Constructive Game Logic

Brandon Bohrer and André Platzer

Logical Systems Lab Computer Science Department Carnegie Mellon University

ESOP "2020"

Constructivity Helps Synthesis

Foundations and Applications are Broad

Full Constructive Story is Untold

Today's Story is Extensive

Follow-Up Story is Even Broader

Whose Proofchecker and Synthesizer were Implemented Hiah-Level T: Today Executable Proo Proof Code Tree Proof F: Followup work Scripts Synthesizer Applications Checker Foundations $Game \leq Program$ F Refinements \vdash <Discrete+ODE>p(\mathbb{R}) Type theory + Big Step $T < Discrete > p(\mathbb{Q})$ Realizability + Proof Terms + Small Step

And Applied on Hardware and in Simulation

(Subtraction) Nim is an Introductory Example

Assign
NIM =
$$\left\{ \left\{ c := c - 1 \cup c := c - 2 \cup c := c - 3 \right\}; c > 0 \right\};$$

 $\left\{ c := c - 1 \cup c := c - 2 \cup c := c - 3 \right\}; c > 0 \right\}^{d} \right\}^{*}$

(Subtraction) Nim is an Introductory Example

Assign
NIM =
$$\left\{ \{ c := c - 1 \cup c := c - 2 \cup c := c - 3 \}; ?c > 0 \}; \\ \{ c := c - 1 \cup c := c - 2 \cup c := c - 3 \}; ?c > 0 \}^d \right\}^*$$

Take turns

(Subtraction) Nim is an Introductory Example

(Subtraction) Nim is an Introductory Example

Assign Choose move

$$NIM = \left\{ \{c := c - 1 \cup c := c - 2 \cup c := c - 3\}; ?c > 0 \}; \\ \{c := c - 1 \cup c := c - 2 \cup c := c - 3\}; ?c > 0 \}^{d} \right\}^{*}$$
Repeat
Take turns

• If $c \in \{0,2,3\}$ (mod 4), the first player can achieve $c \in \{2,3,4\}$

$$c > 0 \rightarrow c \mod 4 \in \{0, 2, 3\} \rightarrow \langle NIM \rangle (c \in \{2, 3, 4\})$$

• If $c \equiv 1 \pmod{4}$, the second player can maintain $c \equiv 1 \pmod{4}$:

$$c > 0 \rightarrow c \mod 4 = 1 \rightarrow [NIM](c \mod 4 = 1)$$

Second player wins

If X : Region then $X\langle\!\langle \alpha \rangle\!\rangle : Region$ and $X[[\alpha]] : Region$. Won Regions X defined by $X \subseteq (Realizer \times State) \cup \{\top\} \cup \{\bot\}$. Realizers a, b, c are higher-order, continuation-passing programs.

If X : Region then $X\langle\!\langle \alpha \rangle\!\rangle$: Region and $X[\![\alpha]\!]$: Region. Won Regions X defined by $X \subseteq (Realizer \times State) \cup \{\top\} \cup \{\bot\}$. Realizers a, b, c are higher-order, continuation-passing programs. Example Angelic semantics cases: Chose α $X\langle\!\langle \alpha \cup \beta \rangle\!\rangle = X_{\langle 0 \rangle}\langle\!\langle \alpha \rangle\!\rangle \cup X_{\langle 1 \rangle}\langle\!\langle \beta \rangle\!\rangle$

If X : Region then $X\langle\!\langle \alpha \rangle\!\rangle : Region$ and $X[[\alpha]] : Region$. Won Regions X defined by $X \subseteq (Realizer \times State) \cup \{\top\} \cup \{\bot\}$. Realizers a, b, c are higher-order, continuation-passing programs. Example Angelic semantics cases: $X\langle\!\langle \alpha \cup \beta \rangle\!\rangle = X_{\langle 0 \rangle}\langle\!\langle \alpha \rangle\!\rangle \cup X_{\langle 1 \rangle}\langle\!\langle \beta \rangle\!\rangle$ $X\langle\!\langle ? \phi \rangle\!\rangle \ni (b, \omega)$ $X\langle\!\langle ? \phi \rangle\!\rangle \ni \bot$ $\leftarrow ((a, b), \omega) \in X$ and $(a, \omega) \notin [\![\phi]\!]$

If X : Region then $X\langle\!\langle \alpha \rangle\!\rangle$: Region and $X[[\alpha]]$: Region. Won Regions X defined by $X \subseteq (Realizer \times State) \cup \{\top\} \cup \{\bot\}$. Realizers *a*, *b*, *c* are higher-order, continuation-passing programs. Example Angelic semantics cases: [Chose α] Chose β $X\langle\!\langle \alpha \cup \beta \rangle\!\rangle = X_{(0)}\langle\!\langle \alpha \rangle\!\rangle \cup X_{(1)}\langle\!\langle \beta \rangle\!\rangle$ $X\langle\!\langle ?\phi \rangle\!\rangle \ni (b,\omega)$ \leftarrow ((a, b), ω) \in X and (a, ω) \in $\llbracket \phi \rrbracket$ \leftarrow ((a, b), ω) \in X and (a, ω) \notin [ϕ] $X \langle\!\langle ?\phi \rangle\!\rangle \ni \bot$ $X\langle\!\langle x := f \rangle\!\rangle \ni (a, \omega[x \mapsto f(\omega)])$ \leftarrow (*a*, ω) \in *X*

If X : Region then $X\langle\!\langle \alpha \rangle\!\rangle$: Region and $X[[\alpha]]$: Region. Won Regions X defined by $X \subseteq (Realizer \times State) \cup \{\top\} \cup \{\bot\}$. Realizers *a*, *b*, *c* are higher-order, continuation-passing programs. Example Angelic semantics cases: [Chose α] Chose β $X\langle\!\langle \alpha \cup \beta \rangle\!\rangle = X_{(0)}\langle\!\langle \alpha \rangle\!\rangle \cup X_{(1)}\langle\!\langle \beta \rangle\!\rangle$ $X\langle\!\langle ?\phi \rangle\!\rangle \ni (b,\omega)$ \leftarrow ((a, b), ω) \in X and (a, ω) \in $\llbracket \phi \rrbracket$ \leftarrow ((a, b), ω) \in X and (a, ω) \notin [ϕ] $X \langle\!\langle ?\phi \rangle\!\rangle \ni \bot$ $X\langle\!\langle x := f \rangle\!\rangle \ni (a, \omega[x \mapsto f(\omega)])$ \leftarrow (*a*, ω) \in *X* $X\langle\!\langle \alpha^d \rangle\!\rangle = X[[\alpha]]$ Modify

Natural Deduction Makes Proofs Functional Programs $\langle \cup \rangle \mathsf{E} \quad \frac{\mathsf{\Gamma} \vdash \langle \alpha \cup \beta \rangle \phi \quad \mathsf{\Gamma}, \langle \alpha \rangle \phi \vdash \psi \quad \mathsf{\Gamma}, \langle \beta \rangle \phi \vdash \psi}{\mathsf{\Gamma} \vdash \psi}$ $\langle ? \rangle \mathsf{I} \quad \frac{\Gamma \vdash \phi \quad \Gamma \vdash \psi}{\Gamma \vdash \langle ? \phi \rangle \psi} \qquad \langle \cup \rangle \mathsf{I} 1 \quad \frac{\Gamma \vdash \langle \alpha \rangle \phi}{\Gamma \vdash \langle \alpha \cup \beta \rangle \phi} \\ \langle ? \rangle \mathsf{E} 1 \quad \frac{\Gamma \vdash \langle ? \phi \rangle \psi}{\Gamma \vdash \phi} \qquad \langle \cup \rangle \mathsf{I} 2 \quad \frac{\Gamma \vdash \langle \beta \rangle \phi}{\Gamma \vdash \langle \alpha \cup \beta \rangle \phi}$ $\langle ? \rangle \mathsf{E2} \quad \frac{\mathsf{\Gamma} \vdash \langle ? \phi \rangle \psi}{\mathsf{\Gamma} \vdash \psi} \qquad \qquad [?] \mathsf{I} \quad \frac{\mathsf{\Gamma}, \phi \vdash \psi}{\mathsf{\Gamma} \vdash [? \phi] \psi}$ $[?]E \quad \frac{\Gamma \vdash [?\phi]\psi \quad \Gamma \vdash \phi}{\Gamma \vdash \psi}$

Natural Deduction Can Prove Games

$$[;] I = \frac{\Gamma \vdash [\alpha][\beta]\phi}{\Gamma \vdash [\alpha;\beta]\phi} \qquad [:=] I = \frac{\Gamma_x^{Y}, (x = f_x^{Y}) \vdash \phi}{\Gamma \vdash [x:=f]\phi} \qquad [d] I = \frac{\Gamma \vdash \langle \alpha \rangle \phi}{\Gamma \vdash [\alpha^d]\phi}$$

Natural Deduction Can Prove Games

$$\begin{array}{ll} [:] & \frac{\Gamma \vdash [\alpha][\beta]\phi}{\Gamma \vdash [\alpha;\beta]\phi} & [:=] \mathsf{I} & \frac{\Gamma_x^{y}, (x=f_x^{y}) \vdash \phi}{\Gamma \vdash [x:=f]\phi} & [^d] \mathsf{I} & \frac{\Gamma \vdash \langle \alpha \rangle \phi}{\Gamma \vdash [\alpha^d]\phi} \\ [*] & \frac{\Gamma \vdash \psi \quad \psi \vdash [\alpha]\psi \quad \psi \vdash \phi}{\Gamma \vdash [\alpha^*]\phi} \\ (*) \mathsf{I} & \frac{\Gamma \vdash \varphi \quad \varphi, \mathcal{M}_0 = \mathcal{M} \succ \mathbf{0} \vdash \langle \alpha \rangle (\varphi \land \mathcal{M}_0 \succ \mathcal{M}) \quad \varphi, \mathcal{M} = \mathbf{0} \vdash \phi}{\Gamma \vdash \langle \alpha^* \rangle \phi} \end{array}$$

Proof Calculus is Sound

Theorem (Soundness of proof calculus) Every provable sequent $(\Gamma \vdash \phi)$ is valid.

Proof Calculus is Sound

Theorem (Soundness of proof calculus) Every provable sequent ($\Gamma \vdash \phi$) is valid.

Lemma (Arithmetic-term substitution) If $\Gamma \vdash \phi$ then $\sigma(\Gamma) \vdash \sigma(\phi)$ for admissible substitutions σ .

Lemma (Coincidence)

The semantics of formula ϕ depends only on free variables of ϕ .

Lemma (Bound effect)

Only bound variables of game α are modified by execution.

Proofs Are Imperative Programs

Lemma (Weak Existence Property)

If $\Gamma \vdash (\exists x : \mathbb{Q} \ \phi)$, there exists $f : State \rightarrow \mathbb{Q}$ which witnesses ϕ .

Lemma (Weak Disjunction Property)

If $\Gamma \vdash \phi \lor \psi$ there exists $f : State \rightarrow Bool$ which chooses a branch of $\phi \lor \psi$. In each case, ϕ or ψ has a realizer.

Proofs Are Imperative Programs

Lemma (Weak Existence Property)

If $\Gamma \vdash (\exists x : \mathbb{Q} \ \phi)$, there exists $f : State \rightarrow \mathbb{Q}$ which witnesses ϕ .

Lemma (Weak Disjunction Property)

If $\Gamma \vdash \phi \lor \psi$ there exists $f : State \rightarrow Bool$ which chooses a branch of $\phi \lor \psi$. In each case, ϕ or ψ has a realizer.

Theorem (Strategy Property for Angel's Turn)

If $\Gamma \vdash \langle \alpha \rangle \phi$, there exists a realizer that wins $\langle\!\langle \alpha \rangle\!\rangle$ with goal ϕ assuming Γ initially.

Theorem (Strategy Property for Demon's Turn)

If $\Gamma \vdash [\alpha]\phi$, there exists a realizer that wins $[[\alpha]]$ with goal ϕ assuming Γ initially.

Realizability Reduces Constructivity to Soundness

Lemma (Weak Existence Property)

If $\Gamma \vdash (\exists x : \mathbb{Q} \ \phi)$, there exists $f : State \rightarrow \mathbb{Q}$ which witnesses ϕ .

Lemma (Weak Disjunction Property)

If $\Gamma \vdash \phi \lor \psi$ there exists $f : State \rightarrow Bool$ which chooses a branch of $\phi \lor \psi$. In each case, ϕ or ψ has a realizer.

Theorem (Strategy Property for Angel's Turn)

If $\Gamma \vdash \langle \alpha \rangle \phi$, there exists a realizer that wins $\langle\!\langle \alpha \rangle\!\rangle$ with goal ϕ assuming Γ initially.

Theorem (Strategy Property for Demon's Turn)

If $\Gamma \vdash [\alpha]\phi$, there exists a realizer that wins $[[\alpha]]$ with goal ϕ assuming Γ initially.

Theorem (Soundness of proof calculus)

Every provable sequent $(\Gamma \vdash \phi)$ is valid.

- Interpret explicit proof syntax as pure functional program
- Modal separation: proof about program \approx monadic program
- Application: normalize proofs to simplify further processing

- Interpret explicit proof syntax as pure functional program
- Modal separation: proof about program \approx monadic program
- Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

$$\begin{array}{c} \hline Propositional \\ M, N, O ::= (\lambda p : \phi. M) \mid \langle M, N \rangle^{\backslash} \mid \langle \ell \cdot M \rangle \mid \langle r \cdot M \rangle \\ \mid (M \text{ rep } p : \psi. N \text{ in } O) \\ \mid \langle \iota M \rangle \mid \langle \text{yield } M \rangle \mid \langle x := f_x^y \text{ in } p. M \rangle \end{array}$$

- Interpret explicit proof syntax as pure functional program
- Modal separation: proof about program \approx monadic program
- Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

- Interpret explicit proof syntax as pure functional program
- Modal separation: proof about program \approx monadic program
- Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

$$\begin{array}{c} \hline Propositional \\ M, N, O ::= (\lambda p : \phi. M) | \langle M, N \rangle | \langle \ell \cdot M \rangle | \langle r \cdot M \rangle \\ \hline (Co)induction \\ | \langle \ell M \rangle | \langle yield M \rangle | \langle x := f_x^y \text{ in } p. M \rangle \\ \hline Games \end{array}$$

Proof Terms Execute By Simplifying

Definition (Operational semantics)

 $M \mapsto M'$ if M reduces to M' in one step.

Definition (Normal forms)

Normal proof terms M consist of canonical forms and case analyses.

Proof Terms Execute By Simplifying

Definition (Operational semantics)

 $M \mapsto M'$ if M reduces to M' in one step.

Definition (Normal forms)

Normal proof terms M consist of canonical forms and case analyses.

Lemma (Progress) If $\cdot \vdash M : \phi$, then either M is normal or $M \mapsto M'$ for some M'.

Lemma (Preservation)

If $\cdot \vdash M$: ϕ and $M \mapsto^* M'$, then $\cdot \vdash M'$: ϕ .

Propositional Connectives are an Example

$$\begin{split} \lambda \phi \beta & (\lambda p : \phi, M) \ N \mapsto [N/p]M & \pi_L \beta & [\pi_1[M, N]] \mapsto M \\ \lambda \beta & (\lambda x : \mathbb{Q}, M) \ f \mapsto M_x^f & \pi_R \beta & [\pi_2[M, N]] \mapsto N \\ \pi_1 S & \frac{M \mapsto M'}{[\pi_1 M] \mapsto [\pi_1 M']} & \pi_2 S & \frac{M \mapsto M'}{[\pi_2 M] \mapsto [\pi_2 M']} \end{split}$$

 $\begin{array}{ll} [\pi_1] \mathbb{C} & [\pi_1 \langle \mathsf{case} \ M \ \mathrm{of} \ \ell \Rightarrow \ N \ | \ r \Rightarrow \ O \rangle] \mapsto \langle \mathsf{case} \ M \ \mathrm{of} \ \ell \Rightarrow \ [\pi_1 N] \ | \ r \Rightarrow \ [\pi_1 O] \rangle \\ [\pi_2] \mathbb{C} & [\pi_2 \langle \mathsf{case} \ M \ \mathrm{of} \ \ell \Rightarrow \ N \ | \ r \Rightarrow \ O \rangle] \mapsto \langle \mathsf{case} \ M \ \mathrm{of} \ \ell \Rightarrow \ [\pi_2 N] \ | \ r \Rightarrow \ [\pi_2 O] \rangle \end{array}$

These Foundations Have Been Built On

