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Abstract We introduce a fixedpoint algorithm for verifying safety properties of hybrid

systems with differential equations whose right-hand sides are polynomials in the state

variables. In order to verify nontrivial systems without solving their differential equa-

tions and without numerical errors, we use a continuous generalization of induction,

for which our algorithm computes the required differential invariants. As a means for

combining local differential invariants into global system invariants in a sound way, our

fixedpoint algorithm works with a compositional verification logic for hybrid systems.

With this compositional approach we exploit locality in system designs. To improve the

verification power, we further introduce a saturation procedure that refines the system

dynamics successively with differential invariants until safety becomes provable. By

complementing our symbolic verification algorithm with a robust version of numerical

falsification, we obtain a fast and sound verification procedure. We verify roundabout

maneuvers in air traffic management and collision avoidance in train control and car

control.

Keywords Verification of hybrid systems · Differential invariants · Verification logic ·
Fixedpoint engine

1 Introduction

Reachability questions for systems with complex continuous dynamics are among the

most challenging problems in verifying embedded systems. Hybrid systems [18,10,13,

1] are models for these systems with interacting discrete and continuous transitions,

with the latter being governed by differential equations. For simple systems whose dif-

ferential equations have solutions that are polynomials in the state variables, quantifier

elimination over real-closed fields [7] can be used for verification [13,26,2,28]. Unfortu-

nately, this symbolic approach does not scale to systems with complicated differential
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equations whose solutions do not support quantifier elimination (e.g., when they are

transcendental functions) or cannot be given in closed form.

Numerical or approximation approaches [3,29,11] can deal with more general dy-

namics. However, numerical or approximation errors need to be handled carefully as

they easily cause unsoundness [29]. More specifically, we have shown previously that

even single image computations of fairly restricted classes of hybrid systems are un-

decidable by numerical computation [29]. Thus, numerical approaches can be used for

falsification but not (ultimately) for verification. Further, numerical approaches suffer

from the curse of dimensionality: Numerical discretizations of the state space grow

exponentially in the number of variables.

In this article, we present an approach that combines the soundness of symbolic

approaches [13,2,28] with support for nontrivial dynamics that is classically more dom-

inant in numerical approaches [3,29,11]. During continuous transitions, the system fol-

lows a solution of its differential equation. But for nontrivial dynamics, these solutions

are much more complicated than the original equations. Solutions quickly become tran-

scendental even if the differential equations are linear. For instance, the solutions of the

system x′ = −y, y′ = x are trigonometric functions that can simulate Turing machines.

To overcome this, we handle continuous transitions based on their local vector fields,

which are described by their differential equations. We use differential induction [27], a

continuous generalization of induction that works with the differential equations them-

selves instead of their solutions. For the induction step, we use a condition that can

be checked easily based on differential invariants [27], i.e., properties whose derivative

holds true in the direction of the vector field of the differential equation. The derivative

is a directional derivative in the direction of (the vector field generated by) the differ-

ential equation, and we generalize derivatives from functions to formulas appropriately.

For this to work in practice, the most crucial steps are to find sufficiently strong local

differential invariants for differential equations and compatible global invariants for the

hybrid system.

To this end, we introduce a sound verification algorithm for hybrid systems that

computes the differential invariants and system invariants in a fixedpoint loop. We

follow the invariants as fixedpoints paradigm [6] using a verification logic that is gen-

eralized to hybrid systems accordingly [28]. For combining multiple local differential

invariants into a global invariant in a sound way, we exploit the closure properties of the

underlying verification logic [28] by forming appropriate logical combinations of multi-

ple local safety statements. For instance, safety properties of a complex system corre-

spond to a conjunction of local safety properties of subsystems in the logic. In addition,

we introduce a differential saturation process that refines the hybrid system dynamics

successively with auxiliary differential invariants until the safety statement becomes

an invariant of the refined system. Finally, each fixedpoint iteration of our algorithm

can be combined with numerical falsification to accelerate the overall symbolic verifi-

cation in a sound way. Indeed, numerical falsification can be used to accelerate both

local fixedpoint iterations for differential invariants and global fixedpoint iterations for

global system invariants. We validate our algorithm by verifying aircraft roundabout

maneuvers [38,29], train control applications [33], and car speed controllers [8].

The major contribution in this work is the fixedpoint algorithm for computing

differential invariants and its coupling with a differential saturation process. We show

that it can verify realistic applications that were out of scope for related invariant

approaches [37,36,35] or other approaches [18,13,26], both for theoretical reasons [28,
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x′ = 1
x ≤ 9

off
x′ = −1

x ≥ 5

x := x− 1

x ≤ 2

q := on; /* initial location is on */(
(?q = on; x′ = 1 ∧ x ≤ 9)

∪ (?q = on ∧ x ≥ 5; x := x− 1; q := off)
∪ (?q = off; x′ = −1)
∪ (?q = off ∧ x ≤ 2; q := on; ?x ≤ 9)

)∗
Fig. 1 Natural hybrid program rendition of hybrid automaton (simple water tank)

27] and for scalability issues. Our algorithm verifies collision avoidance for 5 aircraft in

a system with nontrivial curved flight dynamics in 28 continuous dimensions.

This is an extended version of previous work at CAV [30]. In this article, we extend

our previous work [30] by providing actual proofs for our theorems, by including more

extensive explanations, illustrations and by giving more examples. We present new

detail on the fixedpoint verification algorithm, especially on the handling of existen-

tial parameter choices and we add a global fixedpoint algorithm. We further provide

additional experimental verification results for a car case study.

2 Hybrid Programs and Differential Dynamic Logic

As operational models for hybrid systems, we use hybrid programs (HP), a program

notation for hybrid automata (HA) [18]. HP can be decomposed syntactically into

fragments: subprograms which correspond to partial executions of only a part of the

full HP (programs are easier to split structurally into parts than graphs, because han-

dling dangling edges between graph fragments is complicated). HP have a perfectly

compositional semantics: The semantics of a compound HP is a simple function of the

semantics of its fragments. This is important as our verification algorithm recursively

decomposes an HP into fragments α1, . . . , αn (e.g., to find local invariants for each αi)

and recombines corresponding correctness statements about these fragments αi later.

We exploit the compositional relationship between the semantics of α and its fragments

for our compositional verification approach.

Hybrid Programs In order to represent HA [18] textually as an HP, we represent each

discrete and continuous transition as a sequence of statements, with a nondeterministic

choice (∪) between these transitions. Consider a simple water tank system (Fig. 1)

where x denotes the current water level. For instance, the second line in the HP of

Fig. 1 represents a continuous transition. It tests (denoted by ?q = on) if the current

location q is on, and then fills the tank by following the differential equation x′ = 1

restricted to invariant region x ≤ 9 (i.e., the conjunction x′ = 1 ∧ x ≤ 9). The third

line tests the guard x ≥ 5 when in state on, then resets x by a discrete assignment

(x := x− 1), and then changes location q to off. The additional test ?x ≤ 9 in the fourth

line is needed, because the HA is only allowed to enter mode on when its invariant

region x ≤ 9 is satisfied. The ∗ at the end of the HP indicates that the transitions of

a HA repeat indefinitely. Alternatively, the resulting HP in Fig. 1 can be considered

as the essential part of a program exported from Stateflow/Simulink enriched with

differential equations for the continuous plant dynamics. Every safety property that

this HP satisfies is fulfilled for all deterministic implementation refinements.

Formally, let V be a set of state variables of the system and auxiliary variables. As

terms we allow polynomials over the rationals with variables in V . To make a struc-
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tural decomposition of HP into fragments possible, each operation of a HP only has

a single effect. There are separate classes of program statements with purely discrete

effect, purely continuous effect, and statements for regulating their interaction. Hy-

brid programs (HP) are built with the statements in Tab. 1 (where H is a formula of

first-order real arithmetic, which we can assume to be quantifier-free using quantifier

elimination in real-closed fields [7]). The effect of x := θ is an instantaneous discrete

jump assigning θ to x. Instead, x := random randomly assigns any real value to x by

a nondeterministic choice. During a continuous evolution x′1 = θ1 ∧ · · · ∧ x′n = θn ∧H,

all conjuncts need to hold. Its effect is a continuous transition controlled by the differ-

ential equation system x′1 = θ1, . . . , x
′
n = θn that always satisfies the arithmetic con-

straint H (thus remains in the region described by H). This directly corresponds to

a continuous evolution mode of a HA. The effect of state check ?H is a skip (i.e., no

change) if formula H is true in the current state and that of abort, otherwise. The

non-deterministic choice α∪β expresses alternatives in the behavior of the hybrid sys-

tem. Sequential composition α;β expresses a behavior in which β starts after α finishes

(as usual, β never starts if α continues indefinitely). Non-deterministic repetition α∗,
repeats α an arbitrary number of times, possibly zero. All HA can be represented as

HP. Further, all classical discrete control structures can be defined in terms of the

operations of Tab. 1, for instance:

if H then α else β ≡ (?H;α) ∪ (?¬H;β)

while H do α ≡ (?H;α)∗; ?¬H

Formulas of dL Our verification algorithm repeatedly decomposes and recombines HP.

As a logical framework where these operations are sound and have a well-defined se-

mantics, we use a logic in which simultaneous correctness properties about multiple

subsystems are expressible. The differential dynamic logic dL [28] is an extension of

first-order logic over the reals with modal formulas like [α]φ, which is true iff all states

reachable by following the transitions of HP α satisfy property φ (safety).

Definition 1 (dL formulas) The formulas of dL are defined by the following gram-

mar (where θ1, θ2 are terms, ∼ ∈ {=,≤, <,≥, >}, φ, ψ are formulas, x ∈ V , and α is

an HP built from the statements in Tab. 1):

Formula ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]φ .

A Hoare-triple {ψ}α{φ} can be expressed as the formula ψ → [α]φ, which is true iff all

states reachable by HP α satisfy φ when starting from an initial state that satisfies ψ.

For initial states that satisfy ψ, the modal formula [α]φ in ψ → [α]φ expresses that all

Table 1 Statements and (informal) effects of hybrid programs (HP)

Notation Operation Effect
x := θ discrete assignment assigns term θ to variable x ∈ V
x := random nondet. assignment assigns any real value to x ∈ V
x′1 = θ1 ∧ x′2 = θ2 ∧ . . . continuous evolution

differential equations for xi ∈ V , terms θi
· · · ∧ x′n = θn ∧H with arithmetic constraint H (domain)

?H state check test formula H at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or HP β
α∗ nondet. repetition repeats HP α n-times for any n ∈ N
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states reachable by following α satisfy φ. For initial states that do not satisfy ψ, the

formula ψ → [α]φ states nothing because the condition ψ is false.

For instance, let wctrl abbreviate the body of the loop of the HP for the water

controller from Fig. 1 such that q := on; (wctrl)∗ corresponds to the full HP from Fig. 1.

Then the following dL formula states that the water level is always below 10 when it

starts at level x ≤ 3:

x ≤ 3→ [q := on; (wctrl)∗]x < 10 (1)

Unlike Hoare-logics, dynamic logics are closed under logical connectives [17]. Hence,

we can express simultaneous correctness statements about multiple fragments αi using

conjuncts [α1]φ1 ∧ [α2]φ2. With this, a proof for a property [α]φ can be decomposed

soundly into [α1]φ1 ∧ [α2]φ2, when the formulas [α]φ and [α1]φ1 ∧ [α2]φ2 are equivalent

for appropriate fragments αi of α and subproperties φi of φ. In turn, if a verification

algorithm with input [αi]φi yields formulas φ̃i as output, recursively, these φ̃i can be

recombined soundly to the overall verification result φ̃1 ∧ φ̃2 for [α]φ. By the semantics

of dL, this process gives a sound way of combining local invariants required in the

respective subgoals [αi]φi to a global system invariant.

Finally, dL and its proof techniques are closed under quantification, which we use to

quantify over parameter choices of local invariants. For example, ∃p ([α1]φ1 ∧ [α2]φ2)

can be used to determine if there is a common choice for parameter p that makes both

subgoals [αi]φi about subsystems αi true at once. Note that this formula states the

existence of a parameter choice making two reachability statements [α1]φ1 and [α2]φ2
true at the same time.

Semantics The semantics of dL and HP is a Kripke semantics in which states of the

Kripke model are states of the hybrid system. A state is a map ν : V → R assigning

real numbers to all variables; the set of all states is denoted by States. We write ν |= φ

if formula φ is true at state ν (Def. 3 below). Likewise, [[θ]]ν denotes the real value of

term θ at state ν. The semantics of HP α is captured by the state transitions that

are possible by running α (reachable state semantics). For continuous evolutions, the

transition relation holds for pairs of states that can be interconnected by a continu-

ous flow respecting the differential equation and invariant region. That is, there is a

continuous transition along x′ = θ ∧H from state ν to state ω, if there is a solution

of the differential equation x′ = θ that starts in state ν and ends in ω and that always

remains within the region H during its evolution. As in [18,10], we assume non-zeno

behavior, for simplicity.

Definition 2 (Transition system of hybrid programs) The transition relation,

ρ(α), of HP α, specifies which state ω is reachable from a state ν by operations of α

and is defined as follows

1. (ν, ω) ∈ ρ(x := θ) iff the state ω is identical to ν except that ω(x) = [[θ]]ν .

2. (ν, ω) ∈ ρ(x := random) iff the state ω agrees with ν except for the value of x, which

can assume an arbitrary real value in ω.

3. (ν, ω) ∈ ρ(x′1 = θ1 ∧ · · · ∧ x′n = θn ∧H) iff for some r ≥ 0, there is a (flow) function

ϕ:[0, r]→ States with ϕ(0) = ν, ϕ(r) = ω, such that:

– The differential equation holds, i.e., for each variable xi and each time ζ ∈ [0, r],

d [[xi]]ϕ(t)

dt
(ζ) = [[θi]]ϕ(ζ) .
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– The value of other variables y 6∈ {x1, . . . , xn} remains constant: [[y]]ϕ(ζ) = [[y]]ϕ(0)
for each ζ ∈ [0, r].

– The invariant is always respected, i.e., ϕ(ζ) |= H for each ζ ∈ [0, r].

4. ρ(α ∪ β) = ρ(α) ∪ ρ(β)

5. ρ(α;β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for a state z}
6. (ν, ω) ∈ ρ(α∗) iff there are an n ∈ N and states ν = ν0, . . . , νn = ω such that

(νi, νi+1) ∈ ρ(α) for all 0 ≤ i < n.

Definition 3 (Interpretation of dL formulas) The interpretation |= of a dL for-

mula with respect to state ν uses the standard meaning of first-order logic:

1. ν |= θ1 ∼ θ2 iff [[θ1]]ν ∼ [[θ2]]ν for ∼ ∈ {=,≤, <,≥, >}
2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, accordingly for ¬,∨,→,↔
3. ν |= ∀xφ iff ω |= φ for all states ω that agree with ν except for the value of x

4. ν |= ∃xφ iff ω |= φ for some state ω that agrees with ν except for the value of x

It extends to correctness statements about a HP α using the transition relation ρ(α):

5. ν |= [α]φ iff ω |= φ for all states ω with (ν, ω) ∈ ρ(α).

3 Inductive Verification by Combining Local Fixedpoints

For verifying safety properties of hybrid systems without having to solve their differen-

tial equations, we use a continuous form of induction. In the induction step, we use a

condition on directional derivatives in the direction of the vector field generated by the

differential equation. The resulting properties are invariants of the differential equa-

tion (whence called differential invariants [27]). The crucial step for verifying discrete

systems by induction is to find sufficiently strong invariants (e.g., for loops α∗). Sim-

ilarly, the crucial step for verifying dynamical systems (which correspond to a single

continuous mode of a hybrid system) by induction is to find sufficiently strong invari-

ant properties of the differential equation. Consequently, for verifying hybrid systems

inductively, local invariants need to be found for each differential equation and a global

system invariant needs to be found that is compatible with all local invariants.

To compute the required invariants and differential invariants, we combine the in-

variants as fixedpoints approach from [6] with the lifting of verification logics to hybrid

systems from [28]. We introduce a verification algorithm that computes invariants of

a system as fixedpoints of safety constraints on subsystems. In order to obtain a local

algorithm that works by decomposing global properties of HP into local properties of

subsystems, we exploit compositionality of HP and closure properties of dL: HP can

be decomposed into subsystems easily and dL can combine safety statements about

multiple subsystems simultaneously.

3.1 Verification by Symbolic Decomposition

A safety statement corresponds to a dL formula ψ → [α]φ with an HP α, a safety

property φ about its reachable states, and an arithmetic formula ψ that characterizes

the set of initial states symbolically. Validity of formula ψ → [α]φ (i.e., truth in all

states) corresponds to φ being true in all states reachable by HP α from initial states
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that satisfy ψ [28]. Our verification algorithm defines the function prove(ψ → [α]φ) for

verifying this safety statement recursively.

The cases of function prove where dL [28] enables us to verify a property of an HP

directly by decomposing it into a property of its parts are shown in Fig. 2. For a concise

presentation, the case in line 1 introduces an auxiliary variable x̂ to handle discrete as-

signments by substituting the auxiliary variable x̂ for the new value of x in φx̂x. By φx̂x we

denote the result of substituting x̂ for x in φ. For instance, x ≤ 3→ [x := x− 1]x < 10

is shown by proving x ≤ 3 ∧ x̂ = x− 1→ x̂ < 10. Our implementation in the verifica-

tion tool KeYmaera [32] uses optimizations based on nested modalities in dynamic

logic to avoid auxiliary variables [28]. State checks ?H are shown by assuming the test

succeeds, i.e., H holds true (line 3), because there is nothing to show for failed tests, as

?H will not allow any transitions when H is false. Nondeterministic choices split into

their alternatives (line 5): To show that ψ → [α ∪ β]φ is valid (i.e., that all transitions

choosing between α and β from initial states satisfying ψ lead to states satisfying φ),

our algorithm shows, instead, that all transitions along α satisfy this property and—

independently—all transitions along β do. Sequential compositions are proven using

nested modalities (line 7): The states that we reach by following all transitions of the

sequential composition α;β (in [α;β]φ) are the same as the states reachable by follow-

ing all transitions of β (in [β]φ) from any state reachable by following any transition

of α (in [α][β]φ). Random assignments are proven by universal quantification (line 9),

because all real numbers could be assigned to x when following all possible transitions

of assigning a random value to x, nondeterministically.

1 function prove (ψ → [x := θ]φ ) :

2 return prove (ψ ∧ x̂ = θ → φx̂x ) where x̂ i s a new a u x i l i a r y v a r i a b l e
3 function prove (ψ → [?H]φ ) :
4 return prove (ψ ∧H → φ)
5 function prove (ψ → [α ∪ β]φ ) :
6 return prove (ψ → [α]φ) and prove (ψ → [β]φ) /∗ thus ψ → [α]φ ∧ [β]φ ∗/
7 function prove (ψ → [α;β]φ ) :
8 return prove (ψ → [α][β]φ)
9 function prove (ψ → [x := random]φ ) :

10 return prove (ψ → ∀xφ)
11 function prove (ψ → φ) where i s F i r s t O r d e r (φ ) :
12 return Quant i f i e rE l im ina t i on (ψ → φ)
13 function prove (ψ → Qxφ) where Qx i s ∀x or ∃x :
14 return Quant i f i e rE l im ina t i on (ψ → Qx prove(φ))

Fig. 2 dL-based verification by symbolic decomposition

The base case in line 11, where φ is a formula of first-order real arithmetic, can

be proven by quantifier elimination over real-closed fields [7]. Despite its complexity,

this can remain feasible, because the formulas resulting from our algorithm do not

depend on the complicated solutions of differential equations but only their right-hand

sides. Further, the decompositions in our verification algorithm generally lead to local

properties with lower complexities. Using a temporary form of Skolemization together

with Deskolemization, quantifier elimination can even be lifted to eliminate quantifiers

from dL formulas [28]. We present here only a simplified treatment of quantifiers in

dL formulas like ∀xφ that contain modal subformulas: The prove function is applied

recursively to the unquantified kernel φ first and the resulting formula is handled by
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quantifier elimination (line 13). More generally, quantifier elimination can be lifted to

quantifiers in dL formulas like ∀xφ as follows. After introducing a fresh Skolem term

s for variable x in φ, the analysis continues with the unquantified kernel φsx. Later

on when the formulas resulting from recursive application of prove contain no more

modalities, the quantifier for s can be reintroduced (Deskolemization) and eliminated

equivalently using quantifier elimination in real-closed fields. Handling ∃xφ for modal

formulas φ is similar. The crucial part is that Skolem term dependencies can be ex-

ploited to prevent unsound quantifier rearrangements; see previous work [28].

Overall, the algorithm in Fig. 2 recursively reduces safety of HP to separate prop-

erties of continuous evolutions or of repetitions, which we verify in the next sections.

3.2 Discrete and Differential Induction, Differential Invariants

In the sequel, we present algorithms for verifying loops in ψ → [α∗]φ by discrete induc-

tion and continuous evolutions in ψ → [x′ = θ ∧H]φ by differential induction, which

is a continuous form of induction. In either case, we prove that an invariant F holds

initially (in the states characterized symbolically by ψ, thus ψ → F is valid) and finally

entails the postcondition φ (i.e., F → φ). The cases differ in their induction step.

Definition 4 (Discrete induction) Formula F is a (discrete inductive) invariant of

ψ → [α∗]φ iff the following formulas are valid:

1. ψ → F (induction start), and

2. F → [α]F (induction step).

An invariant is sufficiently strong if, further, F → φ is valid.

Definition 5 (Continuous invariants) Let D be a differential equation system and

H a first-order formula. Formula F is a continuous invariant of ψ → [D ∧H]φ iff the

following formulas are valid:

1. ψ ∧H → F (induction start), and

2. F → [D ∧H]F (induction step).

Again, a continuous invariant is sufficiently strong if F → φ is valid.

Note that the presence of the evolution domain H in the continuous dynamics enables

us to weaken case 1 of Def. 5 to assume H for the induction start as there are no

transitions along x′ = θ ∧H (hence nothing to show) unless H is true in the beginning.

To prove that F is a continuous invariant, it is sufficient to check a condition

on the directional derivatives of all terms of the formula, which expresses that no

atomic subformula of F changes its truth-value along the dynamics of the differential

equation [27]. This condition is much easier to check than a reachability property

(F → [D ∧H]F ) of a differential equation. Yet, applications like aircraft maneuvers

need invariants with multiple mixed equations and inequalities. Thus, we generalize

directional derivatives from functions to logical formulas.

Definition 6 (Differential induction) Let D be the differential equation system

x′1 = θ1 ∧ · · · ∧ x′n = θn and H a first-order formula. A quantifier-free first-order for-

mula F is a differential invariant of ψ → [D ∧H]φ iff the following formulas are valid:

1. ψ ∧H → F (induction start), and



Computing Differential Invariants of Hybrid Systems as Fixedpoints 9

2. H → ∇DF (differential induction step)

where ∇DF is defined as the conjunction of all directional derivatives of atomic for-

mulas in F in the direction of the vector field of D:

∇DF ≡
∧

(b∼c)∈F

(∇Db ∼ ∇Dc) for ∼ ∈ {=,≥, >,≤, <}

For a term c, the directional derivative ∇Dc is defined in terms of the partial deriva-

tives ∂c
∂xi

of c by xi as

∇Dc :=

n∑
i=1

∂c

∂xi
θi .

These partial derivatives of terms are well-defined in the Euclidean space spanned by

the variables and can be computed symbolically.

F

¬F

Fig. 3 Differential
invariant F

The region corresponding to a differential invariant F is il-

lustrated in Fig. 3. Formula∇DF is a directional derivative of F

in the direction of the dynamics of D. Intuitively, formula ∇DF
is true if the gradient arrows of the dynamics are pointing in-

side/transversal to the (possibly unbounded) region consisting

of the points where F is true but never outside. We refer to [27]

for the general theory of differential invariants.

The central property of differential invariants for verification

purposes is that they can be used to replace infeasible or even

impossible reachability analysis with feasible symbolic computation.

Proposition 1 (Principle of differential induction [27]) All differential invari-

ants are continuous invariants.

Before we show a proof of Proposition 1, we illustrate its use in a simple exam-

ple. Consider the dynamics x′ = x2 ∧ y′ = −3. Differential invariants can be used to

show that 3x ≥ 4y is an invariant for this dynamics without using any state based

reachability verification. We just compute symbolically

∇x′=x2∧y′=−3(3x ≥ 4y) ≡ ∂3x

∂x
x2 +

∂3x

∂y
(−3) ≥ ∂4y

∂x
x2 +

∂4y

∂y
(−3) ≡ 3x2 ≥ −12 .

Since the latter formula is easily found to be valid, 3x ≥ 4y is proven to be a differential

invariant and thus remains true whenever it holds true initially (case 1 of Def. 6).

Note that—contrary to common suggestions—condition 2 in Def. 6 can not be re-

laxed to the border of F ! For the region F defined as x2 ≤ 0, the relaxed condition

∇x′=5(x2 ≤ 0), i.e., (2x)5 ≤ 0, would hold on the border x = 0 of x2 ≤ 0. But x2 ≤ 0

clearly is no invariant property of the dynamics x′ = 5. Thus, we have defined differ-

ential invariance conditions to avoid such unsound reasoning carefully. Unfortunately,

the counterexample carries over to other approaches [34,15], revealing soundness issues

there.

For the proof of Proposition 1, we first prove a result showing that the formal

directional derivative ∇DF of formula F as defined in Def. 6 is a generalization of

standard function derivatives. We show that the directional derivatives ∇Dc of terms c

in the direction of the vector field of D, which are used for forming∇DF , agree with the

standard differentiation. That is, they agree with the differentiation in the Euclidean

real space of the value of these terms along a flow solving the corresponding differential

equation D.



10 André Platzer, Edmund M. Clarke

Lemma 1 Let D ∧ H be a continuous evolution and let ϕ : [0, r] → States be a

corresponding flow of duration r > 0 (case 2 of Def. 2). Then for all terms c and

all ζ ∈ [0, r] we have the identity

d [[c]]ϕ(t)

dt
(ζ) = [[∇Dc]]ϕ(ζ) .

In particular, [[c]]ϕ(t) is continuously differentiable.

Proof The proof is by induction on term c. Let D be x′1 = θ1 ∧ · · · ∧ x′n = θn.

– If c is one of the variables xj for some j (for other variables, the proof is simple

because c is constant during ϕ) then:

d [[xj ]]ϕ(t)

dt
(ζ) = [[θj ]]ϕ(ζ) = [[

n∑
i=1

∂xj
∂xi

θi]]ϕ(ζ) .

The first equation holds by Def. 2. The last equation holds as
∂xj

∂xj
= 1 and

∂xj

∂xi
= 0

for i 6= j. The derivatives exist because ϕ is (continuously) differentiable.

– If c is of the form a+ b, the desired result can be obtained by using the properties

of derivatives and interpretations:

d [[a+ b]]ϕ(t)

dt
(ζ)

=
d ([[a]]ϕ(t) + [[b]]ϕ(t))

dt
(ζ) [[·]]ν is a linear operator

=
d [[a]]ϕ(t)

dt
(ζ) +

d [[b]]ϕ(t)

dt
(ζ)

d

dt
is a linear operator

= [[∇Da]]ϕ(ζ) + [[∇Db]]ϕ(ζ) by induction hypothesis

= [[∇Da+∇Db]]ϕ(ζ) [[·]]ν is a linear operator

= [[∇D(a+ b)]]ϕ(ζ) ∇ is linear, because
∂

∂xi
is linear

– The case if c is of the form a · b is accordingly, using Leibniz’s product rule for
∂
∂xi

. ut

Proof (of Proposition 1) We have to show that ν |= F → [D ∧H]F for all states ν.

Let ν satisfy ν |= F as, otherwise, there is nothing to show. We can assume F to be in

disjunctive normal form and consider any disjunct G of F that is true at ν. In order to

show that F remains true during the continuous evolution, it is sufficient to show that

each conjunct of G is. We can assume these conjuncts to be of the form c ≥ 0 (or c > 0

where the proof is accordingly). Finally, using vectorial notation, we write x′ = θ for

the differential equation system. Now let ϕ : [0, r]→ States be any flow of x′ = θ ∧H
beginning in ϕ(0) = ν according to Def. 2. If the duration of ϕ is r = 0, we have

ϕ(0) |= c ≥ 0 immediately, because ν |= c ≥ 0. For duration r > 0, we show that c ≥ 0

holds all along the flow ϕ, i.e., ϕ(ζ) |= c ≥ 0 for all ζ ∈ [0, r].

Suppose there was a ζ ∈ [0, r] with ϕ(ζ) |= c < 0, which will lead to a contradiction.

The function h : [0, r]→ R defined as h(t) = [[c]]ϕ(t) satisfies the relation h(0) ≥ 0 > h(ζ),

because h(0) = [[c]]ϕ(0) = [[c]]ν and ν |= c ≥ 0 by assumption (induction start of Def. 6).

By Lemma 1, h is continuous on [0, r] and differentiable at every ξ ∈ (0, r). By mean
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Fig. 4 Roundabout maneuvers for air traffic collision avoidance

value theorem, there is a ξ ∈ (0, ζ) such that
dh(t)
dt (ξ) · (ζ − 0) = h(ζ)− h(0) < 0. In

particular, since ζ ≥ 0, we can conclude that
dh(t)
dt (ξ) < 0. Now Lemma 1 implies that

dh(t)
dt (ξ) = [[∇Dc]]ϕ(ξ) < 0. This, however, is a contradiction, because the induction step

of Def. 6 implies that the formula H → ∇Dc ≥ 0 is true in all states along ϕ, including

ϕ(ξ) |= H → ∇Dc ≥ 0. In particular, as ϕ is a flow for D∧H, we know that ϕ(ξ) |= H

holds, and we have ϕ(ξ) |= ∇Dc ≥ 0, which contradicts [[∇Dc]]ϕ(ξ) < 0. ut

In Sections 3.4–3.6, we present algorithms for finding differential invariants for

differential equations, and for finding global invariants for repetitions.

3.3 Example: Flight Dynamics in Air Traffic Collision Avoidance

Aircraft collision avoidance maneuvers resolve conflicting flight paths, e.g., by round-

about maneuvers [38], see Fig. 4a–b. Their nontrivial dynamics makes safe separation

of aircraft difficult to analyze, in particular as good timing and coordination of move-

ment in space are crucial [38,23,12,9,29,20]. Correct functioning of these maneuvers

under all circumstances is difficult to guarantee without formal verification, especially

in light of the counterexample (Fig. 4c) that our model checker discovered for the

classical roundabout maneuver. Thus, verification is important for aircraft maneuvers,

and—at the same time—aircraft dynamics is a challenge for hybrid systems verification.

For simplicity, we consider planar movement of aircraft (if the aircraft are collision

free in a planar projection, they are collision free in space). The parameters of two

aircraft at (planar) position x = (x1, x2) ∈ R2 and y = (y1, y2) with angular orienta-

tion ϑ and ς are illustrated in Fig. 4d (with ϑ = 0). Following [38], aircraft dynamics is

determined by their linear speeds v, u ∈ R and angular speeds ω, % ∈ R, respectively:

x′1 = v cosϑ x′2 = v sinϑ ϑ′ = ω y′1 = u cos ς y′2 = u sin ς ς ′ = % (2)

That is, position x moves with speed v into the direction with angular orientation ϑ,

which rotates with angular velocity ω (likewise for y, u, ς, %). In safe flight configura-

tions, aircraft are separated by at least distance p:

(x1 − y1)2 + (x2 − y2)2 ≥ p2 (3)

To handle the transcendental functions in equation (2), we axiomatize sin and cos by

differential equations and reparametrize the system using linear velocity vectors

d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R2 and e = (e1, e2) := (u cos ς, u sin ς) ∈ R2
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which describe both the linear speed ‖d‖ :=
√
d21 + d22 = v and the orientation of the

aircraft in space, see vectors d and e in Fig. 4d:[
x′1 = d1 x′2 = d2 d′1 = −ωd2 d′2 = ωd1 t′ = 1

y′1 = e1 y′2 = e2 e′1 = −%e2 e′2 = %e1 s′ = 1

]
(F)

Using symbolic derivations, it is easy to see that equations (F) and (2) are equivalent

up to reparameterization. For illustration purposes, we add clock variables t, s that

are usually needed for synchronizing collision avoidance maneuvers. By a simple com-

putation, we can show that d21 + d22 ≥ a2 is a differential invariant of the differential

equations (F), thereby showing that the linear speed ‖d‖ of aircraft does not drop

below some stalling speed a during maneuvers (assuming ‖d‖ ≥ a holds initially):

∇F
(
d21 + d22 ≥ a2

)
≡ ∇(d′1=−ωd2∧d′2=ωd1)

(
d21 + d22 ≥ a2

)
≡ ∂(d21 + d22)

∂d1
(−ωd2) +

∂(d21 + d22)

∂d2
ωd1 ≥

∂a2

∂d1
(−ωd2) +

∂a2

∂d2
ωd1

≡ 2d1(−ωd2) + 2d2ωd1 ≥ 0 .

As a stronger statement, the constant linear speed equation d21 + d22 = a2 can be proven

to be a differential invariant. Similarly, the conjunction d21 + d22 = a2 ∧ e21 + e22 ≥ a2
can be shown to be a differential invariant of F . The theory of differential invariants

shows that this is a general phenomenon: Conjunctions of differential invariants are

differential invariants but not conversely so [27]. There are examples where only the

propositional combination itself is a differential invariant but none of its parts is [27].

Thus, allowing conjunctions in differential invariants is crucial and the verification

power of differential invariants is higher than that of other approaches [34,37,36,35],

which do not support propositional operators.

3.4 Local Fixedpoint Computation for Differential Invariants

Like for verification with invariants, the central practical question for verification with

differential invariants is how to find them. Fig. 5 depicts our fixedpoint algorithm for

constructing differential invariants for each continuous evolution D ∧ H (where D is

a differential equation system and H a first-order formula). The algorithm in Fig. 5

(called Differential Saturation) successively refines the domain H by differential in-

variants until saturation, i.e., until H accumulates enough information to become a

sufficiently strong invariant that implies postcondition φ (line 2). If domain H already

entails φ, then ψ → [D ∧H]φ is proven trivially (line 2). Otherwise, the algorithm con-

siders candidates F for augmenting H (line 3). If F is a differential invariant (line 4),

then H can soundly be refined to H ∧F (line 5) without affecting the states reachable

by D ∧ H (Proposition 2 below). Then, the fixedpoint loop repeats (line 6). At each

iteration of this fixedpoint loop, the previous invariant H can be used to prove the

next level of refinement H∧F (line 4). Hence, each differential invariant provides more

information to simplify subsequent iterations. The refinement of the dynamics at line 5

is sound by the following proposition, using that the conditions in line 4 imply that F

is a differential invariant and, thus, a continuous invariant by Proposition 1.

Proposition 2 (Differential saturation) Assume F is a continuous invariant of

ψ → [D ∧H]φ, then ψ → [D ∧H]φ and ψ → [D ∧H ∧ F ]φ are equivalent.
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1 function prove (ψ → [D ∧H]φ ) :
2 i f prove (∀cl(H → φ)) then return true /∗ proper ty proven ∗/
3 for each F ∈Candidates (ψ → [D ∧H]φ , H ) do
4 i f prove (ψ ∧H → F ) and prove (∀cl(H → ∇DF )) then
5 H := H ∧ F /∗ r e f i n e by d i f f e r e n t i a l i n v a r i a n t ∗/
6 goto 2 ; /∗ repea t f i x e d p o i n t loop ∗/
7 end for
8 return ” not provable us ing cand idate s ”

Fig. 5 Fixedpoint algorithm for differential invariants (Differential Saturation)

Proof The proof is a stronger version of a result in previous work [27]. Let F be

a continuous invariant, which implies that ψ → [D ∧H]F is valid. Let ν be a state

satisfying ψ (otherwise there is nothing to show). Then, ν |= [D ∧H]F . Since this

means that F is true all along all flows ϕ of D ∧H that start in ν (Def. 2), we know that

D ∧H and D ∧H ∧ F have the same dynamics and the same reachable states from ν.

That is, (ν, ω) ∈ ρ(D ∧H) holds if and only if (ν, ω) ∈ ρ(D ∧H ∧ F ) (Def. 2). Thus,

we can conclude that ψ → [D ∧H]φ and ψ → [D ∧H ∧ F ]φ are equivalent, because

their semantics (Def. 3) uses the same transition relation. ut

This progressive differential saturation turns out to be crucial in practice. For instance,

the aircraft separation property (3) cannot be proven until (F) has been refined by

invariants for d and e, because these variables determine x′ and y′ in (F). This makes

sense intuitively: Unless we have discovered some invariant about the directions d

and e where the aircraft are flying to, we cannot conclude good invariants about their

positions x and y, because the evolution of the positions over time depends on the

directions.

In Fig. 5, function Candidates determines a set of candidates for induction (line 3)

depending on transitive differential dependencies, as will be explained in Section 3.5.

When these are insufficient for proving ψ → [D ∧H]φ, the algorithm fails (line 8, with

improvements in subsequent sections). Finally, ∀cl(φ) denotes the universal closure of φ.

It is required in lines 2 and 4, because the respective formulas need to hold in all states

reachable along D (and that satisfy H). Clearly, this set of states is overapproximated

conservatively by the universal closure with respect to all variables for which there are

differential equations in D.

3.5 Dependency-Directed Induction Candidates

In this section, we construct likely candidates for differential induction (function Can-

didates). Later, we use the same procedure for finding global loop invariants. We con-

struct two kinds of candidates in an order induced by differential dependencies. By

following the effect of hybrid systems symbolically along their decompositions, our ver-

ification algorithm enriches preconditions ψ of goals ψ → [αi]φ successively with more

precise information about the symbolic prestate as obtained by the symbolic decom-

positions and proof steps in Fig. 2 and 5. To exploit this, we first look for invariant

symbolic state information that accumulated in ψ and φ during the iterative symbolic

decomposition by selecting subformulas of ψ and φ that are not yet contained in H. In

practice, this gives particularly good candidates for highly parametric hybrid systems.
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Fig. 6 Differential dependencies (arrows) and (triangular) variable clusters of (F)

Secondly, we generate parametric invariants. Let V = {x1, . . . , xn} be a set of

relevant variables. We choose fresh names a
(l)
i1,...,in

for formal parameters of the in-

variant candidates and build polynomials p1, . . . , pk of degree d with variables V us-

ing formal parameters as symbolic coefficients: pl :=
∑
i1+···+in≤d a

(l)
i1,...,in

xi11 . . . xinn
for 1 ≤ l ≤ k. We define the set of parametric candidates (operator ∨ is similarly) as:

ParaForm(k, d, V ) :=


i∧
l=1

pl ≥ 0 ∧
k∧

l=i+1

pl = 0 : 0 ≤ i ≤ k

 .

For instance, the parametric candidate a0,0 + a1,0d1 + a0,1x2 = 0 yields a differential

invariant of (F) for the choice a0,0 = 0, a1,0 = 1, a0,1 = ω. By simple combinatorics,

ParaForm(k, d, V ) contains k + 1 candidates with k
(
n+d
d

)
formal parameters a

(l)
i1,...,in

,

which are existentially quantified. Existence of a common satisfying instantiation for

these parameters can be expressed by prefixing the resulting dL formula that uses this

parametric candidate with ∃a(l)i1,...,in for each of the formal parameters a
(l)
i1,...,in

. For this

search for common solutions to be feasible, the number of parameters is crucial, which

we minimize by respecting (differential) dependencies. We will illustrate the placement

of existential quantifiers in Example 1 of Section 3.6 after we have presented the global

fixedpoint algorithm.

To accelerate the differential saturation process in Section 3.4, it is crucial to explore

candidates in a promising order from simple to complex, because the algorithm in

Fig. 5 uses successful differential invariants to refine the dynamics, thereby simplifying

subsequent proofs. Again, property (3) is only provable after the dynamics has been

refined with invariants for d and e, because x′ and y′ depend on the direction d and e. In

fact, safety of roundabouts crucially depends on compatible directions of the aircraft,

because there are counterexamples otherwise, see Fig. 4c. We construct candidates in

a natural order based on variable occurrence that is consistent with the differential

dependencies of the differential equations. For a differential equation D, variable x

depends on variable y according to the differential equation system D if y occurs on the

right-hand side of the equation for x′ (or transitively so). The resulting set depend(D)

of dependencies is the transitive closure of {(x, y) : (x′ = θ) ∈ D and y occurs in θ}.
From the differential equation system (F), we determine the differential dependencies

indicated as arrows (pointing to the dependent variables x) in Fig. 6.

From these dependencies we determine an order on candidates. The idea is that, as

the value of x1 depends on that of d1, it makes sense to look for invariant expressions

of d1 first, because refinements with these help differential saturation in proving invari-

ant expressions involving also x1. Thus, we order variables by differential dependencies,

which resembles the back substitution order in Gaussian elimination (if, in triangular

form, x1 depends on d1 then equations for d1 must be solved first). Now we call a
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set V of variables a cluster of the differential equation D iff V is closed with respect

to depend(D), i.e., variables of V only depend on variables in V :

x ∈ V and (x, y) ∈ depend(D) imply y ∈ V

The resulting variable clusters for system (F) are marked as triangular shapes in Fig. 6.

Finally, we choose candidates from ψ and ParaForm(k, d, V ) starting with candidates

whose variables lie in small clusters V and cover larger fractions of that cluster. Thus,

the differential invariant d21 + d22 ≥ a2 of Section 3.3 within cluster {d2, d1, ω} can be

discovered before invariants like d1 = −ωx2 that involve x2, because x2 depends on d2.

3.6 Global Fixedpoint Computation for Loop Invariants

With the uniform setup of dL, we can adapt the algorithm in Fig. 5 easily to obtain a

fixedpoint algorithm for loops (in formulas of the form ψ → [α∗]φ) in place of continu-

ous evolutions (ψ → [D ∧H]φ): In line 4 of Fig. 5, we replace the induction step from

Def. 6 by the induction step for loops (Def. 4). As an optimization, we can transfer the

reuse of partial differential invariants according to Proposition 2 to discrete invariants

for loops. Invariants H of previous iterations can be exploited as refinements of the

hybrid system dynamics, similar to previous differential invariants that can be used in

future iterations by refining the dynamics using differential saturation:

Proposition 3 (Loop saturation) If H is a discrete invariant of ψ → [α∗]φ, then

H ∧ F is a discrete invariant iff ψ → F and H ∧ F → [α](H → F ) are valid.

Proof Let H be a discrete invariant of ψ → [α∗]φ. Let, further, H ∧ F be a discrete

invariant of ψ → [α∗]φ. Then ψ → H ∧ F and H ∧ F → [α](H ∧ F ) are valid by Def. 4.

Hence, trivially, H ∧ F → [α](H → F ) is valid, because all states that satisfy H ∧ F
also satisfy the weaker property H → F . Finally, the validity of ψ → H ∧ F clearly

entails ψ → F .

Conversely, let, H be a discrete invariant. Let, further, H ∧ F → [α](H → F ) and

ψ → F be valid. For H ∧ F to be a discrete invariant, we have to show that F satisfies

the induction step of Def. 4 (the induction start ψ → H ∧ F is an immediate combina-

tion of the validity of ψ → H and ψ → F ). Since H is a discrete invariant, H → [α]H

is valid, which entails H ∧ F → [α]H as a special case. Since H ∧ F → [α](H → F ) is

valid and H ∧ F → [α]H is valid, we conclude that H ∧ F → [α](H ∧ F ) is valid for

the following reason. Let ν be a state satisfying the initial constraints H ∧ F . Then

the above validities yield ν |= [α]H and ν |= [α](H → F ). Hence, all states ω reachable

from ν by α satisfy ω |= H and ω |= H → F . Thus, they satisfy ω |= H ∧ F , essen-

tially by modus ponens. Consequently, we have shown that H ∧ F → [α](H ∧ F ) is

valid, and, hence, H ∧ F is a discrete invariant of ψ → [α∗]φ. ut

The induction step from Proposition 3 can generally be proven faster, because it is a

weaker property than that of Def. 4.

To adapt our approach from Section 3.5 to loops, we use discrete data-flow and

control-flow dependencies of α. There is a direct data-flow dependency with the value

of x depending on y, if x := θ or x′ = θ occurs in α with a term θ that contains y.

Accordingly, there is a direct control-flow dependency, if, for any term θ, x := θ or

x′ = θ occurs in α after a test ?H containing y. The respective data-flow and control-

flow dependencies are the transitive closures of these relations.
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The algorithm in Fig. 7 verifies loops. It adapts that in Fig. 5, using Proposition 3

as an induction step for loops. The algorithm in Fig. 7 performs a fixedpoint compu-

tation for loops and recursively combines the local differential invariants obtained by

differential saturation to form a global invariant. It recursively uses prove for verifying

its subtasks, which handle the discrete switching behaviour according to Fig. 2 and

infer local differential invariants according to differential saturation by the fixedpoint

algorithm in Fig. 5.

1 function prove (ψ → [α∗]φ ) :
2 H := true /∗ c u r r e n t l y known i n v a r i a n t o f ψ → [α∗]φ ∗/
3 i f prove (∀cl(H → φ)) then return true /∗ proper ty proven ∗/
4 for each F ∈Candidates (ψ → [D ∧H]φ , H ) do
5 i f prove (ψ ∧H → F ) and prove (∀cl(H ∧ F → [α](H → F ))) then
6 H := H ∧ F /∗ r e f i n e by d i s c r e t e i n v a r i a n t ∗/
7 goto 3 ; /∗ repea t f i x e d p o i n t loop ∗/
8 end for
9 return ” not provable us ing cand idate s ”

Fig. 7 Fixedpoint algorithm for discrete loop invariants (loop saturation)

Example 1 (Existential parameter quantification) Note that the ability of formulas in

differential dynamic logic to have quantifiers in front of reachability modalities is crucial

here. To illustrate, consider the simple water tank system from Fig. 1. During the

verification run for property (1), we need to show a property of the following form with

a loop wctrl∗:
x ≤ 3 ∧ q = on→ [(wctrl)∗]x < 10

For a parametric candidate F of the form a1x+ a0 ≥ 0, line 5 of the algorithm in Fig. 7

produces subtasks for discrete induction (Def. 4), which will be handled recursively by

the prove function:

prove(x ≤ 3 ∧ q = on ∧H → a1x+ a0 ≥ 0)

and prove(∀cl(a1x+ a0 ≥ 0 ∧H → [wctrl](H → a1x+ a0 ≥ 0)))

In the first iteration (where H is still true), the combination of these subtasks by

conjunction corresponds to proving the following overall dL formula:

∃a0 ∃a1
(
(x ≤ 3 ∧ q = on→ a1x+ a0 ≥ 0) ∧ ∀x (a1x+ a0 ≥ 0→ [wctrl] a1x+ a0 ≥ 0)

)
(4)

The universal quantifier ∀x in (4) results from the universal closure ∀cl with respect

to all variables changed in wctrl , i.e., x. The existential quantifiers for a0 and a1 are

for formal parameters in the parametric candidate (see Section 3.5). Observe that

the outer placement of existential quantifiers is required for the resulting instance of

a1x+ a0 ≥ 0 to be a common solution implied by the precondition (left conjunct) and

inductive for wctrl (right conjunct). In particular, the right conjunct requires finding

parameter choices for which a1x+ a0 ≥ 0 holds true after executing one iteration wctrl

of the loop if it was true before. Note that this inherently requires quantifiers around

reachability properties, which are readily expressible in the first-order verification logic

dL. The left conjunct expresses that the parameter choices need to make a1x+ a0 ≥ 0
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true in the beginning. The conjunction and outer placement of ∃a0∃a1 ensures that

the required parameter choices fit together. Equation (4) also illustrates the need for

the universal closure, because we need the same choice for the formal parameters a0, a1
to be able to conclude the induction step (case 2 of Def. 4) for all states x. Different

incompatible choices for a0, a1 at each state would not yield an inductive argument.

To prove the example in Fig. 1, our algorithm will discover the parameter combination

a1 = −1 and a0 = 9.5, for instance.

For verification with parametric candidates to be feasible, we exploit that we can

keep existential quantifiers as local as possible in dL, which we ensure by the symbolic

decompositions in our logic. For instance, quantifiers for the formal parameters of a

differential invariant will remain local to the formulas in the algorithm in Fig. 5 rather

than using global quantifiers for the whole verification problem at once. Minimizing

the number of parameters according to Section 3.5 further improves the computational

tractability.

3.7 Interplay of Local and Global Fixedpoint Loops

The local and global fixedpoint algorithms jointly verify correctness properties of HP.

Their interplay needs to be coordinated with fairness. If the local fixedpoint algorithm

in Fig. 5 does not converge, stronger invariants may need to be found by the global

fixedpoint algorithm which iteratively result in stronger preconditions ψi for the local

fixedpoint algorithm at the respective subtasks, see Fig. 8.

ψ → [α]φ

ψ1 → [α1]φ1 ψ2 → [α2]φ2

ψ3 → [α3]φ3 ψ4 → [α4]φ4

diffsat

diffsat

loopsat

Fig. 8 Recursive symbolic decompositions (top-down) and interplay of local (diffsat) and
global (loopsat) fixedpoints verification loops during symbolic decomposition

Thus, for fairness reasons, the local fixedpoint algorithm should stop when it can-

not prove its postcondition, either because of an actual counterexample for its local

subtask or because it runs out of candidates for differential invariants. As in the work

of Prajna [35], the degrees of parametric invariants, therefore, need to be bounded

and increased iteratively. As in [35], there is no natural measure for how these degrees

should be increased. Instead, here, we exploit the fact that the candidates computed

by the function Candidates are independent and we explore them in parallel with fair

time interleaving.
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During fixedpoint computations, wrong choices of candidates are time consuming.

Thus, in practice, it is important to discover futile attempts quickly. For this, non-

exhaustive sampling with numerical simulations can be used to look for counterexam-

ples. Note that this numerical counterexample search can be performed separately for

each local subtask in the decomposition. For instance, a counterexample for a can-

didate F for node ψ4 → [α4]φ4 in Fig. 8 will only abort the attempt to prove this

candidate F . A counterexample found by local numerical simulation for the reacha-

bility property ψ4 → [α4]φ4 itself, instead, will terminate all proof search for that

subtask by propagating the need for a stronger precondition ψ4 up the decomposition

tree in Fig. 8. To prevent rejecting good candidates due to numerical errors, we dis-

card fragile counterexamples with tolerances below the numerical accuracy. Unlike in

other approaches [3,21,26,35,29], numerical errors are not critical for soundness here,

because safety is exclusively established by sound symbolic verification.

3.8 Soundness

We show that our verification algorithm produces correct verification results. That is,

whenever it returns “true” for a property, that property actually holds true for the

respective system.

Theorem 1 (Soundness) The verification algorithm in Section 3 is sound, i.e.,

whenever prove(ψ → [α]φ) returns “ true”, the dL formula ψ → [α]φ is true in all

states, i.e., all states reachable by α from states satisfying ψ satisfy φ.

Proof Soundness is a consequence of the fact that every statement of the algorithm that

returns “true” is justified by a valid formula in the logic [27]. We prove by induction

on the structure of the algorithm that, for any dL formula φ, φ is true in every state ν

where (the formula returned by) prove(φ) is true. That is: ν |= prove(φ) implies ν |= φ.

In particular, if the algorithm returns “true”, the input formula is true in all states.

– In the base case (line 11 of Fig. 2), prove returns the result of quantifier elimination,

which is a sound decision procedure [7]. The result of quantifier elimination is

equivalent to its input. Hence one is true in a state ν if and only if the other is.

– If α is of the form x := θ, the algorithm in line 1 of Fig. 2 is responsible. Con-

sider any state ν where the formula returned by prove(ψ → [x := θ]φ) is true.

That is prove(ψ ∧ x̂ = θ → φx̂x) is true at ν. Hence, by induction hypothesis,

ψ ∧ x̂ = θ → φx̂x is true at ν. Now, because x̂ was a fresh variable, the substitu-

tion lemma can be used to show that ψ → φθx and ψ → [x := θ]φ are true at ν.

– If α is of the form x := random, the algorithm in line 9 of Fig. 2 is responsible.

The proof is a direct consequence of the fact that φ being true after all random

assignments to x is equivalent to φ being true for all real values of x. Hence,

ψ → [x := random]φ is true in a state ν if and only if ψ → ∀xφ is.

– For formulas of the form ψ → Qxφ where Q is a quantifier, line 13 of Fig. 2 is re-

sponsible. If the formula returned by prove(ψ → Qxφ) is true in state ν, then

QuantifierElimination(ψ → Qx prove(φ)) is true in ν. As quantifier elimination

yields an equivalent formula, this implies that ψ → Qx prove(φ) itself is true at ν.

Assume that ψ holds at ν as there is nothing to show otherwise. Then Qx prove(φ)

is true at ν. Thus for all (or some if Q is ∃) states ω that agree with ν except for

the value of x, we know that the formula returned by prove(φ) is true at ω. The
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formula φ is structurally simpler, hence, by induction hypothesis, φ is true at ω.

Consequently, both Qxφ and ψ → Qxφ are true at ν, as ω was arbitrary.

– The other cases of Fig. 2 are accordingly.

– If α is of the form D ∧H for a differential equation system D, the algorithm

in Fig. 5 is responsible. If it returns “true” in line 2 in the first place, then the

call to prove in line 2 must have resulted in “true”, hence, by induction hypoth-

esis, H entails φ. Thus, postcondition φ is true in a subregion of the evolution

domain H. Therefore ψ → [D ∧H]φ is true in all states, trivially, because all evo-

lutions along D ∧H always satisfy H and, hence, φ. If, however, H was changed

in line 5 during the fixedpoint computation, then the calls to prove for the prop-

erties in line 4 must have returned “true”. Thus, by induction hypothesis, the dL
formulas ψ ∧H → F and ∀cl(H → ∇DF ) are valid. Hence, formula F is a differ-

ential invariant of ψ → [D ∧H]φ by Def. 6. Consequently, by Proposition 1, F

also is a continuous invariant (Def. 5). Thus, by Proposition 2, the dL formulas

ψ → [D ∧H]φ and ψ → [D ∧H ∧ F ]φ are equivalent, and we can (soundly) verify

the former by proving the latter. Consequently, the modification of the evolution

domain H to H ∧ F in line 5 is sound, because the algorithm will continue proving

a refined but equivalent formula for a refined but equivalent system.

– If α is a loop of the form β∗, the proof is similar to the case for differential equations,

except that it uses Proposition 3 instead of Proposition 1. ut

Since reachability of hybrid systems is undecidable, our algorithm must be incomplete.

It can fail to converge when the required invariants are not expressible in first-order

logic (yet, the required invariants are always expressible in dL [28]). Consequently, a

fixedpoint in dL always exists but our algorithm may fail to find appropriate (differen-

tial) invariants in first-order logic.

4 Experimental Results

c

x
entry

ex
it

y

Fig. 9 Flyable aircraft
roundabout

As an example with nontrivial dynamics, we analyze air-

craft roundabout maneuvers [38]. Curved flight as in

roundabouts is challenging for verification, because of

its transcendental solutions. The maneuver in Fig. 4a

from [38] and the maneuver in Fig. 4b from [29,27] are

not flyable, because they still involve a few instant turns.

A flyable roundabout maneuver without instant turns is

depicted in Fig. 9. We verify safety properties for most

(but not yet all) phases of Fig. 9 fully automatically

and provide verification results in Tab. 2. Finally, note

that the required invariants for the roundabout maneu-

ver cannot even be found from Differential Gröbner Bases [22].

Verification results for roundabout aircraft maneuvers [38,9,29,27,31], the Euro-

pean Train Control System (ETCS) [33], and a simplified version of an automatic speed

controller in car platooning [8] are in Tab. 2. The case studies behind Tab. 2 are of

independent interest. An overview can be found in [31,33,8].1 Full details and a more

general context about extended case studies will be presented in separate work, since

the full presentation of each of the case studies is beyond the scope of this article.

1 Verification tool KeYmaera [32] available at http://symbolaris.com/info/KeYmaera.html
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Table 2 Experimental results

Case study Time(s) Memory(MB) Proof steps Dimension

tangential roundabout (2 aircraft) 14 8 117 13
tangential roundabout (3 aircraft) 387 42 182 18
tangential roundabout (4 aircraft) 730 39 234 23
tangential roundabout (5 aircraft) 1964 88 317 28
bounded speed roundabout entry 20 34 28 12
flyable roundabout entry (simplified) 6 10 98 8
ETCS-kernel safety 41 28 53 9
ETCS safety 183 87 169 15
ETCS train controllability 1 6 17 5
ETCS RBC controllability 1 7 45 16
car speed control (simplified) 3632 480 98 9

Results are from a 2.6GHz AMD OpteronTM 1218 with 4GB memory. Memory

consumption of quantifier elimination is shown in Tab. 2, excluding the front-end. The

results are only slightly worse on a 1.7GHz Pentium M laptop with 1GB. The dimen-

sion of the overall continuous state space is indicated. Notice that we handle all these

variables symbolically leading to state spaces up to R28. The experimental results

are encouraging, in particular as the memory consumption is fairly moderate. High

memory consumption would limit scalability much more than time consumption. For

instance, numerical techniques on a rather coarse numerical mesh with only 10 sam-

ples per variable would already need to consider reachability analysis from 1028 initial

states for this case. The results in Tab. 2 indicate that scalability of our approach is

substantially less limited by the number of variables than in other approaches. Instead,

the complexity of the constraints and dependencies among the variables have more im-

pact. These dependencies, for instance, are more complex in the car controller than in

5 aircraft roundabouts. In parallel systems, there is usually a smaller fraction of depen-

dencies among continuous variables. Multiple aircraft, e.g., are not coupled physically

(see Fig. 6) but interact only by discrete dynamics originating from communication.

5 Related Work

Tools like HyTech [19], PHAVer [14], CheckMate [5], or other approaches [18,13,26]

cannot handle our applications with nonlinear switching, nonlinear discrete and con-

tinuous dynamics, and high-dimensional state spaces.

Other authors [34,37,36,35] already argued that invariant techniques scale to more

general dynamics than explicit reach-set computations or techniques that require so-

lutions for differential equations [13,26]. However, their techniques are focussed on

purely equational systems and cannot handle hybrid systems with inequalities in ini-

tial sets or switching surfaces [37,36]. Due to tolerances, inequalities occur in most

real applications like aircraft maneuvers. Barrier certificates [34,35] only work for sin-

gle inequalities, but invariants of roundabout maneuvers require mixed equations and

inequalities [27]. Prajna et al. [35] search for barrier certificates of a fixed degree by

global optimization over the set of all proof attempts for the whole system at once,

which is infeasible: Even with degree bound 2, it would already require solving a 5848-

dimensional optimization problem for ETCS [33] and a 10005-dimensional problem for

roundabouts with 5 aircraft.
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Finally, important distinctions of our work compared to others [34,37,36,35] are:

(i) we allow arbitrary formulas as differential invariants, which provably improves ver-

ification power; (ii) we increase the verification power further by nesting differential

invariants using differential saturation to refine the system dynamics; and (iii) our com-

positional verification logic allows local generation of differential invariants and natural

local existential quantification of formal parameters for local verification subtasks.

Tomlin et al. [38] derive saddle solutions for aircraft maneuver games using Hamilton-

Jacobi-Isaacs partial differential equations and propose roundabout maneuvers. Their

exponential state space discretizations for PDEs, however, do not scale to larger di-

mensions (they consider dimension 3) and can be numerically unsound [29]. Differential

invariants, instead, work for 28-dimensional systems and are sound.

Straight-line aircraft maneuvers have been analyzed by geometrical meta-level rea-

soning [12,20]. We directly verify the actual hybrid flight dynamics, including curved

roundabout maneuvers instead of straight-line maneuvers with non-flyable instant

turns. A few approaches [23,9] have been undertaken to Model Check if there are

orthogonal collisions in discretizations of roundabout maneuvers. However, the coun-

terexamples (see Fig. 4c) found by our model checker show that non-orthogonal colli-

sions can happen in these maneuvers.

6 Conclusions and Future Work

We have presented a sound algorithm for verifying hybrid systems with nontrivial dy-

namics. It handles differential equations using differential invariants instead of requir-

ing solutions of the differential equations, because the latter quickly yield undecidable

arithmetic. We compute differential invariants as fixedpoints using a verification logic

for hybrid systems. In the logic we can decompose the system for computing local

invariants and we obtain sound recombinations into global invariants. Moreover, we

introduce a differential saturation procedure that verifies more complicated properties

by refining the system dynamics successively in a sound way in our logic. We validate

our algorithm on challenging roundabout collision avoidance maneuvers for aircraft, on

collision avoidance protocols for trains, and on automatic speed controllers for cars.

We give verification results with a sound algorithm for challenging dynamics of curved

flight in up to 28 dimensional continuous state spaces.

Our algorithm works particularly good for highly parametric hybrid systems, be-

cause their parameter constraints can be combined faster to find invariants than for

systems with a single initial state, where simulation is more appropriate. Our de-

compositional approach exploits locality in system designs. In well-designed systems,

subsystems do not generally depend on all other parts of the system but are built

according to modularity and locality principles in engineering. In these cases, our veri-

fication logic achieves good decompositions and the required invariants for one part of

the system only need very little information about other parts of the systems, so that

the fixedpoint algorithm terminates faster. Our algorithm performs worse for systems

that violate locality principles.

Scalability, e.g., to applications from other domains like chemical process control

or biomedical devices remains an interesting topic for future research. An indepen-

dent question for future research, underlying virtually all hybrid systems verification

approaches, is how to scale real arithmetic handling. Semidefinite programming relax-

ations [25] may be an interesting direction for future research. Differential induction and
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the logic dL generalise to liveness properties and to systems with disturbances. In fu-

ture work, we want to generalize the synthesis of corresponding differential (in)variants.

Other invariant constructions for differential equations, e.g., [36] can be added and lifted

to hybrid systems using our uniform algorithm.
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