, but exploits the new game
symbols to simplify the proof. After new soundness justifications, the resulting
uniform substitution mechanism and axioms for dGL end up close to those for
hybrid systems [6] (apart from the ones that are unsound for hybrid games [5]).
The modularity caused by uniform substitutions explains why it was possible to
generalize the KeYmaera X prover kernel from hybrid systems to hybrid games
with about 10 lines of code.1 All proofs are inline or in the report Appendix A.

2 Preliminaries: Differential Game Logic

This section reviews differential game logic (dGL), a specification and verification
logic for hybrid games [5,7]. Hybrid games support the discrete, continuous, and

1 The addition of games to the previous KeYmaera prover was more complex [9], with
an implementation effort measured in months not minutes. Unfortunately, this is
not quite comparable, because both provers implement markedly different flavors of
games for hybrid systems. The game logic for KeYmaera [9] was specifically tuned
as an exterior extension to be more easily implementable than dGL in KeYmaera.

Uniform Substitution for Differential Game Logic 213

adversarial dynamics of two-player games in hybrid systems between players
Angel and Demon. Compared to previous work [5], the logic is augmented to
form (differential-form) differential game logic with differentials and function
symbols [6] and with game symbols a that can be substituted with hybrid games.

2.1 Syntax

Differential game logic has three syntactic categories. Its terms θ are polynomial
terms, function symbols interpreted over R, and differential terms (θ)′. Its hybrid
games α describe the permitted player actions during the game in program
notation. Its formulas φ include first-order logic of real arithmetic and, for each
hybrid game α, a modal formula 〈α〉φ, which expresses that player Angel has a
winning strategy in the hybrid game α to reach the region satisfying dGL formula
φ. In the formula 〈α〉φ, the dGL formula φ describes Angel’s objective while the
hybrid game α describes the moves permitted for the two players, respectively.

The set of all variables is V. Variables of the form x′ for a variable x ∈ V
are called differential variables, which are just independent variables associated

to variable x. For any subset V ⊆ V is V ′
def
= {x′ : x ∈ V } the set of differential

variables x′ for the variables in V . The set of all variables is assumed to contain
all its differential variables V ′ ⊆ V (although x′′, x′′′ are not usually used).

Definition 1 (Terms). Terms are defined by this grammar (with θ, η, θ1, . . . , θk
as terms, x ∈ V as variable, and f as function symbol of arity k):

θ, η ::= x | f(θ1, . . . , θk) | θ + η | θ · η | (θ)′

As in dL [6], differentials (θ)′ of terms θ are exploited for the purpose of ax-
iomatically internalizing reasoning about differential equations. The differential
(θ)′ describes how the value of θ changes locally depending on how the values of
its variables x change, i.e., as a function of the values of the corresponding differ-
ential variables x′. Differentials reduce reasoning about differential equations to
reasoning about equations of differentials [6] with their single-state semantics.

Definition 2 (Hybrid games). The hybrid games of differential game logic
dGL are defined by the following grammar (with α, β as hybrid games, a as game
symbol, x as variable, θ as term, and ψ as dGL formula):

α, β ::= a | x := θ | x′ = θ&ψ | ?ψ | α ∪ β | α;β | α∗ | αd

Atomic games are the following. Game symbols a are uninterpreted. The
discrete assignment game x := θ evaluates term θ and assigns it to variable x. The
continuous evolution game x′ = θ&ψ allows Angel to follow differential equation
x′ = θ for any real duration during which the evolution domain constraint ψ is
true (x′ = θ stands for x′ = θ& true). If ψ is not true in the current state, then
no solution exists and Angel loses the game. Test game ?ψ has no effect except
that Angel loses the game prematurely unless ψ is true in the current state.

214 André Platzer

Compound games are the following. The game of choice α∪β allows Angel to
choose whether she wants to play game α or, instead, play game β. The sequential
game α;β first plays α and then plays β (unless a player lost prematurely during
α). The repeated game α∗ allows Angel to decide how often to repeat game α
by inspecting the state reached after the respective α game to decide whether
she wants to play another round. The dual game αd makes the players switch
sides: all of Angel’s decisions are now Demon’s and all of Demon’s decisions
are now Angel’s. Where Angel would have lost prematurely in α (for failing a
test or evolution domain) now Demon does in αd, and vice versa. This makes
game play interactive but semantically quite rich [5]. All other operations are
definable, e.g., the game where Demon chooses between α and β as (αd ∪ βd)d.

Definition 3 (dGL formulas). The formulas of differential game logic dGL are
defined by the following grammar (with φ, ψ as dGL formulas, p as predicate
symbol of arity k, θ, η, θi as terms, x as variable, and α as hybrid game):

φ, ψ ::= θ ≥ η | p(θ1, . . . , θk) | ¬φ | φ ∧ ψ | ∃xφ | 〈α〉φ

The box modality [α] in formula [α]φ describes that the player Demon has a win-
ning strategy to achieve φ in hybrid game α. But dGL satisfies the determinacy
duality [α]φ↔ ¬〈α〉¬φ [5, Theorem 3.1], which we now take as its definition to
simplify matters. Other operators are definable as usual, e.g., ∀xφ as ¬∃x¬φ.
The following dGL formula, for example, expresses that Angel has a winning
strategy to follow the differential equation x′ = v to a state where x > 0 even af-
ter Demon chooses v := 2 or v := x2+1 first: 〈(v := 2 ∪ v := x2+1)d;x′ = v〉x > 0.

2.2 Semantics

While the syntax of dGL is close to that of dL (with the only change being the
addition of the duality operator d), its semantics is significantly more involved,
because it needs to recursively support interactive game play, instead of mere
reachability. Variables may have different values in different states of the game.
A state ω is a mapping from the set of all variables V to the reals R. Also, ωrx
is the state that agrees with state ω except for variable x whose value is r ∈ R.
The set of all states is denoted S. The set of all subsets of S is denoted ℘(S).

The semantics of function, predicate, and game symbols is independent from
the state. They are interpreted by an interpretation I that maps each arity k
function symbol f to a k-ary smooth function I(f) : Rk → R, and each arity k
predicate symbol p to a k-ary relation I(p) ⊆ Rk. The semantics of differential
game logic in interpretation I defines, for each formula φ, the set of all states
I[[φ]], in which φ is true. Since hybrid games appear in dGL formulas and vice
versa, the semantics I[[α]]

(
X
)

of hybrid game α in interpretation I is defined
by simultaneous induction (Def. 5) as the set of all states from which Angel
has a winning strategy in hybrid game α to achieve X. The real value of term

Uniform Substitution for Differential Game Logic 215

θ in state ω for interpretation I is denoted Iω[[θ]] and defined as usual.2 An
interpretation I maps each game symbol a to a monotone I(a) : ℘(S) → ℘(S),
where I(a)(X) ⊆ S are the states from which Angel has a winning strategy to
achieve X ⊆ S.

Definition 4 (dGL semantics). The semantics of a dGL formula φ for each
interpretation I with a corresponding set of states S is the subset I[[φ]] ⊆ S of
states in which φ is true. It is defined inductively as follows

1. I[[θ ≥ η]] = {ω ∈ S : Iω[[θ]] ≥ Iω[[η]]}
2. I[[p(θ1, . . . , θk)]] = {ω ∈ S : (Iω[[θ1]], . . . , Iω[[θk]]) ∈ I(p)}
3. I[[¬φ]] = (I[[φ]]){ = S \ I[[φ]] is the complement of I[[φ]]
4. I[[φ ∧ ψ]] = I[[φ]] ∩ I[[ψ]]
5. I[[∃xφ]] = {ω ∈ S : ωrx ∈ I[[φ]] for some r ∈ R}
6. I[[〈α〉φ]] = I[[α]]

(
I[[φ]]

)
A dGL formula φ is valid in I, written I |= φ, iff it is true in all states, i.e.,
I[[φ]] = S. Formula φ is valid, written � φ, iff I |= φ for all interpretations I.

Definition 5 (Semantics of hybrid games). The semantics of a hybrid game
α for each interpretation I is a function I[[α]]

(
·
)

that, for each set of Angel’s win-

ning states X ⊆ S, gives the winning region, i.e., the set of states I[[α]]
(
X
)
⊆ S

from which Angel has a winning strategy to achieve X in α (whatever strategy
Demon chooses). It is defined inductively as follows

1. I[[a]]
(
X
)

= I(a)(X)

2. I[[x := θ]]
(
X
)

= {ω ∈ S : ω
Iω[[θ]]
x ∈ X}

3. I[[x′ = θ&ψ]]
(
X
)

= {ω ∈ S : ω = ϕ(0) on {x′}{ and ϕ(r) ∈ X for some
function ϕ : [0, r]→ S of some duration r satisfying I, ϕ |= x′ = θ ∧ ψ}
where I, ϕ |= x′ = θ ∧ ψ iff ϕ(ζ) ∈ I[[x′ = θ ∧ ψ]] and ϕ(0) = ϕ(ζ) on {x, x′}{

for all 0≤ζ≤r and dϕ(t)(x)
dt (ζ) exists and equals ϕ(ζ)(x′) for all 0≤ζ≤r if r>0.

4. I[[?ψ]]
(
X
)

= I[[ψ]] ∩X
5. I[[α ∪ β]]

(
X
)

= I[[α]]
(
X
)
∪ I[[β]]

(
X
)

6. I[[α;β]]
(
X
)

= I[[α]]
(
I[[β]]

(
X
))

7. I[[α∗]]
(
X
)

=
⋂
{Z ⊆ S : X ∪ I[[α]]

(
Z
)
⊆ Z}

8. I[[αd]]
(
X
)

= (I[[α]]
(
X{
)
){

The semantics I[[x′ = θ&ψ]]
(
X
)

is the set of all states from which there is a
solution of the differential equation x′ = θ of some duration that reaches a state
in X without ever leaving the set of all states I[[ψ]] where evolution domain
constraint ψ is true. The initial value of x′ in state ω is ignored for that solution.
It is crucial that I[[α∗]]

(
X
)

gives a least fixpoint semantics to repetition [5].

Lemma 6 (Monotonicity [5, Lem. 2.7]). The semantics is monotone, i.e.,
I[[α]]

(
X
)
⊆ I[[α]]

(
Y
)

for all X ⊆ Y .
2 Even if not critical here, differentials have a differential-form semantics [6] as the

sum of all partial derivatives by x ∈ V multiplied by the corresponding values of x′:
Iω[[(θ)′]] =

∑
x∈V ω(x′) ∂I[[θ]]

∂x
(ω) =

∑
x∈V ω(x′) ∂Iω[[θ]]

∂x

216 André Platzer

3 Static Semantics

The central bridge between a logic and its uniform substitutions is the defini-
tion of its static semantics via its free and bound variables. The static semantics
captures static variable relationships that are more tractable than the full nu-
ances of the dynamic semantics. It will be used in crucial ways to ensure that
no variable is introduced free into a context within which it is bound during the
uniform substitution application. It is imperative for the soundness of uniform
substitution that the static semantics be sound, so expressions only depend on
their free variables and only their bound variables change during hybrid games.

The most tricky part for the soundness justification for dGL is that the seman-
tics of hybrid games is not a reachability relation, such that the usual semantic
characterizations of free and bound variables from programs do not work for
hybrid games. Hybrid games have a more involved winning region semantics.

The first step is to define upward projections X↑V that increase the winning
region X ⊆ S from the variables V ⊆ V to all states that are “on V like X”, i.e.,
similar on V to states in X (and arbitrary on complement V {). The downward
projection X↓ω(V) shrinks the winning region X and selects the values of state
ω on variables V ⊆ V to keep just those states of X that agree with ω on V .

Definition 7. The set X↑V = {ν ∈ S : ∃ω ∈ X ω = ν on V } ⊇ X extends
X ⊆ S to the states that agree on V ⊆ V with some state in X (written ∃). The
set X↓ω(V) = {ν ∈ X : ω = ν on V } ⊆ X selects state ω on V ⊆ V in X ⊆ S.

Remark 8. It is easy to check these properties of up and down projections:
1. Composition: X↑V ↑W = X↑(V ∩W)
2. Antimonotone: X↑W ⊆ X↑V for all W ⊇ V
3. X↑∅ = S (unless X = ∅) and X↑V = X, where V is the set of all variables
4. Composition: X↓ω(V)↓ω(W) = X↓ω(V ∪W)

5. Antimonotone: X↓ω(W) ⊆ X↓ω(V) for all W ⊇ V
6. X↓ω(∅) = X and X↓ω(V) = X∩{ω}. Thus, ω ∈ X↓ω(V) for any V iff ω ∈ X.

Projections make it possible to define (semantic!) free and bound variables of
hybrid games by expressing suitable variable dependence and ignorance. Variable
x is free iff two states that only differ in the value of x have different membership
in the winning region for hybrid game α for some winning region X↑{x}{ that is
insensitive to the value of x. Variable x is bound iff it is in the winning region for
hybrid game α for some winning condition X but not for the winning condition
X↓ω({x}) that limits the new value of x to stay at its initial value ω(x).

Definition 9 (Static semantics). The static semantics defines the free vari-
ables, which are all variables that the value of an expression depends on, as well
as bound variables, BV(α), which can change their value during game α, as:

FV(θ) =
{
x ∈ V : ∃I, ω, ω̃ such that ω = ω̃ on {x}{ and Iω[[θ]] 6= Iω̃[[θ]]

}
FV(φ) =

{
x ∈ V : ∃I, ω, ω̃ such that ω = ω̃ on {x}{ and ω ∈ I[[φ]] 63 ω̃

}

Uniform Substitution for Differential Game Logic 217

FV(α) =
{
x ∈ V : ∃I, ω, ω̃,X with ω = ω̃ on {x}{ and ω ∈ I[[α]]

(
X↑{x}{

)
63 ω̃

}
BV(α) =

{
x ∈ V : ∃I, ω,X such that I[[α]]

(
X
)
3 ω 6∈ I[[α]]

(
X↓ω({x})

)}
The signature, i.e., set of function, predicate, and game symbols in φ is denoted
Σ(φ); accordingly Σ(θ) for term θ and Σ(α) for hybrid game α.

The static semantics from Def. 9 satisfies the coincidence property (the value
of an expression only depends on the values of its free variables) and bound
effect property (a hybrid game only changes the values of its bound variables).

Lemma 10 (Coincidence for terms). FV(θ) is the smallest set with the coin-
cidence property for θ: If ω = ω̃ on FV(θ) and I = J on Σ(θ) then Iω[[θ]] = Jω̃[[θ]].

Lemma 11 (Coincidence for formulas). FV(φ) is the smallest set with the
coincidence property for φ: If ω = ω̃ on FV(φ) and I = J on Σ(φ), then ω ∈ I[[φ]]
iff ω̃ ∈ J [[φ]].

From which states a hybrid game α can be won only depends on α, the winning
region, and the values of its free variables, as X↑FV(α) is only sensitive to FV(α).

Lemma 12 (Coincidence for games). The set FV(α) is the smallest set with
the coincidence property for α: If ω = ω̃ on V ⊇ FV(α) and I = J on Σ(α), then
ω ∈ I[[α]]

(
X↑V

)
iff ω̃ ∈ J [[α]]

(
X↑V

)
.

X↑V

X
I[[α]]

(
X
)ω

ω̃

on V ⊇ FV(α)

α

α

Proof. LetM be the set of all sets M ⊆ V satisfying for all I, ω, ω̃,X that ω = ω̃
on M{ implies: ω ∈ I[[α]]

(
X↑V

)
iff ω̃ ∈ I[[α]]

(
V
)
. One implication suffices.

1. If x 6∈ V , then {x} ∈ M: Assume ω = ω̃ on {x}{ and ω ∈ I[[α]]
(
X↑V

)
⊆

I[[α]]
(
X↑V ↑{x}{

)
by Lem. 6, Def. 7. Then, as x 6∈ FV(α), ω̃ ∈ I[[α]]

(
X↑V ↑{x}{

)
= I[[α]]

(
X↑(V ∩{x}{)

)
by Rem. 8(1). Finally, X↑(V ∩{x}{) = X↑V as x 6∈ V .

2. If Mi ∈ M is a sequence of sets in M, then
⋃
i∈NMi ∈ M: Assume ω = ω̃

on (
⋃
iMi)

{ and ω ∈ I[[α]]
(
X↑V

)
. The state ωn defined as ω̃ on

⋃
i<nMi

and as ω on (
⋃
i<nMi)

{ satisfies ωn ∈ I[[α]]
(
X↑V

)
by induction on n. For

n = 0, ω0 = ω. Since ωn = ωn+1 on M{
n and Mn ∈ M, ωn ∈ I[[α]]

(
X↑V

)
implies ωn+1 ∈ I[[α]]

(
X↑V

)
. Finally, ω = ω̃ = ωn on (

⋃
iMi)

{ already.

This argument succeeds for any V ⊇ FV(α), so FV(α){ ∈ M as a (count-
able) union of {x} for all x 6∈ FV(α). Finally, if I = J on Σ(α) then also
ω̃ ∈ J [[α]]

(
X↑V

)
by a simple induction, since I gives meaning to function, pred-

icate, and game symbols, but only those that occur in α are relevant.
No set W 6⊇ FV(α) has the coincidence property for α, because there, then,

is a variable x ∈ FV(α) \W , which implies there are I,X, ω = ω̃ on {x}{ ⊇ W

such that ω ∈ I[[α]]
(
X↑{x}{

)
63 ω̃. But for the set V

def
= {x}{ ⊇ W it is, then,

the case that ω ∈ I[[α]]
(
X↑V

)
but ω̃ 6∈ I[[α]]

(
X↑V

)
.

218 André Platzer

By Def. 7 and Lemma 6, ω ∈ I[[α]]
(
X
)

implies ω ∈ I[[α]]
(
X↑V

)
for all V ⊆ V. All

supersets of FV(θ) or FV(φ) or FV(α) have the respective coincidence property.
Only its bound variables BV(α) change their values during hybrid game α,

because from any state from which α can be won to achieve X, one can already
win α to achieve X↓ω(BV(α){), which stays at ω except for the values of BV(α).

Lemma 13 (Bound effect). The set BV(α) is the smallest set with the bound
effect property: ω ∈ I[[α]]

(
X
)

iff ω ∈ I[[α]]
(
X↓ω(BV(α){)

)
.

X

X↓ω

I[[α]]
(
X↓ω(BV(α) {

)
)

ω
α

α

All supersets V ⊇ BV(α) have the bound effect property, as I[[α]]
(
X↓ω(V {)

)
⊇

I[[α]]
(
X↓ω(BV(α){)

)
by Rem. 8(5) because V { ⊆ BV(α){. Other states that agree

except on the bound variables share the same selection of the winning region: if
ω = ω̃ on BV(α){, then ω̃ ∈ I[[α]]

(
X
)

iff ω̃ ∈ I[[α]]
(
X↓ω(BV(α){)

)
.

Since all supersets of the free variables have the coincidence property and
all supersets of the bound variables have the bound effect property, algorithms
that syntactically compute supersets FV and BV of free and bound variables [6,
Lem. 17] can be soundly augmented by FV(αd) = FV(α) and BV(αd) = BV(α).

4 Uniform Substitution

The static semantics provides, in a modular way, what is needed to define the
application σφ of uniform substitution σ to dGL formula φ. The dGL axiomati-
zation uses uniform substitutions that affect terms, formulas, and games, whose
application σφ will be defined in Def. 14 using Fig. 1. A uniform substitution σ
is a mapping from expressions of the form f(·) to terms σf(·), from p(·) to for-
mulas σp(·), and from game symbols a to hybrid games σa. Vectorial extensions
are accordingly for other arities k ≥ 0. Here · is a reserved function symbol of
arity 0, marking the position where the respective argument, e.g., argument θ
to p(·) in formula p(θ), will end up in the replacement σp(·) used for p(θ).

Definition 14 (Admissible uniform substitution). A uniform substitu-
tion σ is U -admissible for φ (or θ or α, respectively) with respect to the vari-
ables U ⊆ V iff FV(σ|Σ(φ))∩U = ∅, where σ|Σ(φ) is the restriction of σ that only
replaces symbols that occur in φ, and FV(σ) =

⋃
f FV(σf(·)) ∪

⋃
p FV(σp(·)) are

the free variables that σ introduces. A uniform substitution σ is admissible for φ
(θ or α, respectively) iff the bound variables U of each operator of φ are not free
in the substitution on its arguments, i.e., σ is U -admissible. These admissibility
conditions are listed in Fig. 1, which defines the result σφ of applying σ to φ.

The remainder of this section proves soundness of uniform substitution for dGL.
All subsequent uses of uniform substitutions are required to be admissible.

Uniform Substitution for Differential Game Logic 219

σ(x) = x for variable x ∈ V
σ(f(θ)) = (σf)(σθ)

def
= {· 7→ σθ}σf(·) for function symbol f

σ(θ + η) = σθ + ση
σ(θ · η) = σθ · ση
σ((θ)′) = (σθ)′ if σ is V-admissible for θ

σ(θ ≥ η) = σθ ≥ ση
σ(p(θ)) = (σp)(σθ)

def
= {· 7→ σθ}σp(·) for predicate symbol p

σ(¬φ) = ¬σφ
σ(φ ∧ ψ) = σφ ∧ σψ
σ(∃xφ) = ∃xσφ if σ is {x}-admissible for φ
σ(〈α〉φ) = 〈σα〉σφ if σ is BV(σα)-admissible for φ

σ(a) = σa for game symbol a
σ(x := θ) = x := σθ

σ(x′ = θ&ψ) = (x′ = σθ&σψ) if σ is {x, x′}-admissible for θ, ψ
σ(?ψ) = ?σψ

σ(α ∪ β) = σα ∪ σβ
σ(α;β) = σα;σβ if σ is BV(σα)-admissible for β
σ(α∗) = (σα)∗ if σ is BV(σα)-admissible for α

σ(αd) = (σα)d

Fig. 1. Recursive application of uniform substitution σ

4.1 Uniform Substitution Lemmas

Uniform substitution lemmas equate the syntactic effect that a uniform substi-
tution σ has on a syntactic expression in a state ω and interpretation I with
the semantic effect that the switch to the adjoint interpretation σ∗ωI has on the
original expression. Adjoints make it possible to capture in semantics the effect
that a uniform substitution has on the syntax.

Let Id· denote the interpretation that agrees with interpretation I except for
the interpretation of arity 0 function symbol · which is changed to d ∈ R.

Definition 15 (Substitution adjoints). The adjoint to substitution σ is the
operation that maps I, ω to the adjoint interpretation σ∗ωI in which the inter-
pretation of each function symbol f , predicate symbol p, and game symbol a are
modified according to σ (it is enough to consider those that σ changes):

σ∗ωI(f) : R→ R; d 7→ Id·ω[[σf(·)]]
σ∗ωI(p) = {d ∈ R : ω ∈ Id· [[σp(·)]]}
σ∗ωI(a) : ℘(S)→ ℘(S); X 7→ I[[σa]]

(
X
)

Corollary 16 (Admissible adjoints). If ω = ν on FV(σ), then σ∗ωI = σ∗νI. If
ω = ν on U{ and σ is U -admissible for θ (or φ or α, respectively), then

σ∗ωI[[θ]] = σ∗νI[[θ]] i.e., σ∗ωIµ[[θ]] = σ∗νIµ[[θ]] for all states µ ∈ S
σ∗ωI[[φ]] = σ∗νI[[φ]]

σ∗ωI[[α]] = σ∗νI[[α]] i.e., σ∗ωI[[α]]
(
X
)

= σ∗νI[[α]]
(
X
)

for all sets X ⊆ S

220 André Platzer

Substituting equals for equals is sound by the compositional semantics of dL.
The more general uniform substitutions are still sound, because the semantics of
uniform substitutes of expressions agrees with the semantics of the expressions
themselves in the adjoint interpretations. The semantic modification of adjoint
interpretations has the same effect as the syntactic uniform substitution.

Lemma 17 (Uniform substitution for terms). The uniform substitution σ
and its adjoint interpretation σ∗ωI, ω for I, ω have the same semantics for all
terms θ:

Iω[[σθ]] = σ∗ωIω[[θ]]

The uniform substitute of a formula is true in an interpretation iff the formula
itself is true in its adjoint interpretation. Uniform substitution lemmas are proved
by simultaneous induction, since formulas and games are mutually recursive.

Lemma 18 (Uniform substitution for formulas). The uniform substitution
σ and its adjoint interpretation σ∗ωI, ω for I, ω have the same semantics for all
formulas φ:

ω ∈ I[[σφ]] iff ω ∈ σ∗ωI[[φ]]

Proof. The proof is by structural induction on φ and the structure of σ, simul-
taneously with Lemma 19. It is in Appendix A with this case for modalities:
6. ω ∈ I[[σ(〈α〉φ)]] iff ω ∈ I[[〈σα〉σφ]] = I[[σα]]

(
I[[σφ]]

)
(provided σ is BV(σα)-

admissible for φ) iff (by Lemma 13) ω ∈ I[[σα]]
(
I[[σφ]]↓ω(BV(σα){)

)
.

Starting conversely: ω ∈ σ∗ωI[[〈α〉φ]] = σ∗ωI[[α]]
(
σ∗ωI[[φ]]

)
iff (by Lemma 19)

ω ∈ I[[σα]]
(
σ∗ωI[[φ]]

)
iff (by Lemma 13) ω ∈ I[[σα]]

(
σ∗ωI[[φ]]↓ω(BV(σα){)

)
.

Consequently, it suffices to show that both winning conditions are equal:

I[[σφ]]↓ω(BV(σα){) = σ∗ωI[[φ]]↓ω(BV(σα){)

For this, consider any ν = ω on BV(σα){ and show: ν ∈ I[[σφ]] iff ν ∈ σ∗ωI[[φ]].
By induction hypothesis, ν ∈ I[[σφ]] iff ν ∈ σ∗νI[[φ]] iff ν ∈ σ∗ωI[[φ]] by Corol-
lary 16, because ν = ω on BV(σα){ and σ is BV(σα)-admissible for φ.

The uniform substitute of a game can be won into X from state ω in an interpre-
tation iff the game itself can be won into X from ω in its adjoint interpretation.
The most complicated part of the uniform substitution lemma proofs is the case
of repetition α∗, because it has a least fixpoint semantics. The proof needs to be
set up carefully by transfinite induction (instead of induction along the number
of program loop iterations, which is finite for hybrid systems).

Lemma 19 (Uniform substitution for games). The uniform substitution
σ and its adjoint interpretation σ∗ωI, ω for I, ω have the same semantics for all
games α:

ω ∈ I[[σα]]
(
X
)

iff ω ∈ σ∗ωI[[α]]
(
X
)

Proof. The proof is by structural induction on α, simultaneously with Lemma 18,
simultaneously for all ω and X.

Uniform Substitution for Differential Game Logic 221

1. ω ∈ I[[σ(a)]]
(
X
)

= I[[σa]]
(
X
)

= σ∗ωI(a)(X) = σ∗ωI[[a]]
(
X
)

for game symbol a

2. ω ∈ I[[σ(x := θ)]]
(
X
)

= I[[x := σθ]]
(
X
)

iff X 3 ωIω[[σθ]]x = ω
σ∗
ωIω[[θ]]
x by using

Lemma 17, which is, thus, equivalent to ω ∈ σ∗ωI[[x := θ]]
(
X
)
.

3. ω ∈ I[[σ(x′ = θ&ψ)]]
(
X
)

= I[[x′ = σθ&σψ]]
(
X
)

(provided that σ is {x, x′}-
admissible for θ, ψ) iff ∃ϕ : [0, T]→ S with ϕ(0) = ω on {x′}{, ϕ(T) ∈ X
and for all t ≥ 0: dϕ(s)

ds (t) = Iϕ(t)[[σθ]] = σ∗ϕ(t)Iϕ(t)[[θ]] by Lemma 17 and

ϕ(t) ∈ I[[σψ]], which, by Lemma 18, holds iff ϕ(t) ∈ σ∗ϕ(t)I[[ψ]].

Conversely, ω ∈ σ∗ωI[[x′ = θ&ψ]]
(
X
)

iff ∃ϕ : [0, T]→ S with ϕ(0) = ω

on {x′}{ and ϕ(T) ∈ X and for all t ≥ 0: dϕ(s)
ds (t) = σ∗ωIϕ(t)[[θ]] and

ϕ(t) ∈ σ∗ωI[[ψ]]. Both sides agree since σ∗ωI[[θ]] = σ∗ϕ(t)I[[θ]] and σ∗ϕ(t)I[[ψ]] =

σ∗ωI[[ψ]] by Corollary 16 as σ is {x, x′}-admissible for θ and ψ and ω = ϕ(t)
on BV(x′ = θ&ψ){ ⊇ {x, x′}{ by Lemma 13.

4. ω ∈ I[[σ(?ψ)]]
(
X
)

= I[[?σψ]]
(
X
)

= I[[σψ]]∩X iff, by Lemma 18, it is the case

that ω ∈ σ∗ωI[[ψ]] ∩X = σ∗ωI[[?ψ]]
(
X
)
.

5. ω ∈ I[[σ(α ∪ β)]]
(
X
)

= I[[σα ∪ σβ]]
(
X
)

= I[[σα]]
(
X
)
∪ I[[σβ]]

(
X
)
, which, by

induction hypothesis, is equivalent to ω ∈ σ∗ωI[[α]]
(
X
)

or ω ∈ σ∗ωI[[β]]
(
X
)
,

which is ω ∈ σ∗ωI[[α]]
(
X
)
∪ σ∗ωI[[β]]

(
X
)

= σ∗ωI[[α ∪ β]]
(
X
)
.

6. ω ∈ I[[σ(α;β)]]
(
X
)

= I[[σα;σβ]]
(
X
)

= I[[σα]]
(
I[[σβ]]

(
X
))

(provided σ is

BV(σα)-admissible for β), which holds iff ω ∈ I[[σα]]
(
I[[σβ]]

(
X
)
↓ω(BV(σα){)

)
by Lemma 13.
Starting conversely: ω ∈ σ∗ωI[[α;β]]

(
X
)

= σ∗ωI[[α]]
(
σ∗ωI[[β]]

(
X
))

, iff, by IH,

ω ∈ I[[σα]]
(
σ∗ωI[[β]]

(
X
))

iff, by Lem. 13, ω ∈ I[[σα]]
(
σ∗ωI[[β]]

(
X
)
↓ω(BV(σα){)

)
.

Consequently, it suffices to show that both winning conditions are equal:

I[[σβ]]
(
X
)
↓ω(BV(σα){) = σ∗ωI[[β]]

(
X
)
↓ω(BV(σα){)

Consider any ν = ω on BV(σα){ to show: ν ∈ I[[σβ]]
(
X
)

iff ν ∈ σ∗ωI[[β]]
(
X
)
.

By IH, ν ∈ I[[σβ]]
(
X
)

iff ν ∈ σ∗νI[[β]]
(
X
)

iff ν ∈ σ∗ωI[[β]]
(
X
)

by Corollary 16,

because ν = ω on BV(σα){ and σ is BV(σα)-admissible for β.
7. The case ω ∈ I[[σ(α∗)]]

(
X
)

= I[[(σα)
∗
]]
(
X
)

(provided σ is BV(σα)-admissible
for α) uses an equivalent inflationary fixpoint formulation [5, Thm. 3.5]:

τ0(X)
def
= X

τκ+1(X)
def
= X ∪ I[[σα]]

(
τκ(X)

)
κ+ 1 a successor ordinal

τλ(X)
def
=
⋃
κ<λ

τκ(X) λ 6= 0 a limit ordinal

where the union τ∞(X) =
⋃
κ<∞ τκ(X) over all ordinals is I[[(σα)

∗
]]
(
X
)
. De-

fine a similar fixpoint formulation for the other side σ∗ωI[[α∗]]
(
X
)

= %∞(X):

%0(X)
def
= X

%κ+1(X)
def
= X ∪ σ∗ωI[[α]]

(
%κ(X)

)
κ+ 1 a successor ordinal

222 André Platzer

%λ(X)
def
=
⋃
κ<λ

%κ(X) λ 6= 0 a limit ordinal

The equivalence ω ∈ I[[σ(α∗)]]
(
X
)

= τ∞(X) iff ω ∈ σ∗ωI[[α∗]]
(
X
)

= %∞(X)
follows from a proof that:

for all κ and all X and all ν = ω on BV(σα){ : ν ∈ τκ(X) iff ν ∈ %κ(X)

This is proved by induction on ordinal κ, which is either 0, a limit ordinal
λ 6= 0, or a successor ordinal.
κ = 0: ν ∈ τ0(X) iff ν ∈ %0(X), because both sets equal X.
λ: ν ∈ τλ(X) =

⋃
κ<λ τ

κ(X) iff there is a κ < λ such that ν ∈ τκ(X) iff,

by IH, ν ∈ %κ(X) for some κ < λ, iff ν ∈
⋃
κ<λ %

κ(X) = %λ(X).

κ+ 1: ν ∈ τκ+1(X) = X∪I[[σα]]
(
τκ(X)

)
, which, by Lemma 13, is equivalent

to ν ∈ X ∪ I[[σα]]
(
τκ(X)↓ν(BV(σα){)

)
Starting from the other end, ν ∈ %κ+1(X) = X ∪ σ∗ωI[[α]]

(
%κ(X)

)
iff, by

Corollary 16 using ν = ω on BV(σα){ ⊇ BV(α){, ν ∈ X ∪σ∗νI[[α]]
(
%κ(X)

)
iff, by induction hypothesis on α, ν ∈ X∪I[[σα]]

(
%κ(X)

)
iff, by Lemma 13,

ν ∈ X ∪ I[[σα]]
(
%κ(X)↓ν(BV(σα){)

)
Consequently, it suffices to show that

both winning conditions are equal: τκ(X)↓ν(BV(σα){) = %κ(X)↓ν(BV(σα){).
Consider any state µ = ω on BV(σα){, then µ ∈ τκ(X) iff µ ∈ %κ(X) by
induction hypothesis on κ < κ+ 1.

8. ω ∈ I[[σ(αd)]]
(
X
)

= I[[(σα)d]]
(
X
)

=
(
I[[σα]]

(
X{
)){

iff ω 6∈ I[[σα]]
(
X{
)
,

which, by IH, is equivalent to ω 6∈ σ∗ωI[[α]]
(
X{
)
, which is, in turn, equivalent

to ω ∈
(
σ∗ωI[[α]]

(
X{
)){

= σ∗ωI[[αd]]
(
X
)
.

4.2 Soundness

Soundness of uniform substitution for dGL now follows from the above uniform
substitution lemmas with the same proof that it had from corresponding lemmas
in dL [6] (see Appendix A). Due to the modular setup of uniform substitutions,
the change from dL to dGL is reflected in how the uniform substitution lemmas
are proved, not in how they are used for the soundness of proof rule US. A proof
rule is sound iff validity of all its premises implies validity of its conclusion.

Theorem 20 (Soundness of uniform substitution). Proof rule US is sound.

(US)
φ

σφ

As in dL, uniform substitutions can soundly instantiate locally sound proof rules
or proofs [6] just like proof rule US soundly instantiates axioms or other valid
formulas (Theorem 20). An inference or proof rule is locally sound iff its conclu-
sion is valid in any interpretation I in which all its premises are valid. All locally
sound proof rules are sound. The use of Theorem 21 in a proof is marked USR.

Uniform Substitution for Differential Game Logic 223

[·] [a]p(x̄)↔ ¬〈a〉¬p(x̄)

〈:=〉 〈x := f〉p(x)↔ p(f)

DS 〈x′ = f〉p(x)↔ ∃t≥0 〈x := x+ ft〉p(x)

〈?〉 〈?q〉p↔ q ∧ p

〈∪〉 〈a ∪ b〉p(x̄)↔ 〈a〉p(x̄) ∨ 〈b〉p(x̄)

〈;〉 〈a; b〉p(x̄)↔ 〈a〉〈b〉p(x̄)

〈∗〉 〈a∗〉p(x̄)↔ p(x̄) ∨ 〈a〉〈a∗〉p(x̄)

〈d〉 〈ad〉p(x̄)↔ ¬〈a〉¬p(x̄)

M
p(x̄)→ q(x̄)

〈a〉p(x̄)→ 〈a〉q(x̄)

FP
p(x̄) ∨ 〈a〉q(x̄)→ q(x̄)

〈a∗〉p(x̄)→ q(x̄)

MP
p p→ q

q

∀
p(x)

∀x p(x)

Fig. 2. Differential game logic axioms and axiomatic proof rules

Theorem 21 (Soundness of uniform substitution of rules). If FV(σ) = ∅,
all uniform substitution instances of locally sound inferences are locally sound:

φ1 . . . φn

ψ
locally sound implies

σφ1 . . . σφn

σψ
locally sound

5 Axioms

Axioms and axiomatic proof rules for differential game logic are listed in Fig. 2,
where x̄ is the (finite-dimensional) vector of all relevant variables. The axioms
are concrete dGL formulas that are valid. The axiomatic proof rules are concrete
formulas for the premises and concrete formulas for the conclusion that are lo-
cally sound. This makes Fig. 2 straightforward to implement by copy-and-paste.
Theorem 20 can be used to instantiate axioms to other dGL formulas. Theorem 21
can be used to instantiate axiomatic proof rules to other concrete dGL inferences.
Complete axioms for first-order logic from elsewhere [6] and a proof rule (written
R) for decidable real arithmetic [10] are assumed as a basis.

The axiom 〈;〉, for example, expresses that Angel has a winning strategy in
game a; b to achieve p(x̄) if and only if she has a winning strategy in game a to
achieve 〈b〉p(x̄), i.e., to reach the region from which she has a winning strategy
in game b to achieve p(x̄). Rule US can instantiate axiom 〈;〉, for example, with
σ = {a 7→ (v := 2 ∪ v := x+1)d, b 7→ x′ = v, p(x̄) 7→ x > 0} to prove

〈(v := 2 ∪ v := x+1)d;x′ = v〉x > 0↔ 〈(v := 2 ∪ v := x+1)d〉〈x′ = v〉x > 0

The right-hand formula can be simplified when using US again to instantiate
axiom 〈d〉 with σ = {a 7→ v := 2 ∪ v := x+1, p(x̄) 7→ 〈x′ = v〉x > 0} to prove

〈(v := 2 ∪ v := x+1)d〉〈x′ = v〉x > 0↔ ¬〈v := 2 ∪ v := x+1〉¬〈x′ = v〉x > 0

224 André Platzer

When eliding the equivalences and writing down the resulting formula along
with the axiom that was uniformly substituted to obtain it, this yields a proof:

j(x) →¬(¬∃t≥0x+ 2t > 0 ∨ ¬∃t≥0x+ (x+1)t > 0)
〈:=〉j(x) →¬(¬∃t≥0 〈x := x+ 2t〉x > 0 ∨ 〈v := x+1〉¬∃t≥0 〈x := x+ vt〉x > 0)
DS j(x) →¬(¬〈x′ = 2〉x > 0 ∨ 〈v := x+1〉¬〈x′ = v〉x > 0)
〈:=〉j(x) →¬(〈v := 2〉¬〈x′ = v〉x > 0 ∨ 〈v := x+1〉¬〈x′ = v〉x > 0)
〈∪〉 j(x) →¬〈v := 2 ∪ v := x+1〉¬〈x′ = v〉x > 0
〈d〉 j(x) →〈(v := 2 ∪ v := x+1)d〉〈x′ = v〉x > 0
〈;〉 j(x) →〈(v := 2 ∪ v := x+1)d;x′ = v〉x > 0

It is soundness-critical that US checks velocity v is not bound in the ODE when
substituting it for f in DS, since x+ vt is not, otherwise, the correct solution of
x′ = v. Likewise, the velocity assignment v := x+1 cannot soundly be substituted
into the differential equation via 〈:=〉, which US prevents as x is bound in x′ = v.
Instead, axiom 〈:=〉 for v := x+1 needs to be delayed until after solving by DS. If
it were v := x2+1 instead of v := x+1, then rule R would finish the proof. But for
the above proof with v := x+1 to finish, extra assumptions need to be identified.

With σ = {a 7→ (v := 2 ∪ v := x+1)d;x′ = v, p(x̄) 7→ x>0, q(x̄) 7→ x2>0},
USR instantiates axiomatic rule M to prove an inference continuing the proof:

USR,M
x>0→ x2>0

〈(v := 2 ∪ v := x+1)d;x′ = v〉x>0→ 〈(v := 2 ∪ v := x+1)d;x′ = v〉x2>0

Variable x can be used in the postconditions despite being bound in the game.
Likewise, rule USR can instantiate the above proof with σ = {j(·) 7→ ·>−1} to:

R x > −1 →¬(¬∃t≥0x+ 2t > 0 ∨ ¬∃t≥0x+ (x+1)t > 0)
USRx > −1 →〈(v := 2 ∪ v := x+1)d;x′ = v〉x > 0

USR soundly instantiates the inference from premise to conclusion of the proof
without having to change or repeat any part of the proof. Uniform substitutions
enable flexible but sound reasoning forwards, backwards, on proofs, or mixed [6].
Without USR, these features would complicate soundness-critical prover cores.

Since the axioms and axiomatic proof rules in Fig. 2 are themselves instances
of axiom schemata and proof rule schemata that axiomatize dGL [5], they are
(even locally!) sound. Axiom DS stems from dL [6] and is for solving constant
differential equations. Now that differentials are available, all differential axioms
such as the Leibniz axiom (f(x̄) · g(x̄))′ = (f(x̄))′ · g(x̄) + f(x̄) · (g(x̄))′ and all
other axioms for differential equations [6] can be added to dGL. Furthermore,
hybrid games make it possible to equivalently replace differential equations with
evolution domains by hybrid games without domain constraints [5, Lem. 3.4].

The converse challenge for completeness is to prove that uniform substi-
tutions are flexible enough to prove all required instances of dGL axioms and
axiomatic proof rules. A dGL formula φ is called surjective iff rule US can in-
stantiate φ to any of its axiom schema instances, which are those formulas that

Uniform Substitution for Differential Game Logic 225

are obtained by just replacing game symbols a uniformly by any hybrid game
etc. An axiomatic rule is called surjective iff USR can instantiate it to any of
its proof rule schema instances. The axiom 〈?〉 is surjective, as it does not have
any bound variables, so its instances are admissible. Similarly rules MP and rule
∀ become surjective [6]. The proof of the following lemma transfers from prior
work [6, Lem. 39], since any hybrid game can be substituted for a game symbol.

Lemma 22 (Surjective axioms). If φ is a dGL formula that is built only
from game symbols but no function or predicate symbols, then φ is surjective.
Axiomatic rules consisting of surjective dGL formulas are surjective.

Unfortunately, none of the axioms from Fig. 2 satisfy the assumptions of
Lemma 22. While the argument from previous work would succeed [6], the trick
to simplify the proof is to consider p(x̄) to be 〈c〉true for some game symbol c.
Then any formula ϕ can be instantiated for p(x̄) alias 〈c〉true by substituting the
game symbol c with the game ?ϕ and subsequently using the surjective axiom 〈?〉
to replace the resulting 〈?ϕ〉true by ϕ∧ true or its equivalent ϕ as intended. This
makes axioms [·],〈?〉,〈∪〉,〈;〉,〈∗〉,〈d〉 and all axiomatic rules in Fig. 2 surjective.

With Lemma 22 to show that all schema instantiations required for complete-
ness are provable by US,USR from axioms or axiomatic rules, relative complete-
ness of dGL follows immediately from a previous schematic completeness result
for dGL [5] and relative completeness of uniform substitution for dL [6].

Theorem 23 (Relative completeness). The dGL calculus is a sound and
complete axiomatization of hybrid games relative to any differentially expressive
logic3 L, i.e., every valid dGL formula is provable in dGL from L tautologies.

6 Related Work

Since the primary impact of uniform substitution is on conceptual simplicity
and a significantly simpler prover implementation, this related work discussion
focuses on hybrid games theorem proving. A broader discussion of both hybrid
games and uniform substitution themselves is provided in the literature [5,6].
The approach presented here also helps discrete game logic [4], but that is only
challenging after a suitable generalization beyond the propositional case.

Prior approaches to hybrid games theorem proving are either based on differ-
ential game logic [5,7] or on an exterior game embedding of differential dynamic
logic [9]. This paper is based on prior findings on differential game logic [5] that
it complements by giving an explicit construction for uniform substitution. This
enables a purely axiomatic version of dGL that does not need the axiom schemata
or proof rule schemata from previous approaches [5,7]. This change makes it sub-
stantially simpler to implement dGL soundly in a theorem prover. The exterior

3 A logic L closed under first-order connectives is differentially expressive (for dGL) if
every dGL formula φ has an equivalent φ[in L and all differential equation equiva-
lences of the form 〈x′ = θ〉G↔ (〈x′ = θ〉G)[for G in L are provable in its calculus.

226 André Platzer

game embedding of differential dynamic logic [9] was implemented with proof
rule schemata in KeYmaera and was, thus, significantly more complex.

The primary and significant challenge of this paper compared to previous uni-
form substitution approaches [2,6,1] arose from the semantics of hybrid games,
which need a significantly different set-valued winning region style. The root-
cause is that, unlike the normal modal logic dL, dGL is a subregular modal logic
[5]. Especially, Kripke’s axiom [α](φ→ ψ)→ ([α]φ→ [α]ψ) is unsound for dGL.

7 Conclusion and Future Work

This paper provides an explicit construction of uniform substitutions and proves
it sound for differential game logic. It also indicates that uniform substitutions
are flexible when a logic is changed. The modularity principles of uniform substi-
tution hold what they promise, making an implementation in a theorem prover
exceedingly straightforward. The biggest challenge was the semantic generaliza-
tion of the soundness proofs to the subtle interactions caused by hybrid games.

In future work it could be interesting to devise a framework for the general
construction of uniform substitutions for arbitrary logics from a certain family.
The challenge is that such an approach partially goes against the spirit of uniform
substitution, which is built for flexibility (straightforward and easy to change),
not necessarily generality (already preequipped to reconfigure for all possible
future changes). Such generality seems to require a schematic understanding,
possibly self-defeating for the simplicity advantages of uniform substitutions.

References

1. Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) CPP. ACM (2017)

2. Church, A.: Introduction to Mathematical Logic. Princeton Univ. Press (1956)
3. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An ax-

iomatic tactical theorem prover for hybrid systems. In: Felty, A., Middeldorp, A.
(eds.) CADE. LNCS, vol. 9195, pp. 527–538. Springer, Berlin (2015)

4. Parikh, R.: Propositional game logic. In: FOCS. pp. 195–200. IEEE (1983)
5. Platzer, A.: Differential game logic. ACM Trans. Comput. Log. 17(1) (2015)
6. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas. 59(2), 219–265 (2017)
7. Platzer, A.: Differential hybrid games. ACM Trans. Comput. Log. 18(3) (2017)
8. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems.

In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195, pp.
171–178. Springer, Berlin (2008)

9. Quesel, J.D., Platzer, A.: Playing hybrid games with KeYmaera. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR. LNCS, vol. 7364, pp. 439–453. Springer (2012)

10. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley, 2nd edn. (1951)

Uniform Substitution for Differential Game Logic 227

A Proofs

Proof of Remark 8. 1. X↑V ↑W are all states in S that agree on W with a state
in X↑V , which, in turn, are all states that agree on V with a state in X.
That is, X↑V ↑W are all states that agree on W with some state that agrees
on V with a state in X, which is the set X↑(V ∩W) of states that agree on
V ∩W with a state in X.

2. W ⊇ V implies V = W ∩U for some U . By case 1, X↑V = X↑W↑U ⊇ X↑W
by Def. 7.

3. First note ∅↑V = ∅ for all V . If X 6= ∅, then X↑∅ = S, because equality on
∅ imposes no conditions on the state ν. X↑V = X, because agreement on all
variables V implies ω = ν.

4. X↓ω(V)↓ω(W) are all states that agree on W with ω and are in the set
X↓ω(V). That is, X↓ω(V)↓ω(W) are all states in X that agree on W and on
V with ω, which is the set X↓ω(V ∪W).

5. W ⊇ V implies W = V ∪U for some U . By case 4, X↓ω(W) = X↓ω(V)↓ω(U) ⊆
X↓ω(V) by Def. 7.

6. X↓ω(∅) = X since agreement on ∅ imposes no conditions on ν ∈ X. Fur-
thermore, X↓ω(V) = X ∩{ω} since agreement on all variables V imposes the
condition ν = ω, which is in X↓ω(V) iff ω ∈ X.

Proof of Lemma 10. By [6, Lem. 10], as semantics and free variables of terms
are as in dL.

Proof of Lemma 11. The semantics of formulas and their semantic free variables
is analogous to dL, so [6, Lem. 11] transfers, because its proof is by induction
on the set of free variables independently of the particular syntactic structure
of the formula φ and, thus, the proof is not affected by the modified meaning of
modalities.

Proof of Lemma 13. LetM be the set of all sets M ⊆ V satisfying for all I,X, ω:
ω ∈ I[[α]]

(
X
)

iff ω ∈ I[[α]]
(
X↓ω(M)

)
. By Lemma 6, I[[α]]

(
X
)
⊇ I[[α]]

(
X↓ω(M)

)
as

X ⊇ X↓ω(M).
1. If x 6∈ BV(α), then {x} ∈ M directly by Def. 9.
2. If Mi ∈ M is a sequence of sets in M, then

⋃
i∈NMi ∈ M: Assume that

ω ∈ I[[α]]
(
X
)

= I[[α]]
(
X↓ω(∅)

)
by Rem. 8(6). Since ω ∈ I[[α]]

(
X↓ω(

⋃
i<nMi)

)
implies ω ∈ I[[α]]

(
X↓ω(

⋃
i<nMi)↓ω(Mn)

)
= I[[α]]

(
X↓ω(

⋃
i<n+1Mi)

)
according

to Rem. 8(4), an induction on n yields ω ∈ I[[α]]
(
X↓ω(

⋃
iMi)

)
.

Thus, BV(α){ ∈M as a (countable) union of {x} for all x 6∈ BV(α).
No set V 6⊇ BV(α) has the bound effect property for α, because there, then,

is a variable x ∈ BV(α) \V , which implies there are I,X, ω such that I[[α]]
(
X
)
3

ω 6∈ I[[α]]
(
X↓ω({x})

)
⊇ I[[α]]

(
X↓ω(V {)

)
by Lemma 6, as X↓ω({x}) ⊇ X↓ω(V {) by

Rem. 8(5), because {x} ⊆ V {.

Proof of Corollary 16. σ∗ωI is well-defined, as σ∗ωI(f) is a smooth function since
its substitute term σf(·) has smooth values. First, σ∗ωI(a)(X) = I[[σa]]

(
X
)

=

228 André Platzer

σ∗νI(a)(X) holds for all X ⊆ S because the adjoint to σ for I, ω in the case
of game symbols is independent of ω (games have access to the entire state at
runtime). By Lemma 10, Id·ω[[σf(·)]] = Id·ν[[σf(·)]] when ω = ν on FV(σf(·)) ⊆
FV(σ). Also ω ∈ Id· [[σp(·)]] iff ν ∈ Id· [[σp(·)]] by Lemma 11 when ω = ν on FV(σp(·))
⊆ FV(σ). Thus, σ∗ωI = σ∗νI when ω = ν on FV(σ).

If σ is U -admissible for φ (or θ or α), then FV(σf(·)) ∩ U = ∅, so U{ ⊇
FV(σf(·)) for every function symbol f ∈ Σ(φ) (or θ or α) and likewise for
predicate symbols p ∈ Σ(φ). Since ω = ν on U{ was assumed, σ∗ωI = σ∗νI on
the function and predicate symbols in Σ(φ) (or θ or α). Finally σ∗ωI = σ∗νI on
Σ(φ) (or Σ(θ) respectively) implies that σ∗νI[[φ]] = σ∗ωI[[φ]] by Lemma 11 (since
µ ∈ σ∗νI[[φ]] iff µ ∈ σ∗ωI[[φ]] holds for all µ which trivially satisfy µ = µ on FV(φ))
and that σ∗ωI[[θ]] = σ∗νI[[θ]] by Lemma 10, respectively. Similarly, σ∗ωI = σ∗νI on
Σ(α) implies by Lemma 12 that σ∗ωI[[α]]

(
X
)

= σ∗νI[[α]]
(
X
)
, because it implies:

µ ∈ σ∗ωI[[α]]
(
X
)

= σ∗ωI[[α]]
(
X↑V

)
iff µ ∈ σ∗νI[[α]]

(
X↑V

)
= σ∗νI[[α]]

(
X
)
, for all µ

which satisfy µ = µ on V ⊇ FV(α). This uses X↑V = X from Rem. 8(3).

Proof of Lemma 17. The proof follows from dL [6, Lem. 23], since the term se-
mantics and the coincidence lemmas for terms that the proof is based on are the
same in dGL.

Proof of Lemma 18. The proof is by structural induction lexicographically on
the structure of σ and of φ, with a simultaneous induction in the proof of
Lemma 19.

1. ω ∈ I[[σ(θ ≥ η)]] iff ω ∈ I[[σθ ≥ ση]] iff Iω[[σθ]] ≥ Iω[[ση]], by Lemma 17, iff
σ∗ωIω[[θ]] ≥ σ∗ωIω[[η]] iff ω ∈ σ∗ωI[[θ ≥ η]].

2. ω ∈ I[[σ(p(θ))]] iff ω ∈ I[[(σp)
(
σθ
)
]] iff ω ∈ I[[{· 7→ σθ}σp(·)]] iff ω ∈ Id· [[σp(·)]]

by IH as {· 7→ σθ} is simpler than σ, iff d ∈ σ∗ωI(p) iff (σ∗ωIω[[θ]]) ∈ σ∗ωI(p)

iff ω ∈ σ∗ωI[[p(θ)]] with d
def
= Iω[[σθ]] = σ∗ωIω[[θ]] by Lemma 17 for σθ. The IH

for {· 7→ σθ}σp(·) is used on the possibly bigger formula σp(·) but the struc-
turally simpler uniform substitution {· 7→ σθ} that is a mere substitution on
function symbol · of arity zero, not a substitution of predicates.

3. ω ∈ I[[σ(¬φ)]] iff ω ∈ I[[¬σφ]] iff ω 6∈ I[[σφ]] by IH iff ω 6∈ σ∗ωI[[φ]] iff ω ∈ σ∗ωI[[¬φ]]
4. ω ∈ I[[σ(φ ∧ ψ)]] iff ω ∈ I[[σφ ∧ σψ]] iff ω ∈ I[[σφ]] and ω ∈ I[[σψ]], by induc-

tion hypothesis, iff ω ∈ σ∗ωI[[φ]] and ω ∈ σ∗ωI[[ψ]] iff ω ∈ σ∗ωI[[φ ∧ ψ]]
5. ω ∈ I[[σ(∃xφ)]] iff ω ∈ I[[∃xσφ]] (provided that σ is {x}-admissible for φ) iff
ωdx ∈ I[[σφ]] for some d, so, by induction hypothesis, iff ωdx ∈ σ∗ωd

x
I[[φ]] for some

d, which is equivalent to ωdx ∈ σ∗ωI[[φ]] by Corollary 16 as σ is {x}-admissible
for φ and ω = ωdx on {x}{. Thus, this is equivalent to ω ∈ σ∗ωI[[∃xφ]].

6. ω ∈ I[[σ(〈α〉φ)]] iff ω ∈ I[[〈σα〉σφ]] = I[[σα]]
(
I[[σφ]]

)
(provided σ is BV(σα)-

admissible for φ) iff (by Lemma 13) ω ∈ I[[σα]]
(
I[[σφ]]↓ω(BV(σα){)

)
.

Starting conversely: ω ∈ σ∗ωI[[〈α〉φ]] = σ∗ωI[[α]]
(
σ∗ωI[[φ]]

)
iff (by Lemma 19)

ω ∈ I[[σα]]
(
σ∗ωI[[φ]]

)
iff (by Lemma 13) ω ∈ I[[σα]]

(
σ∗ωI[[φ]]↓ω(BV(σα){)

)
.

Consequently, it suffices to show that both winning conditions are equal:

I[[σφ]]↓ω(BV(σα){) = σ∗ωI[[φ]]↓ω(BV(σα){)

Uniform Substitution for Differential Game Logic 229

For this, consider any ν = ω on BV(σα){ and show: ν ∈ I[[σφ]] iff ν ∈ σ∗ωI[[φ]].
By induction hypothesis, ν ∈ I[[σφ]] iff ν ∈ σ∗νI[[φ]] iff ν ∈ σ∗ωI[[φ]] by Corol-
lary 16, because ν = ω on BV(σα){ and σ is BV(σα)-admissible for φ.

Proof of Theorem 20. Let the premise φ of US be valid, i.e., ω ∈ I[[φ]] for all
interpretations I and states ω. To show that the conclusion is valid, consider
any interpretation I and state ω and show ω ∈ I[[σφ]]. By Lemma 18, ω ∈ I[[σφ]]
iff ω ∈ σ∗ωI[[φ]]. Now ω ∈ σ∗ωI[[φ]] holds, because ω ∈ I[[φ]] for all I, ω, including
σ∗ωI, ω, by premise.

Proof of Theorem 21. Let D be the inference on the left and σD the substituted
inference on the right. Assume D to be locally sound. To show that σD is locally
sound, consider any I in which all premises of σD are valid, i.e., I |= σφj for
all j, i.e., ω ∈ I[[σφj]] for all ω and all j. By Lemma 18, ω ∈ I[[σφj]] is equivalent
to ω ∈ σ∗ωI[[φj]], which, thus, also holds for all ω and all j. By Corollary 16,
σ∗ωI[[φj]] = σ∗νI[[φj]] for all ν, since FV(σ) = ∅. Fix an arbitrary state ν. Then
ω ∈ σ∗νI[[σφj]] holds for all ω and all j for the same (arbitrary) ν that determines
σ∗νI.

Consequently, all premises of D are valid in the same σ∗νI, i.e. σ∗νI |= φj for
all j. Thus, σ∗νI |= ψ by local soundness of D. That is, ω ∈ σ∗ωI[[ψ]] = σ∗νI[[ψ]]
by Corollary 16 for all ω. By Lemma 18, ω ∈ σ∗ωI[[ψ]] is equivalent to ω ∈ I[[σψ]],
which continues to hold for all ω. Thus, I |= σψ, i.e., the conclusion of σD is
valid in I, hence σD is locally sound. Consequently, all uniform substitution
instances σD of locally sound inferences D with FV(σ) = ∅ are locally sound.

Proof of Theorem 23. The axioms and axiomatic proof rules in Fig. 2 are con-
crete instances of sound schemata or rules from prior work [5,6]. By Lemma 22
the axioms [·],〈?〉,〈∪〉,〈;〉,〈∗〉,〈d〉 and all axiomatic rules in Fig. 2 are surjective,
so can be instantiated by rule US to any of their schema instances. Except
for assignments, these cover all axioms and proof rules used in the relative
completeness theorem for dGL’s schematic axiomatization [5, Thm. 4.5]. Thus,
Lemma 22 makes the previous completeness proof transfer to the axiomatic proof
calculus of differential-form dGL, but only if all uses of the assignment axiom,
which is not surjective, can be patched. The only such case is in the proof that
� F → 〈x := θ〉G implies that this formula can be proved in the dGL calculus
from L. Since 〈x := θ〉G is equivalent to [x := θ]G via axiom [·], this follows
from the corresponding case in the completeness proof for dL [6, Thm. 40] that
� F → [x := θ]G implies that this formula is provable by rule US from the [·]
dual of assignment axiom 〈:=〉.

	Uniform Substitution for Differential Game Logic

