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Problem

Verification of Stochastic Systems

§ Uncertainties in the system environment, modeling a fault, 
stochastic processors, biological signaling pathways ...
§ Modeling uncertainty with a distribution → Stochastic systems

§ Models:
§ for example, Discrete, Continuous Time Markov Chains

§ Property specification:
§ “does the system fulfill a request within 1.2 ms with probability at least 

.99”?
§ If Ф = “system fulfills request within 1.2 ms”, decide between:

P≥.99 (Ф)  or  P<.99 (Ф)



Equivalently

§ A biased coin (Bernoulli random variable):
§ Prob (Head) = p Prob (Tail) = 1-p

§ p is unknown

§ Question: Is p ≥ θ ? (for a fixed 0<θ<1)

§ A solution: flip the coin a number of times, collect the 
outcomes, and use:
§ Statistical hypothesis testing: returns yes/no
§ Statistical estimation: returns “p in (a,b)” (and compare a with θ)



Motivation

§ State Space Exploration infeasible for large systems
§ Symbolic MC with OBDDs scales to 10300 states

§ Scalability depends on the structure of the system

§ Pros: Simulation is feasible for many more systems
§ Often easier to simulate a complex system than to build the 

transition relation for it
§ Easier to parallelize

§ Cons: answers may be wrong
§ But error probability can be bounded
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Towards verification

Stochastic system M

Property Ф

+ =
Biased coin

Key: define a probability measure on the set of traces (simulations) of M.
The set of traces satisfying Ф is measurable.



Key idea
§ Suppose system behavior w.r.t. a (fixed) property Ф can be 

modeled by a Bernoulli random variable of parameter p:
§ System satisfies Ф with (unknown) probability p

§ Question: P≥θ (Ф)? (for a fixed 0<θ<1) 
§ Draw a sample of system simulations and use:

§ Statistical hypothesis testing: Null vs. Alternative hypothesis

§ Statistical estimation: returns “p in (a,b)” (and compare a with θ)

Statistical Model Checking



§ MC chooses between two mutually exclusive hypotheses

Null Hypothesis
vs
Alternate Hypothesis

§ We have developed a new statistical MC algorithm
– Sequential sampling
– Performs Composite Hypothesis Testing and Estimation
– Based on Bayes Theorem and the Bayes Factor.

Bayesian Statistical Model Checking



Bayesian Statistics

Three ingredients:

1. Prior probability
§ Models our initial (a priori) uncertainty/belief about 

parameters (what is Prob(p ≥ θ) ?)

2. Likelihood function
§ Describes the distribution of data (e.g., a sequence of 

heads/tails), given a specific parameter value

3. Bayes Theorem
§ Revises uncertainty upon experimental data - compute 

Prob(p ≥ θ | data) 



Sequential Bayesian Statistical MC - I

§ Model Checking

§ Suppose      satisfies     with (unknown) probability p
§ p is given by a random variable (defined on [0,1]) with density g
§ g represents the prior belief that       satisfies    

§ Generate independent and identically distributed (iid) 
sample traces.

§ xi: the ith sample trace    satisfies    
§ xi = 1 iff 
§ xi = 0 iff

§ Then, xi will be a Bernoulli trial with conditional density 
(likelihood function)

f(xi|u) = uxi(1 − u)1-xi



§ a sample of Bernoulli random variables

§ Prior probabilities P(H0), P(H1) strictly positive, sum to 1
§ Posterior probability (Bayes Theorem [1763])

for P(X) > 0

§ Ratio of Posterior Probabilities:

Bayes Factor

Sequential Bayesian Statistical MC - II



Sequential Bayesian Statistical MC - III

§ Recall the Bayes factor

§ Jeffreys’ [1960s] suggested the Bayes factor as a statistic:
§ For fixed sample sizes 
§ For example, a Bayes factor greater than 100 “strongly supports” H0

§ We introduce a sequential version of Jeffrey’s test

§ Fix threshold T ≥ 1 and prior probability.                   
Continue sampling until

§ Bayes Factor > T: Accept H0

§ Bayes Factor < 1/T: Reject H0



Require: Property P≥θ(Φ), Threshold T ≥ 1, Prior density g
n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying Φ so far}
repeat

σ := draw a sample trace of the system (iid)
n := n + 1
if  σ Φ then

x := x + 1
endif
B := BayesFactor(n, x, θ, g)

until (B > T  v B < 1/T )
if (B > T ) then

return “H0 accepted”
else

return “H0 rejected”
endif

Sequential Bayesian Statistical MC - IV



Theorem (Error bounds). When the Bayesian algorithm – using 
threshold T – stops, the following holds:

Prob (“accept H0” | H1)  ≤ 1/T
Prob (“reject H0” | H0)  ≤ 1/T

Note: bounds independent from the prior distribution.

Correctness



Definition: Bayes Factor of sample X and hypotheses H0, H1 is

§ prior g is Beta of parameters α>0, β>0

joint (conditional) density of 
independent samples

Computing the Bayes Factor - I



Proposition
The Bayes factor of  H0:M╞═ P≥θ (Φ)  vs  H1:M╞═ P<θ (Φ)  for 

n Bernoulli samples (with x≤n successes) and prior Beta(α,β)

where F(∙,∙)(∙) is the Beta distribution function.

§ No need of integration when computing the Bayes factor

Computing the Bayes Factor - II



Bayesian Interval Estimation - I

§ Estimating the (unknown) probability p that “system╞═ Ф”

§ Recall: system is modeled as a Bernoulli of parameter p

§ Bayes’ Theorem (for iid Bernoulli samples)

§ We thus have the posterior distribution

§ So we can use the mean of the posterior to estimate p
§ mean is a posterior Bayes estimator for p (it minimizes the 

integrated risk over the parameter space, under a quadratic loss)



§ By integrating the posterior we get Bayesian intervals for p
§ Fix a coverage ½ < c < 1. Any interval (t0, t1) such that

is called a 100c percent Bayesian Interval Estimate of p
§ An optimal interval minimizes t1- t0: difficult in general
§ Our approach: 

§ fix a half-interval width δ
§ Continue sampling until the posterior probability of an interval of 

width 2δ containing the posterior mean exceeds coverage c

Bayesian Interval Estimation - II



§ Computing the posterior probability of an interval is easy

§ Suppose n Bernoulli samples (with x≤n successes) and 
prior Beta(α,β)

§ No numerical integration

Bayesian Interval Estimation - III
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Bayesian Interval Estimation - IV
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prior is beta(α=4,β=5) 

posterior density after 1000 samples and 
900 “successes”  is beta(α=904,β=105)
posterior mean = 0.8959

width 2δ



Require: BLTL property Φ, interval-width δ, coverage c, 
prior beta parameters α,β
n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying  so far}
repeat

σ := draw a sample trace of the system (iid)
n := n + 1
if  σ Φ then

x := x + 1
endif
mean = (x+α)/(n+α+β)
(t0,t1) = (mean-δ, mean+δ)
I := PosteriorProbability (t0,t1,n,x,α,β)

until (I > c)
return (t0,t1), mean

Bayesian Interval Estimation - V



§ Recall the algorithm outputs the interval (t0,t1)

§ Define the null hypothesis

H0: t0 < p < t1
§ We can use the previous results for hypothesis testing

Theorem (Error bound). When the Bayesian estimation 
algorithm (using coverage ½< c < 1) stops – we have

Prob (“accept H0” | H1) ≤  (1/c -1)π0/(1-π0)
Prob (“reject H0” | H0)  ≤ (1/c -1)π0/(1-π0)

π0 is the prior probability of H0

Bayesian Interval Estimation - VI



Bounded Linear Temporal Logic

§ Bounded Linear Temporal Logic (BLTL): Extension of LTL 
with time bounds on temporal operators.

§ Let σ = (s0, t0), (s1, t1), . . . be an execution of the model
§ along states s0, s1, . . .

§ the system stays in state si for time ti
§ divergence of time: Σi ti diverges (i.e., non-zeno)

§ σi: Execution trace starting at state i.
§ A model for simulation traces (e.g. Simulink)



Semantics of BLTL

The semantics of BLTL for a trace σk:

§ σk ap  iff atomic proposition ap true in state sk

§ σk Φ1 v Φ2 iff  σk Φ1 or σk Φ2

§ σk ¬Φ iff  σk Φ does not hold
§ σk Φ1 Ut Φ2 iff  there exists natural i such that

1) σk+i Φ2 

2) Σj<i tk+j ≤ t
3) for each 0 ≤ j < i, σk+j Φ1

“within time t, Φ2 will be true and Φ1 will hold until then”

§ In particular, Ft Φ = true Ut Φ, Gt Φ = ¬Ft ¬Φ



§ Simulation traces are finite: is σ╞═ Φ well defined?

§ Definition: The time bound of Φ:
§ #(ap) = 0
§ #(¬Φ) = #(Φ)
§ #(Φ1 v Φ2) = max (#(Φ1), #(Φ2))
§ #(Φ1 Ut Φ2) = t + max (#(Φ1), #(Φ2))

§ Lemma: “Bounded simulations suffice”
Let Ф be a BLTL property, and k≥0. For any two infinite traces ρ, σ
such that ρk and σk “equal up to time #(Ф)” we have

ρk ╞═ Φ iff σk ╞═ Φ

Semantics of BLTL (cont’d)



Fuel Control System - I

The Simulink model:



Fuel Control System - II

§ Ratio between air mass flow rate and fuel mass flow rate
§ Stoichiometric ratio is 14.6

§ Senses amount of oxygen in exhaust gas, pressure, 
engine speed and throttle to compute correct fuel rate.
§ Single sensor faults are compensated by switching to a higher 

oxygen content mixture
§ Multiple sensor faults force engine shutdown

§ Probabilistic behavior because of random faults
§ In the EGO (oxygen), pressure and speed sensors
§ Faults modeled by three independent Poisson processes
§ We did not change the speed or throttle inputs
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Fuel Control System - III

§ We Model Check the formula (Null hypothesis)
M, FaultRate ╞═ P≥θ (¬F100 G1(FuelFlowRate = 0))

for θ = .5, .7, .8, .9, .99

§ “It is not the case that within 100 seconds, FuelFlowRate 
is zero for 1 second”

§ We use various values of FaultRate for each of the three 
sensors in the model

§ We choose Bayes threshold T = 1000, i.e., stop when 
probability of error is < .001

§ Uniform, equally likely priors



Fuel Control System:
Hypothesis testing

Recall the Null hypothesis:
M, FaultRate ╞═ P≥θ (¬F100 G1(FuelFlowRate = 0))

Priors: uniform, equally likely.
Number of samples and test decision:

• red / blue number: reject / accept null hypothesis

Probability threshold θ
.5 .7 .8 .9 .99

Fault 
rates

[3  7  8] 58 17 10 8 2
[10  8  9] 32 95 394 710 8

[20 10  20] 9 16 24 44 1,626
[30  30  30] 9 16 24 44 239

Longest run: 1h 5’ on a 2.4GHz Pentium 4 computer
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Fuel Control System results:
Interval estimation

Interval coverage c
.9 .95 .99 .999

Fault 
rates

[3  7  8] .3603 .3559 .3558 .3563
[10  8  9] .8534 .8518 .8528 .8534

[20 10  20] .9764 .9784 .9840 .9779
[30  30  30] .9913 .9933 .9956 .9971

§ Bayesian estimation algorithm, uniform prior.

§ Want to estimate the probability that 
M, FaultRate ╞═ (¬F100 G1(FuelFlowRate = 0))

§ For half-width δ=.01 and several values of coverage c

§ Posterior mean: add/subtract δ to get the Bayesian interval
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Interval coverage c
.9 .95 .99 .999

Fault 
rates

[3  7  8] 6,234 8,802 15,205 24,830
[10  8  9] 3,381 4,844 8,331 13,569

[20 10  20] 592 786 1,121 2,583
[30  30  30] 113 148 227 341

Chernoff bound 119,829 147,555 211,933 304,036

§ Number of samples 

§ Comparison with Chernoff-Hoeffding bound (Bernoulli r.v.’s)
Pr (| X – p | ≥ δ) ≤ exp(-2nδ2)

where X = 1/n Σi Xi , E[Xi]=p

Fuel Control System results:
Interval estimation



§ Use sequential sampling

§ Bayesian Interval Estimation / Hypothesis Testing

§ Statistical Model Checking is

§ Not the silver bullet

§ Another (useful) verification tool

Conclusions



The End

Thank you!



Bayes Estimators - I

§ Quadratic loss function: 

u (unknown) parameter, d(x) estimator for u

§ Risk of estimator d: average loss over all possible data



Bayes Estimators - II

§ Integrated risk of estimator d with respect to prior g

§ U is the parameter space ([0,1] for us).

§ Using the posterior mean as estimator minimizes r(g,d)

§ In our case the posterior mean is

(x+α)/(n+α+β)

where x≤n number of successes, α,β Beta prior parameters.
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Fuel Control System: 
Hypothesis testing
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Informative priors: 
convex combinations of Betas

Example: for fault rates [10  8  9] we used
0.01 x beta(1,1) + 0.99 x beta(1000,172.6) 

Probability threshold θ
.5 .7 .8 .9 .99

Fault 
rates

[3  7  8] 55 (3) 12 (5) 10 8 2
[10  8  9] 28 (4) 64 (31) 347 (47) 255 (455) 8

[20 10  20] 8 (1) 13 (3) 20 (4) 39 (5) 1,463 (163)
[30  30  30] 7 (2) 13 (3) 18 (6) 33 (11) 201 (38)



§ The Bayes Factor uses posterior (and prior) probability

§ Posterior density (Bayes Theorem) (iid Bernoulli samples)
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Computing the Bayes Factor - I

Likelihood function
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Why Beta priors?

§ Defined over [0,1]

§ Beta distributions are conjugate to Binomial distributions:
§ If prior g is Beta and likelihood function is Binomial 

then posterior is Beta

§ Suppose likelihood Binomial(n,x), prior Beta(α,β): posterior
f(u | x1,…,xn) ≈ f(x1|u) ∙ ∙ ∙ f(xn|u) ∙ g(u)

= ux(1 − u)n-x ∙ uα-1(1 − u)β-1

= ux+α -1(1 − u)n-x+β-1

where  x = Σi xi

§ Posterior is Beta of parameters x+α and n-x+β
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Beta Density Shapes

Unimodal, but can form
convex combinations …



Performance of Bayesian Estimation
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