CoasterX: A Case Study in Component-Driven Hybrid Systems Proof Automation

Brandon Bohrer

(joint work with Adriel Luo, Xuean Chuang, André Platzer)

Logical Systems Lab Computer Science Department Carnegie Mellon University

ADHS, Jul 7 2018

Roller Coasters are Safety-Critical Systems

Top Thrill

Steel Phantom

Mindbender

Joker's Jinx Rollback

Phantom's Revenge Head Injury

Fujin Raijin II Derailment

[BLCP18]

Formal Proofs in $d\mathcal{L}$ Ensure Safe Designs

[BLCP18]

Top Thrill Steel Phantom Mindbender Rollback Head Injury Derailment $\downarrow \downarrow$ $Pre \rightarrow [phys]Post$

Identify:

• Notion of safety *Post* (*acc* < *acc*_{hi})

Formal Proofs in $d\mathcal{L}$ Ensure Safe Designs

[BLCP18]

Top Thrill Steel Phantom Mindbender Rollback Head Injury Derailment $\downarrow \downarrow$ $Pre \rightarrow [phys]Post$

Identify:

- Notion of safety Post (acc < acc_{hi})
- Safe conditions $Pre(v = v_0)$

Formal Proofs in $d\mathcal{L}$ Ensure Safe Designs

[BLCP18]

Top Thrill Rollback

Steel Phantom Head Injury Derailment

 $Pre \rightarrow [phys]Post$

Mindbender

Identify:

- Notion of safety Post (acc < acc_{hi})
- Safe conditions $Pre(v = v_0)$

Verify physical *plant* ({x' = ..., y' = ...})

Design Verification Supplements Simulation

Simulations typically used today [XXLY12, Wei15]

Approach	Pro	Con
Simulate	Rich dynamics, easy	Low rigor+precision
Verify	High rigor+precision	Simple dynamics, hard
	and the second	

TITLE

Verifying Physical Designs is a Challenge

- How do we verify models at scale?
- How do we make verification accessible to non-experts?

Verifying Plant Designs is Important

Component-Driven Proof Automation Enables Design Verification

Goal	Solution	
Accessible	High-level graphical modeling	
Rigorous	Formal proof checked by small prover core	
Scalable	Proof scales by exploiting component structure	

Automatic Composition

Background: $d\mathcal{L}$ Formulas

$$P, Q ::= P \land Q \mid \neg P \mid \forall xP \mid \theta_1 \geq \theta_2 \mid [\alpha]P$$

Example: $Pre \rightarrow [plant]Post$

Construct	Meaning	
$P \land Q, \neg P, \forall xP$	First-order Logic	
$ heta_1 \geq heta_2$	Real arithmetic comparisons	
$[\alpha]P$	Safety: After α runs, P always holds	

Background: Hybrid Programs

lpha,eta	$::= \cdots \mid \{ x' = \theta \& P \} \mid \alpha \cup \beta \mid \alpha^*$
Construct	Meaning
$x' = \theta \& P$	Evolve x at continuous rate θ
	Evolution domain constraint P asserted continuously
$\alpha\cup\beta$	Choose either $lpha$ or eta nondeterministically
$lpha^*$	Loop α nondeterministically $n \ge 0$ times

Velocity and Acceleration Bounds are Fundamental

Tracks are 2D

• Vertical and horizontal bounds only (no lateral bound)

• Ignores banking, wind, roll resistance (1-2%)

Conservative Bound Suffices for Phantom

Top Thrill

Steel Phantom

Mindbender

Joker's Jinx Rollback

Phantom's Revenge Head Injury ✓ (<)

Fujin Raijin II Derailment

$$plant \equiv \{\{\mathbf{x}' = \sqrt{2}/2 \ \mathbf{v}, \mathbf{y}' = \sqrt{2}/2 \ \mathbf{v}, \mathbf{v}' = -\sqrt{2}/2 \ \mathbf{g} \ \& \ \mathbf{0} \le \mathbf{x} \le 100\} \\ \cup \{x' = dx \ v, y' = dy, v' = -dy \ g, dx' = -dy \ v/100\sqrt{2}, \\ dy' = dx \ v/100\sqrt{2} \ \& \ 100 \le \mathbf{x} \le 200\} \\ \cup \{x' = \sqrt{2}/2 \ v, y' = -\sqrt{2}/2 \ v, v' = \sqrt{2}/2 \ g \ \& \ 200 \le \mathbf{x} \le 300\}\}^*$$

$$plant \equiv \{\{Line(...) \& 0 \le x \le 100\} \\ \cup \{Arc(...) \& 100 \le x \le 200\} \\ \cup \{Line(...) \& 200 \le x \le 300\}\}^*$$

$$plant \equiv \{\{Line(...) \& 0 \le x \le 100\} \\ \cup \{Arc(...) \& 100 \le x \le 200\} \\ \cup \{Line(...) \& 200 \le x \le 300\}\}^*$$

$$plant \equiv \{\{Line(...) \& 0 \le x \le 100\} \\ \cup \{Arc(...) \& 100 \le x \le 200\} \\ \cup \{Line(...) \& 200 \le x \le 300\}\}^*$$

Individual Components are Modeled as ODEs

Arc Segment:

Arc
$$\stackrel{\text{def}}{\equiv} \{x' = v \cdot dx, y' = v \cdot dy, v' = -dy \cdot g, \\ dx' = -dy \cdot v/r, dy' = dx \cdot v/r \\ \& \text{ InBounds}(x_1, x_2, y_1, y_2)\}$$

Concrete Parameters are Plugged in From GUI

Line Segment:

Line
$$\stackrel{\text{def}}{\equiv} \{x' = v \cdot dx, y' = v \cdot dy, v' = -dy \cdot g \& \text{InBounds}(x_1, x_2, y_1, y_2)\}$$

 $\Downarrow_{\rm Subst}$

Line(1,0,...)
$$\stackrel{\text{def}}{\equiv} \{x' = v \cdot 1, y' = v \cdot 0, v' = -0 \cdot g \& \text{InBounds}(0, 100, 200, 200)\}$$

Composition is Modeled with Discrete Programs

Let track sections sec_i be component instances:

$$\sec_i \stackrel{\text{def}}{\equiv} \operatorname{Line}(\operatorname{args}_i) \text{ or } \operatorname{Arc}(\operatorname{args}_i)$$

and system model α :

plant
$$\stackrel{\text{def}}{\equiv} (\sec_1 \cup \cdots \cup \sec_n)^*$$

Components Verified with Invariants and Solving

- Straight line is solvable, thus decidable.
- Arc needs invariant (energy conservation), proved manually:

 $E = E_0 \wedge \operatorname{OnTrack} \rightarrow [\operatorname{Arc}] (E = E_0 \wedge \operatorname{OnTrack})$

Instantiation is Verified by Substitution

- Conceptually simple step
- Greatly improves performance (20x in some cases)

Line
$$\stackrel{\text{def}}{\equiv} \{x' = v \cdot dx, y' = v \cdot dy, v' = -dy \cdot g \\ \& \text{ InBounds}(x_1, x_2, y_1, y_2)\}$$

$\Downarrow_{\rm Subst}$

Line(1,0,...)
$$\stackrel{\text{def}}{\equiv} \{x' = v \cdot 1, y' = v \cdot 0, v' = -0 \cdot g \& \text{InBounds}(0, 100, 200, 200)\}$$

Composition is Verified by Contract-Checking

- At boundary, invariants for both sections hold
- Checked with arithmetic solving + custom automation

Analysis Distinguished 6 Safe/Unsafe Real Coasters

Top Thrill

Steel Phantom (6.5g)

Backyard

El Toro

Phantom's Revenge (3.5g)

Lil' Phantom

This is the Largest d $\!\mathcal{L}$ Model Ever

Stats:

	CoasterX Max		Previous Max (Est.)
Components	56	>	3
Fml size	52KB	>	6.5KB
Proof Steps	20M (29K w/ reuse)	>	100K

Scalability is Quadratic

(on a recent workstation)

Component Verification Cost Sometimes Matters

Component	Time	# Steps
Line	140s	900K
Arc	pprox4.5s	\approx 12.5K

Automatic proof (Line) vastly slower than manual proof (Arcs)

Future Work

Advanced Dynamical Models Answer Deeper Questions

Acceleration $|a| \leq a_{hi}$

Rollback $0 < v_{lo} \leq v$

 $\begin{array}{l} {\rm Stuck} \\ {\rm 0} < {\it v_{\it lo}} \leq {\it v} \end{array}$

Friction

Wind

Advanced 3D Design

3D Modeling support enables lateral bounds and banking support

Rich Contracts Enable High-Impact Domains

- Transit networks: Contracts at intersections/switches
- Flight plans: Contracts at crossing points

Coasters Support Pedagogical Mission

- 15-424 CPS Foundations: Fun applications motivate students
- Course feeds into undergraduate research
- Initial stages were Adriel + Xuean's 15-424 course project

Questions?

Top Thrill

Steel Phantom

Backyard

El Toro

Phantom's Revenge

Lil' Phantom

References I

- ASTM, Standard Practice for Design of Amusement Rides and Devices, Standard, ASTM Intl., Sep 2017.
- Brandon Bohrer, Adriel Luo, Xuean Chuang, and André Platzer, CoasterX: A case study in component-driven hybrid systems proof automation, IFAC, 2018.
- Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer, KeYmaera X: An axiomatic tactical theorem prover for hybrid systems, CADE (Berlin) (Amy Felty and Aart Middeldorp, eds.), LNCS, vol. 9195, Springer, 2015, pp. 527–538.
- Nick Weisenberger, *Coasters 101: An engineer's guide to roller coaster design*, 2015.

References II

Gening Xu, Hujun Xin, Fengyi Lu, and Mingliang Yang, Kinematics and dynamics simulation research for roller coaster multi-body system, Advanced Materials Research, vol. 421, Trans Tech Publications, 2012, pp. 276–280.