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Abstract We address the problem of model checking stochastic systems, i.e.,
checking whether a stochastic system satisfies a certain temporal property with a
probability greater (or smaller) than a fixed threshold. In particular, we present a
Statistical Model Checking (SMC) approach based on Bayesian statistics. We show
that our approach is feasible for a certain class of hybrid systems with stochastic
transitions, a generalization of Simulink/Stateflow models. Standard approaches
to stochastic discrete systems require numerical solutions for large optimization
problems and quickly become infeasible with larger state spaces. Generalizations
of these techniques to hybrid systems with stochastic effects are even more chal-
lenging. The SMC approach was pioneered by Younes and Simmons in the discrete
and non-Bayesian case. It solves the verification problem by combining random-
ized sampling of system traces (which is very efficient for Simulink/Stateflow)
with hypothesis testing (i.e., testing against a probability threshold) or estima-
tion (i.e., computing with high probability a value close to the true probability).
We believe SMC is essential for scaling up to large Stateflow/Simulink models.
While the answer to the verification problem is not guaranteed to be correct, we
prove that Bayesian SMC can make the probability of giving a wrong answer arbi-
trarily small. The advantage is that answers can usually be obtained much faster
than with standard, exhaustive model checking techniques. We apply our Bayesian
SMC approach to a representative example of stochastic discrete-time hybrid sys-
tem models in Stateflow/Simulink: a fuel control system featuring hybrid behavior
and fault tolerance. We show that our technique enables faster verification than
state-of-the-art statistical techniques. We emphasize that Bayesian SMC is by no
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means restricted to Stateflow/Simulink models. It is in principle applicable to a
variety of stochastic models from other domains, e.g., systems biology.

Keywords Probabilistic verification · Hybrid systems · Stochastic systems ·
Statistical model checking · Hypothesis testing · Estimation

1 Introduction

Stochastic effects arise naturally in hybrid systems, for example, because of uncer-
tainties present in the system environment (e.g., the reliability of sensor readings
and actuator effects in control systems, the impact of timing inaccuracies, the reli-
ability of communication links in a wireless sensor network, or the rate of message
arrivals on an aircraft’s communication bus). Uncertainty can often be modeled via
a probability distribution, thereby resulting in a stochastic system, i.e., a system
which exhibits probabilistic behavior. This raises the question of how to verify that
a stochastic system satisfies a given probabilistic property. For example, we want
to know whether the probability of an engine controller failing to provide optimal
fuel/air ratio is smaller than 0.001; or whether the ignition succeeds within 1ms
with probability at least 0.99. In fact, several temporal logics have been devel-
oped in order to express these and other types of probabilistic properties [3,23,1].
The Probabilistic Model Checking (PMC) problem is to decide whether a stochastic
model satisfies a temporal logic property with a probability greater than or equal
to a certain threshold. More formally, suppose M is a stochastic model over a
set of states S with the starting state s0, φ is a formula in temporal logic, and
θ ∈ (0, 1) is a probability threshold. The PMC problem is to decide algorithmi-
cally whether M |= P≥θ(φ), i.e., to decide whether the model M starting from its
initial state s0 satisfies the property φ with probability at least θ. In this paper,
property φ is expressed in Bounded Linear Temporal Logic (BLTL), a variant of
LTL [38] in which the temporal operators are equipped with upper time bounds.
Alternatively, BLTL can be viewed as a sublogic of Koymans’ Metric Temporal
Logic [30]. As system models M, we use a stochastic version of hybrid systems
modeled in Stateflow/Simulink.

Existing algorithms for solving the PMC problem fall into one of two cat-
egories. The first category comprises numerical methods that can compute the
probability that the property holds with high precision (e.g., [2,3,11,13,31,22]).
Numerical methods are generally only suitable for finite-state systems of about
107 − 108 states [32]. In real control systems, the number of states easily exceeds
this limit, which motivates the need for algorithms for solving the PMC prob-
lem in a probabilistic fashion, such as Statistical Model Checking (SMC). These
techniques heavily rely on simulation which, especially for large, complex systems,
is generally easier and faster than a full symbolic study of the system. This can
be an important factor for industrial systems designed using efficient simulation
tools like Stateflow/Simulink. Since all we need for SMC are simulations of the
system, we neither have to translate system models into separate verification tool
languages, nor have to build symbolic models of the system (e.g., Markov chains)
appropriate for numerical methods. This simplifies and speeds up the overall ver-
ification process. The most important question, however, is what information can
be concluded from the behavior observed in simulations about the overall proba-
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bility that φ holds for M. The key for this are statistical techniques based on fair
(iid = independent and identically distributed) sampling of system behavior.

Statistical Model Checking treats the PMC problem as a statistical inference
problem, and solves it by randomized sampling of the traces (or simulations) from
the model. Each sample trace is model checked to determine whether the BLTL
property φ holds, and the number of satisfying traces that are found by randomized
sampling is used to decide whether M |= P≥θ(φ). This decision is made by means
of either estimation or hypothesis testing. In the first case one seeks to estimate

probabilistically (i.e., compute with high probability a value close to) the probability
that the property holds and then compare that estimate to θ [25,41] (in statistics
such estimates are known as confidence intervals). In the second case, the PMC
problem is directly treated as a hypothesis testing problem [49,41,29], i.e., deciding
between the null hypothesis H0 : M |= P≥θ(φ) (M satisfies φ with probability
greater than or equal to θ) versus the alternative hypothesis H1 : M |= P<θ(φ)
(M satisfies φ with probability less than θ).

The algorithm for SMC by Bayesian hypothesis testing [29] (see Algorithm 1)
is very simple but powerful. It is based exclusively on numerical simulations (called
traces) of the system M to determine whether it accepts H0 or H1.

Input : PBLTL property P>θ(φ), acceptance threshold T > 1, prior
density g for (unknown) probability p that the system satisfies φ

Output: “H0 : p > θ accepted”, or “H1 : p < θ accepted”

1 n := 0; {number of traces drawn so far}
2 x := 0; {number of traces satisfying φ so far}
3 loop

4 σ := draw a sample trace of the system (iid); {Section 2}
5 n := n+ 1;
6 if σ |= φ then {Section 3}
7 x := x+ 1

8 end

9 B := BayesFactor(n, x); {Section 5}
10 if (B > T ) then return “H0 accepted”;
11 ;
12 if (B < 1

T ) then return “H1 accepted”;

13 end loop;

Algorithm 1: Statistical Model Checking by Bayesian Hypothesis Testing

The SMC algorithm repeatedly simulates the system to draw sample traces
from the system model M (line 4). For each sample trace σ, SMC checks whether
or not σ satisfies the BLTL property φ (line 6) and increments the number of
successes (x in line 7). At this point, the algorithm uses a statistical test, the Bayes
factor test (line 9), to choose one of three things to do. The algorithm determines
that it has seen enough data and accepts H0 (line 10), or it determines that it has
seen enough to accept the alternative hypothesis H1 (line 12), or it decides that
it has not yet seen statistically conclusive evidence and needs to repeat drawing
sample traces (when 1

T ≤ B ≤ T ). The value of the Bayes factor B gets larger when
we see more statistical evidence in favor of H0. It gets smaller when we see more
statistical evidence in favor of H1. If B exceeds a user-specified threshold T , the
SMC algorithm accepts hypothesis H0. If B becomes smaller than 1

T , the SMC
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algorithm rejects H0 and accepts H1 instead. Otherwise B is inconclusive and the
SMC algorithm repeats.

Algorithm 1 is very simple and generic. In order to be able to use it, we do,
however, need to provide system models, a way of sampling from them efficiently,
and a way to check properties for a given trace. In particular, for line 4, SMC needs
a class of system models that is suitable for the application domain along with
a way to sample traces from the system model. For correctness, it is imperative
that the sample traces be drawn from the model in a fair (iid) way and that the
resulting probabilities are well-defined. We investigate these questions in Section 2.
For line 6, SMC needs a way to check a BLTL property along a given trace σ of
the system. We investigate how this can be done and why it is well-defined for
simulations, which can only have finite length, in Section 3. For line 9, we need
an efficient way to compute the statistic employed, i.e., the Bayes factor — this is
developed in Section 5.

Note that Statistical Model Checking cannot guarantee a correct answer of
the PMC problem. The most crucial question needed to obtain meaningful results
from SMC is whether the probability that the algorithm gives a wrong answer
can be bounded. In Section 6 we prove that this error probability can indeed be
bounded arbitrarily by the user. In Section 4, we also introduce a new form of SMC
that uses Bayesian estimation instead of Bayesian hypothesis testing. Hypothesis-
testing based methods are more efficient than those based on estimation when the
threshold probability θ (which is specified by the user) is significantly different
from the true probability that the property holds (which is determined by M
and its initial state s0) [48]. In this paper we show that our Bayesian estimation
algorithm can be very efficient for probabilities close to 1 or close to 0.

Our SMC approach thus encompasses both hypothesis testing and estimation,
and it is based on Bayes’ theorem and sequential sampling. Bayes’ theorem enables
us to incorporate prior information about the model being verified. Sequential
sampling means that the number of sampled traces is not fixed a priori. Instead,
sequential algorithms determine the sample size at “run-time”, depending on the
evidence gathered by the samples seen so far. Because conclusive information from
the samples can be used to stop our SMC algorithms as early as possible, this often
leads to significantly smaller number of sampled traces (simulations).

We apply our approach to a representative example of discrete-time stochastic
hybrid systems modeled in Stateflow/Simulink: a fault-tolerant fuel control system.

The contributions of this paper are as follows:

– We show how Statistical Model Checking can be used for Stateflow/Simulink-
style hybrid systems with probabilistic transitions.

– We introduce Bayesian sequential interval estimation and prove almost sure
termination.

– We prove analytic error bounds for the Bayesian sequential hypothesis testing
and estimation algorithms.

– In a series of experiments with a relevant Stateflow/Simulink model, we empir-
ically show that our sequential estimation method performs better than other
estimation-based Statistical Model Checking approaches. In some cases our
algorithm is faster by several orders of magnitudes.

While the theoretical analysis of our Statistical Model Checking approach is com-
plicated by its sequential nature, a beneficial property of our algorithms is that
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they are easy to implement and often more efficient than working with a fixed
number of samples.

2 Model

Our Statistical Model Checking algorithms can be applied to any stochastic model
for which it is possible to define a probability space over its traces, draw sample
traces in a fair way, and check BLTL properties for traces. Several stochastic
models like discrete/continuous Markov chains satisfy this property [50]. Here
we use discrete-time hybrid systems a la Stateflow/Simulink with probabilistic
transitions.

Stateflow/Simulink1 (SF/SL) is a model-based design and simulation tool de-
veloped by The Mathworks. It provides a graphical environment for designing
data-flow programming architectures. It is heavily used in the automotive and
defense industries for developing embedded systems. Models in SF/SL are recur-
sively defined by blocks, which may contain specifications (in fact, blocks them-
selves) of communication, control, signal processing, and of many other types of
computation. The blocks of a model are interconnected by signals. In Simulink,
blocks operate with a continuous-time semantics, which means that the model’s
signals are thought to be continuous-time functions. (For example, the output
of an integrator block is a continuous-time signal.) Stateflow introduces discrete-
time computations in the form of discrete-time finite-state automata which can
be freely embedded in Simulink blocks. The resulting models have thus a hybrid
continuous/discrete-time semantics. The model simulation is accomplished by a
solver (a numerical integration procedure) which calculates the temporal dynam-
ics of the model. Finally, SF/SL provides for automated code generation (e.g., C)
from the models. This feature is used when the model is ready to be deployed on
the target hardware architecture.

Preliminaries We consider discrete-time stochastic processes over Rn. Given a
Borel set S ⊆ Rn, we denote its Borel σ-algebra by B(S). We use the notion
of stochastic kernel as a unifying concept for our particular model of stochastic
hybrid system. Note that, unlike other models of stochastic hybrid systems [18,6,
8,35,37], we do not consider continuous stochastic transitions, since those are less
relevant for SF/SL applications.

Definition 1 A stochastic kernel on a measurable space (S,B(S)) is a function
K:S × B(S)→ [0, 1] such that:

1. for each x ∈ S, K(x, ·) is a probability measure on B(S); and
2. for each B ∈ B(S), K(·, B) is a (Borel) measurable function on S.

The sample space is the set Ω = Sω of (infinite) sequences of states, equipped with
the usual product σ-algebra F of Ω (i.e., F is the smallest σ-algebra containing
all the cylinder sets over B(Sn), for all n > 1.) Given a stochastic kernel K on
(Ω,F) and an initial state x ∈ S, by Ionescu Tulcea’s theorem [43, Theorem 2 in
II.9] there exists a unique probability measure P defined on (Ω,F) and a Markov
process {Xt : t ∈ N} such that for all B ∈ B(S) and for all xi ∈ S:

1 http://www.mathworks.com/products/simulink/
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– P(X1 ∈ B) = δx(B); and
– P(Xt+1 ∈ B | (x1, . . . , xt)) = P(Xt+1 ∈ B |xt) = K(xt, B)

where δx is the Dirac measure (i.e., δx(B) = 1 if x ∈ B, and 0 otherwise). Observe
that we can formally assume all samples to be infinitely long by adding stuttering
transitions for executions that have terminated.

Discrete-Time Hybrid Systems As a system model, we consider discrete-time
hybrid systems with additional probabilistic transitions (our case study uses SF/SL).
Such a model gives rise to a transition system that allows for discrete transitions
(e.g., from one Stateflow node to another), continuous transitions (when following
differential equations underlying Simulink models), and probabilistic transitions
(following a known probability distribution modeled in SF/SL). For SF/SL, a state

assigns real values to all the state variables and identifies the current location for
Stateflow machines.

We first define a deterministic hybrid automaton. Then we augment it with
probabilistic transitions.

Definition 2 A discrete-time hybrid automaton (DTHA) consists of:

– a continuous state space Rn;
– a directed graph with vertices Q (locations) and edges E (control switches);
– one initial state (q0, x0) ∈ Q×Rn;
– continuous flows ϕq(t;x) ∈ Rn, representing the (continuous) state reached after

staying in location q for time t ≥ 0, starting from x ∈ Rn;
– jump functions jumpe : Rn → Rn for edges e ∈ E.

Definition 3 The transition function for a deterministic DTHA is defined over Q×
Rn as

(q, x)→∆(q,x) (q̃, x̃)

where

– for t ∈ R≥0, we have (q, x)→t (q, x̃) iff x̃ = ϕq(t;x);
– for e ∈ E, we have (q, x)→e (q̃, x̃) iff x̃ = jumpe(x) and e is an edge from q to q̃;
– ∆ : Q×Rn → R≥0 ∪ E is the simulation function.

The simulation function ∆ makes system runs deterministic by selecting which
particular discrete or continuous transition to execute from the current state. For
Stateflow/Simulink, ∆ satisfies several properties, including that the first edge that
is enabled (i.e., where a jump is possible) will be chosen. Furthermore, if an edge is
enabled, a discrete transition will be taken rather than a continuous transition. We
note that Stateflow/Simulink’s default ordering of outgoing edges is by clockwise
orientation in the graphical notation, but allows user-specified precedence overrides
as well.

Each execution of a DTHA is obtained by following the transition function
repeatedly from state to state. A sequence σ = (s0, t0), (s1, t1), . . . of si ∈ Q× Rn
and ti ∈ R≥0 is called trace iff, s0 = (q0, x0) and for each i ∈ N, si →∆(si) si+1

and:

1. ti = ∆(si) if ∆(si) ∈ R≥0 (continuous transition), or
2. ti = 0 if ∆(si) ∈ E (discrete transition).
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Thus the system follows transitions from si to si+1. If this transition is a continuous
transition, then ti is its duration ∆(si), otherwise ti = 0 for discrete transitions. In
particular, the global time at state si = (qi, xi) is

∑
0≤l<i tl. We require that the

sum
∑∞
i ti must diverge, that is, the system cannot make infinitely many state

switches in finite time (non-zeno).

Discrete Time Hybrid Systems with Probabilistic Transitions A probabilistic

DTHA is obtained from a DTHA by means of a probabilistic simulation function
instead of (deterministic) simulation function ∆. Unlike ∆, it selects discrete and
continuous transitions according to a probability density. We denote by D(X) the
set of probability density functions defined over set X.

Definition 4 The probabilistic simulation function Π for a DTHA is the map

Π = (Πa, Πc, Πd) : Q×Rn → D({0, 1})×D(R≥0)×D(E)

where for every e = (a, b) ∈ E and q ∈ Q it must be that (Πd(q))(e) = 0 if a 6= q.

The condition on the edges ensures that only edges starting in the current location
may have non-zero probability, because the others would not be enabled. For a
given pair (q, x) ∈ Q × Rn, function Π enforces stochastic evolution by choosing
the next transition - either a continuous or a discrete transition - according to
a probability distribution (which in general depends on the current state (q, x)).
In contrast, function ∆ deterministically chooses the next transition by imposing
∆(q, x) as either a continuous or a discrete transition. Note that at every state
(q, x) ∈ Q × Rn, Stateflow/Simulink’s simulation engine deterministically chooses
either an element of D(R≥0) or D(E). Our probabilistic simulation function clearly
generalizes this case — just choose either type of evolution with probability 1 (or
0), i.e., Πa(q, x) is a Dirac distribution at each (q, x).

We now define a stochastic kernel for a DTHA, using function Π.

Definition 5 Given a DTHA, let S = Q×Rn be its state space. For a probabilistic
simulation function Π we define the map K : S × B(S)→ [0, 1]:

K((q, x), B) = pa·

( ∑
{e=(q,q̃)∈E |

(q,jumpe(x))∈B}

Πd(q, x)(e)

)
+(1−pa)·

∫ ∞
0

Πc(q, x)(t) IB(q, ϕq(t, x)) dt

where IB is the indicator function over set B and pa = Πa(q, x)(0).

Note that the integrand, as for the case of discrete transition, contributes only
if the flow stays in the given Borel set B. Function K thus probabilistically chooses
between a discrete transition or a continuous evolution for any given (q, x) ∈ S. In
particular, with probability Πa(q, x)(0) it will choose to perform a discrete tran-
sition, and a continuous evolution with probability Πa(q, x)(1) = 1 −Πa(q, x)(0).
After this choice, the actual action to be taken is sampled in the first case from a
discrete distribution (over the edges e ∈ E) induced by Πd, and in the second case
from a continuous distribution (over time t ≥ 0) induced by Πc.

Lemma 1 Function K : S × B(S)→ [0, 1] is a stochastic kernel.
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The proof of the lemma can be found in the Appendix. Again, by Ionescu Tulcea’s
theorem [43, Theorem 2 in II.9], this lemma shows that there is a unique probability
measure and a Markov process defined by the stochastic kernel for probabilistic
DTHA.

Note that initial distributions on the initial state can be obtained easily by
prefixing the system with a probabilistic transition from the single initial state
(q0, x0). Sample traces of a probabilistic DTHA can be obtained by sampling from
the traces generated by the probabilistic simulation function Π.

Embedding Stateflow/Simulink SF/SL is a very sophisticated tool for embed-
ded system design and simulation, and it is very challenging to define a compre-
hensive semantics for it. See the work of Tiwari [44] for a remarkable effort to
define a formal semantics. Since Statistical Model Checking is based on numerical
simulation, we do not need to know a full formal semantics of Stateflow/Simulink
here. We can simply use its simulation engine (solver) to generate traces. What
we assume, however, is that Stateflow/Simulink is well-behaved in terms of defin-
ing a probabilistic simulation function Π. Basically, Simulink primarily drives the
continuous transitions (computed by numerical integration schemes) and interfaces
with Stateflow blocks that determine the transition guards and discrete jumps. The
continuous state space of the corresponding DTHA is some subset of Rn where
n is the number of variables in the Stateflow/Simulink model. The locations Q
and edges E correspond to the discrete transitions found in Stateflow/Simulink,
also see [44]. For every state (q, x) ∈ S, Simulink/Stateflow, in fact, chooses deter-
ministically whether a discrete transition (Πa(q, x)(0)) or a continuous transition
(Πa(q, x)(1)) is performed next. That is, Πa(q, x) is deterministic. The discrete
transition Πd(q, x) is also, for the most part, chosen deterministically based on
the block placement or precedence numbers for enabled transitions. Randomness
enters, however, in the outcome of random blocks introduced in the design by
the user. The durations of continuous transitions are determined by the Simulink
integration engine in a nontrivial way. What matters for us is not what exactly
the distributions are that Stateflow/Simulink chooses for Πa, Πc, Πd. Statistical
model checking does not need whitebox access to the system model. It only needs
a way to draw iid sample traces (cf. line 4 in Algorithm 1). What does matter,
however, for Statistical Model Checking to work is the assumption that there is a
well-defined probability measure over the trace space.

3 Specifying Properties in Temporal Logic

Our algorithm verifies properties expressed as Probabilistic Bounded Linear Tem-

poral Logic (PBLTL) formulas. We first define the syntax and semantics of (non-
probabilistic) Bounded Linear Temporal Logic (BLTL), which we can check on a
single trace, and then extend that logic to PBLTL. Finkbeiner and Sipma [16]
have defined a variant of LTL on finite traces of discrete-event systems (where
time is thus not considered).

For a stochastic model M, let the set of state variables SV be a finite set of
real-valued variables. A Boolean predicate over SV is a constraint of the form y∼v,
where y ∈ SV , ∼ ∈ {≥,≤,=}, and v ∈ R. A BLTL property is built on a finite set
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of Boolean predicates over SV using Boolean connectives and temporal operators.
The syntax of the logic is given by the following grammar:

φ ::= y∼v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1Utφ2),

where ∼ ∈ {≥,≤,=}, y ∈ SV , v ∈ Q, and t ∈ Q≥0. As usual, we can define
additional temporal operators such as the operator “eventually within time t”
which is defined as Ftψ = True Ut ψ, or the operator “always up to time t”, which
is defined as Gtψ = ¬Ft¬ψ.

We define the semantics of BLTL with respect to (infinite) executions of the
model M. The fact that an execution σ satisfies property φ is denoted by σ |= φ.
We denote the trace suffix starting at step i by σi (in particular, σ0 denotes the
original trace σ). We denote the value of the state variable y in σ at step i by
V (σ, i, y).

Definition 6 The semantics of BLTL for a trace σk starting at the kth state (k ∈ N)
is defined as follows:

– σk |= y ∼ v if and only if V (σ, k, y) ∼ v;
– σk |= φ1 ∨ φ2 if and only if σk |= φ1 or σk |= φ2;
– σk |= φ1 ∧ φ2 if and only if σk |= φ1 and σk |= φ2;
– σk |= ¬φ1 if and only if σk |= φ1 does not hold (written σk 6|= φ1);
– σk |= φ1Utφ2 if and only if there exists i ∈ N such that

(a)
∑

0≤l<i
tk+l ≤ t,

(b) σk+i |= φ2, and
(c) σk+j |= φ1 for each 0 ≤ j < i.

Statistical Model Checking decides the probabilistic Model Checking problem by
repeatedly checking whether σ |= φ holds on sample simulations σ of the system. In
practice, sample simulations only have a finite duration. The question is how long
these simulations have to be for the formula φ to have a well-defined semantics
such that σ |= φ can be checked (line 6 of Algorithm 1 on p. 3). If σ is too short,
say of duration 2, the semantics of φ1U5.3φ2 may be unclear if φ2 is false for
duration 2. But at what duration of the simulation can we stop because we know
that the truth-value for σ |= φ will never change by continuing the simulation? Is
the number of required simulation steps expected to be finite at all?

For a class of finite length continuous-time boolean signals, well-definedness of
checking bounded MITL properties has been conjectured in [34]. Here we generalize
to infinite, hybrid traces with real-valued signals. We prove well-definedness and
the fact that a finite prefix of the discrete time hybrid signal is sufficient for BLTL
model checking, which is crucial for termination.

Lemma 2 (Bounded sampling) The problem “σ |= φ” is well-defined and can be

checked for BLTL formulas φ and traces σ based on only a finite prefix of σ of bounded

duration.

For proving Lemma 2 we need to derive bounds on when to stop simulation. Those
time bounds can be read off easily from the BLTL formula:
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Definition 7 [34] The sampling bound #(φ) ∈ Q≥0 of a BLTL formula φ is the
maximum nested sum of time bounds:

#(y ∼ v) := 0
#(¬φ1) := #(φ1)

#(φ1 ∨ φ2) := max(#(φ1),#(φ2))
#(φ1 ∧ φ2) := max(#(φ1),#(φ2))
#(φ1Utφ2) := t+ max(#(φ1),#(φ2))

The next lemma (proof in the Appendix) shows that the semantics of BLTL for-
mulas φ is well-defined on finite prefixes of traces with a duration that is bounded
by #(φ).

Lemma 3 (BLTL on bounded simulation traces) Let φ be a BLTL formula, k ∈
N. Then for any two infinite traces σ = (s0, t0), (s1, t1), . . . and σ̃ = (s̃0, t̃0), (s̃1, t̃1), . . .
with

sk+I = s̃k+I and tk+I = t̃k+I ∀I ∈ N with
∑

0≤l<I
tk+l ≤ #(φ) (1)

we have that

σk |= φ iff σ̃k |= φ .

As a consequence, for checking σ |= φ during the Statistical Model Checking
algorithm 1, we can stop simulation of the sample σ when the duration exceeds
#(φ), because, according to Lemma 3, all possible extensions of the trace agree
on whether φ holds or not. In the Appendix we prove that Lemma 2 holds using
prefixes of traces according to the sampling bound #(φ), which guarantees that
finite simulations are sufficient for deciding whether φ holds on a trace. Note that
#(φ) is not the maximal number of transitions until formula φ can be decided
along a trace, but only an upper bound for the amount of time that passes in the
model M until φ can be decided. In particular, divergence of time on samples is
required to ensure that the number of transitions is finite as well and that SMC
terminates. Observe that ad-hoc ways of ensuring divergence of time by discarding
samples with too slow a progress of time may bias the outcome of SMC.

We now define Probabilistic Bounded Linear Temporal Logic.

Definition 8 A Probabilistic Bounded LTL (PBLTL) formula is a formula of the
form P≥θ(φ), where φ is a BLTL formula and θ ∈ (0, 1) is a probability.

We say that M satisfies PBLTL property P≥θ(φ), denoted by M |= P≥θ(φ), if
and only if the probability that an execution trace of M satisfies BLTL property
φ is greater than or equal to θ. This problem is well-defined, since by Lemma 2,
each σ |= φ is decidable on a finite prefix of σ, and in the previous Section we have
proved existence of a probability measure over the traces ofM. Thus, the set of all
(non-zeno) executions ofM that satisfy a given BLTL formula is measurable [50].
Note that counterexamples to the BLTL property φ are not counterexamples to the
PBLTL property P≥θ(φ), because the truth of P≥θ(φ) depends on the likelihood
of all counterexamples to φ. This makes PMC more difficult than standard Model
Checking, because one counterexample to φ is not enough to decide P≥θ(φ). We re-
fer to the excellent overview [9] for a discussion of counterexamples in Probabilistic
Model Checking.
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4 Bayesian Interval Estimation

We present our new Bayesian statistical estimation algorithm. In this approach we
are interested in estimating p, the (unknown) probability that a random execution
trace of M satisfies a fixed BLTL property φ. The estimate will be in the form
of a confidence interval, i.e., an interval which will contain p with arbitrarily high
probability.

For any trace σi of the system M, we can, according to Lemma 2, determin-
istically decide whether σi satisfies BLTL formula φ. Therefore, we can define a
Bernoulli random variable Xi denoting the outcome of σi |= φ. The conditional
probability density function associated with Xi is thus:

f(xi|u) = uxi(1− u)1−xi (2)

where xi = 1 iff σi |= φ, otherwise xi = 0. Note that the Xi are (conditionally)
independent and identically distributed (iid) random variables, as each trace is
given by an independent execution of the model. Since p (the probability that
property φ holds) is unknown, in the Bayesian approach one assumes that p is
given by a random variable, whose density g(·) is called the prior density. The
prior is usually based on our previous experiences and beliefs about the system.
A lack of information about the probability of the system satisfying the formula
is usually summarized by a non-informative or objective prior (see [39, Section 3.5]
for an in-depth treatment).

Since p lies in [0, 1], we need prior densities defined over this interval. In this
paper we focus on Beta priors which are defined by the following probability
density (for real parameters α, β > 0 that give various shapes):

∀u ∈ (0, 1) g(u, α, β) =̂
1

B(α, β)
uα−1(1− u)β−1 (3)

where the Beta function B(α, β) is defined as:

B(α, β) =̂

∫ 1

0

tα−1(1− t)β−1dt . (4)

By varying the parameters α and β, one can approximate several other smooth
unimodal densities on (0, 1) by a Beta density (e.g., the uniform density over (0, 1)
is a Beta with α = β = 1). For all u ∈ [0, 1] the Beta distribution function F(α,β)(u)
is defined:

F(α,β)(u) =̂

∫ u

0

g(t, α, β) dt =
1

B(α, β)

∫ u

0

tα−1(1− t)β−1 dt (5)

which is the distribution function for a Beta random variable of parameters α, β
(i.e., the probability that it takes values less than or equal to u).

An advantage of using Beta densities is that the Beta distribution is the con-

jugate prior to the Bernoulli distribution2. This relationship enables us to avoid
numerical integration in the implementation of our Bayesian estimation and hy-
pothesis testing algorithms, as we explain next. Furthermore, conjugate priors do
not limit the type of priors usable in practice. It is known that any prior distribu-
tion (even those without a density) can be well approximated by a finite mixture
of conjugate priors [15].

2 A distribution P (θ) is said to be a conjugate prior for a likelihood function, P (d|θ), if the
posterior, P (θ|d) is in the same family of distributions.
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4.1 Bayesian Intervals

Bayes’ theorem states that if we sample from a density f(·|u), where the unknown
probability u is given by a random variable U over (0, 1) whose density is g(·), then
the posterior density of U given the data x1, . . . , xn is:

f(u|x1, . . . , xn) =
f(x1, . . . , xn|u)g(u)∫ 1

0
f(x1, . . . , xn|v)g(v) dv

(6)

and in our case f(x1, . . . , xn|u) factorizes as
∏n
i=1 f(xi|u), where f(xi|u) is the

conditional density function (2) associated with the i-th sample (remember that
we assume conditionally independent, identically distributed - iid - samples). Since
the posterior is an actual distribution (note the normalization constant), we can
estimate p by the posterior mean. In fact, the posterior mean is a posterior Bayes

estimator of p, i.e., it minimizes the risk over the whole parameter space of p (under
a quadratic loss function, see [14, Chapter 8]).

For a coverage goal c ∈ (1
2 , 1), any interval (t0, t1) such that∫ t1

t0

f(u|x1, . . . , xn) du = c (7)

is called a 100c percent Bayesian interval estimate of p. Naturally, one would choose
t0 and t1 that minimize t1−t0 and satisfy (7), thus determining an optimal interval.
(Note that t0 and t1 are in fact functions of the sample x1, . . . , xn.) Optimal interval
estimates can be found, for example, for the mean of a normal distribution with
normal prior, where the resulting posterior is normal. In general, however, it is
difficult to find optimal interval estimates. For unimodal posterior densities like
Beta densities, we can use the posterior’s mean as the “center” of an interval
estimate.

Here, we do not pursue the computation of an optimal interval, which may
be numerically infeasible. Instead, we fix a desired half-interval width δ and then
sample until the posterior probability of an interval of width 2δ containing the
posterior mean exceeds c. When sampling from a Bernoulli distribution and with
a Beta prior of parameters α, β, it is known that the mean p̂ of the posterior is:

p̂ =
x+ α

n+ α+ β
(8)

where x =
∑n
i=1 xi is the number of successes in the sampled data x1, . . . , xn. The

integral in (7) can be computed easily in terms of the Beta distribution function.

Proposition 1 Let (t0, t1) be an interval in [0, 1]. The posterior probability of Bernoulli

iid samples (x1, . . . , xn) and Beta prior of parameters α, β > 0 can be calculated as:∫ t1

t0

f(u|x1, . . . , xn) du = F(x+α,n−x+β)(t1)− F(x+α,n−x+β)(t0) (9)

where x =
∑n
i=1 xi is the number of successes in (x1, . . . , xn) and F (·) is the Beta

distribution function.

Proof Direct from definition of Beta distribution function (5) and the fact that the
posterior density is a Beta of parameters x+ α and n− x+ β. ut
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The Beta distribution function can be computed with high accuracy by standard
mathematical libraries (e.g. the GNU Scientific Library) or software (e.g. Matlab).
Hence, as also argued in the previous section, the Beta distribution is the appro-
priate choice for summarizing the prior distribution in Statistical Model Checking.

4.2 Bayesian Estimation Algorithm

We want to compute an interval estimate of p = Prob(M |= φ), where φ is a BLTL
formula and M a stochastic hybrid system model - remember from our discussion
in Sections 2 and 3 that p is well-defined (but unknown). Fix the half-size δ ∈ (0, 12 )
of the desired interval estimate for p, the interval coverage coefficient c ∈ (1

2 , 1) to
be used in (7), and the coefficients α, β of the Beta prior.

Our algorithm (shown in Algorithm 2) iteratively draws iid sample traces
σ1, σ2, . . ., and checks whether they satisfy φ. At stage n, the algorithm computes
the posterior mean p̂, which is the Bayes estimator for p, according to (8). Next,
using t0 = p̂ − δ, t1 = p̂ + δ it computes the posterior probability of the interval
(t0, t1) as

γ =

∫ t1

t0

f(u|x1, . . . , xn) du .

Input : BLTL Property φ, half-interval size δ ∈ (0, 12 ), interval coverage
coefficient c ∈ (1

2 , 1), Prior Beta distribution with parameters α, β
for the (unknown) probability p that the system satisfies φ

Output: An interval (t0, t1) of width 2δ with posterior probability at least
c, estimate p̂ for the true probability p

1 n := 0; {number of traces drawn so far}
2 x := 0; {number of traces satisfying φ so far}
3 repeat

4 σ := draw a sample trace of the system (iid);
5 n := n+ 1;
6 if σ |= φ then x := x+ 1;
7 p̂ := (x+ α)/(n+ α+ β); {compute posterior mean}
8 (t0, t1) := (p̂− δ, p̂+ δ); {compute interval estimate}
9 if t1 > 1 then (t0, t1) := (1− 2 · δ, 1);

10 else if t0 < 0 then ;
11 (t0, t1) := (0, 2 · δ);

{compute posterior probability of p ∈ (t0, t1), by (9)}
12 γ := PosteriorProb(t0, t1)

13 until (γ > c);
14 return (t0, t1), p̂

Algorithm 2: Statistical Model Checking by Bayesian Interval Estimates

If γ > c the algorithm stops and returns t0, t1 and p̂; otherwise it samples
another trace and repeats. One should pay attention at the extreme points of the
(0, 1) interval, but those are easily taken care of, as shown in lines 9 and 11 of
Algorithm 2. Note that the algorithm always returns an interval of width 2δ.

In Figure 1 we give three snapshots of a typical execution of the algorithm.
We have plotted the posterior density (6) after 1000 and 5000 samples, and on
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At n = 1000 samples (x = 860 successes)
At n = 5000 samples (x = 4232 successes)
On termination (n = 14775, x = 12370)

Fig. 1 Posterior density for sequential Bayesian estimation (Algorithm 2) at several sample
sizes; the unknown probability is 0.84, δ = 0.01, c = 0.999, uniform prior (α = β = 1). For
readability the graph is restriced to [0.65, 0.9].

termination of the algorithm (which occurred after 14775 samples for this specific
run.) In this experiment, we have replaced system simulation and trace checking
by tossing a coin with a fixed bias. Therefore, the Bayesian estimation algorithm
will compute both interval and point estimates for such (unknown) bias. The true
coin bias (i.e., the probability of success) used was 0.84, while half-interval size
was δ = 0.01, coverage probability was c = 0.999, and the prior was uniform
(α = β = 1). From Figure 1 we can see that after 1000 samples the posterior
density is almost entirely within the [0.825, 0.9] interval. However, as the algorithm
progresses to 5000 samples, the posterior density gets “leaner” and “taller”, i.e.,
its mass is concentrated over a shorter interval, thereby giving better (tighter)
estimates. On termination, after 14775 samples for this run, the posterior density
becomes even more thin, and satisfies the required coverage probability (c) and
half-interval size (δ) specified by the user.

Finally, we note that the posterior mean p̂ is a biased estimator of the true
probability p — the expected value of p̂ is not p, as it can be easily seen from
p̂’s definition (8). However, this is not a problem, since unbiasedness is a rather
weak property of estimators for the mean. (Unbiased estimators are easy to get:
from a sample of iid variables estimate their mean by using any one sample. This
estimator is unbiased by definition, but of course not useful.) More importantly,
the posterior mean p̂ is a consistent estimator, i.e., it converges in probability to
p as the sample size tends to infinity (this is immediate from (8) and the Law of
Large Numbers.) Therefore, larger sample sizes will generally yields more accurate
estimates, as it is witnessed by Figure 1, and as one would expect from a “good”
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estimator. We remark that the consistency of p̂ is independent from the choice of
the prior.

5 Bayesian Hypothesis Testing

In this section we briefly present the sequential Bayesian hypothesis test, which was
introduced in [29]. Recall that the PMC problem is to decide whetherM |= P≥θ(φ),
where θ ∈ (0, 1) and φ is a BLTL formula. Let p be the (unknown but fixed)
probability of the model satisfying φ: thus, the PMC problem can now be stated
as deciding between two hypotheses:

H0 : p > θ H1 : p < θ. (10)

Let X1, . . . , Xn be a sequence of Bernoulli random variables defined as for the
PMC problem in Sect. 4, and let d = (x1, . . . , xn) denote a sample of those vari-
ables. Let H0 and H1 be mutually exclusive hypotheses over the random variable’s
parameter space according to (10). Suppose the prior probabilities P (H0) and P (H1)
are strictly positive and satisfy P (H0) + P (H1) = 1. Bayes’ theorem states that
the posterior probabilities are:

P (Hi|d) =
P (d|Hi)P (Hi)

P (d)
(i = 0, 1) (11)

for every d with P (d) = P (d|H0)P (H0) + P (d|H1)P (H1) > 0. In our case P (d) is
always non-zero (there are no impossible finite sequences of outcomes).

5.1 Bayes Factor

By Bayes’ theorem, the posterior odds for hypothesis H0 is

P (H0|d)
P (H1|d)

=
P (d|H0)

P (d|H1)
· P (H0)

P (H1)
. (12)

Definition 9 The Bayes factor B of sample d and hypotheses H0 and H1 is

B =
P (d|H0)

P (d|H1)
.

For fixed priors in a given example, the Bayes factor is directly proportional to the
posterior odds by (12). Thus, it may be used as a measure of relative confidence in
H0 vs. H1, as proposed by Jeffreys [28]. To test H0 vs. H1, we compute the Bayes
factor B of the available data d and then compare it against a fixed threshold
T > 1: we shall accept H0 iff B > T . Jeffreys interprets the value of the Bayes
factor as a measure of the evidence in favor of H0 (dually, 1

B is the evidence in
favor of H1). Classically, a fixed number of samples was suggested for deciding H0

vs. H1. We develop an algorithm that chooses the number of samples adaptively.
We now show how to compute the Bayes factor. According to Definition 9,

we have to calculate the ratio of the probabilities of the observed sample d =
(x1, . . . , xn) given H0 and H1. By (12), this ratio is proportional to the ratio of
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the posterior probabilities, which can be computed from Bayes’ theorem (6) by
integrating the joint density f(x1|·) · · · f(xn|·) with respect to the prior g(·):

P (H0|x1, . . . , xn)

P (H1|x1, . . . , xn)
=

∫ 1

θ
f(x1|u) · · · f(xn|u) · g(u) du∫ θ

0
f(x1|u) · · · f(xn|u) · g(u) du

.

Thus, the Bayes factor is:

B =
π1
π0
·
∫ 1

θ
f(x1|u) · · · f(xn|u) · g(u) du∫ θ

0
f(x1|u) · · · f(xn|u) · g(u) du

(13)

where π0 = P (H0) =
∫ 1

θ
g(u) du, and π1 = P (H1) = 1 − π0. We observe that the

Bayes factor depends on the data d and on the prior g, so it may be considered a
measure of confidence in H0 vs. H1 provided by the data x1, . . . , xn, and “weighted”
by the prior g. When using Beta priors, the calculation of the Bayes factor can be
much simplified.

Proposition 2 The Bayes factor of H0 : p > θ vs. H1 : p < θ with Bernoulli samples

(x1, . . . , xn) and Beta prior of parameters α, β is:

Bn =
π1
π0
·
(

1

F(x+α,n−x+β)(θ)
− 1

)
.

where x =
∑n
i=1 xi is the number of successes in (x1, . . . , xn) and F(s,t)(·) is the Beta

distribution function of parameters s, t.

5.2 Bayesian Hypothesis Testing Algorithm

Our Bayesian hypothesis testing algorithm generalizes Jeffreys’ test to a sequential
version, and it is shown in Algorithm 1 on p. 3. Remember we want to establish
whether M |= P>θ(φ), where θ ∈ (0, 1) and φ is a BLTL formula. The algorithm
iteratively draws independent and identically distributed sample traces σ1, σ2, ...
(line 4), and checks whether they satisfy φ (line 6). Again, we can model this
procedure as independent sampling from a Bernoulli distribution X of unknown
parameter p - the actual probability of the model satisfying φ. At stage n the
algorithm has drawn samples x1, . . . , xn iid like X. In line 9, it then computes the
Bayes factor B according to Proposition 2, to check if it has obtained conclusive
evidence. The algorithm accepts H0 iff B > T (line 10), and accepts H1 iff B < 1

T
(line 12). Otherwise ( 1

T 6 B 6 T ) it repeats the loop and continues drawing iid
samples.

6 Analysis

Statistical Model Checking algorithms are easy to implement and—because they
are based on selective system simulation—enjoy promising scalability properties.
Yet, for the same reason, their output would be useless, unless the probability of
making an error during the PMC decision can be bounded.
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As our main contribution, we prove (almost sure) termination for the Bayesian
interval estimation algorithm, and we prove error bounds for Statistical Model
Checking by Bayesian sequential hypothesis testing and by Bayesian interval esti-
mation. The proofs of these results can be found in the Appendix. Termination of
the Bayesian sequential hypothesis testing has been shown in [52]. In the Appendix
we now prove termination of the sequential Bayesian estimation algorithm.

Theorem 1 (Termination of Bayesian estimation) The Sequential Bayesian in-

terval estimation Algorithm 2 terminates with probability one.

Next, we show that the (Bayesian) Type I-II error probabilities for the algo-
rithms in Sect. 4–5 can be bounded arbitrarily. We recall that a Type I (II) error
occurs when we reject (accept) the null hypothesis although it is true (false).

Theorem 2 (Error bound for hypothesis testing) For any discrete random vari-

able and prior, the probability of a Type I-II error for the Bayesian hypothesis testing

algorithm 1 is bounded above by 1
T , where T is the Bayes Factor threshold given as

input.

Note that the bound 1
T is independent from the prior used. Also, in practice a

slightly smaller Type I-II error can be read off from the actual Bayes factor at the
end of the algorithm. By construction of the algorithm, we know that this Bayes
factor is bounded above by 1

T , but it may be much smaller than that when the
algorithm terminates.

Finally, we lift the error bounds found in Theorem 2 for Algorithm 1 to Algo-
rithm 2 by representing the output of the Bayesian interval estimation algorithm2
as a hypothesis testing problem. We use the output interval (t0, t1) of Algorithm 2
to define the (null) hypothesis H0 : p ∈ (t0, t1). Now H0 represents the hypothesis
that the output of Algorithm 2 is correct. Then, we can test H0 and determine
bounds on Type I and II errors by Theorem 2.

Theorem 3 (Error bound for estimation) For any discrete random variable and

prior, the Type I and II errors for the output interval (t0, t1) of the Bayesian estimation

Algorithm 2 are bounded above by (1−c)π0

c(1−π0)
, where c is the coverage coefficient given as

input and π0 is the prior probability of the hypothesis H0 : p ∈ (t0, t1).

7 Application

We study an example that is part of the Stateflow/Simulink package. The model3

describes a fuel control system for a gasoline engine. It detects sensor failures,
and dynamically changes the control law to provide seamless operation. A key
quantity in the model is the ratio between the air mass flow rate (from the intake
manifold) and the fuel mass flow rate (as pumped by the injectors). The system
aims at keeping the air-fuel ratio close to the stoichiometric ratio of 14.6, which
represents an acceptable compromise between performance and fuel consumption.
The system estimates the “correct” fuel rate giving the target stoichiometric ratio
by taking into account sensor readings for the amount of oxygen present in the

3 Modeling a Fault-Tolerant Fuel Control System. http://www.mathworks.com/help/
simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html

http://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
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exhaust gas (EGO), for the engine speed, throttle command and manifold absolute
pressure. In the event of a single sensor fault, the system detects the situation and
operates the engine with a higher fuel rate to compensate. If two or more sensors
fail, the engine is shut down, since the system cannot reliably control the air-fuel
ratio.

The Stateflow control logic of the system has a total of 24 locations, grouped
in 6 parallel (i.e., simultaneously active) states. The Simulink part of the system
is described by several nonlinear equations and a linear differential equation with
a switching condition. Overall, this model provides a representative summary of
the important features of hybrid systems. Our stochastic system is obtained by
introducing random faults in the EGO, speed and manifold pressure sensors. We
model the faults by three independent Poisson processes with different arrival
rates. When a fault happens, it is “repaired” with a fixed service time of one
second (i.e., the sensor remains in fault condition for one second, then it resumes
normal operation). Note that the system has no free inputs, since the throttle
command provides a periodic triangular input, and the nominal speed is never
changed. This ensures that, once we set the three fault rates, for any given temporal
logic property φ the probability that the model satisfies φ is well-defined. All our
experiments have been performed on a 2.4GHz Pentium 4, 1GB RAM desktop
computer running Matlab R2008b on Windows XP.

7.1 Experimental Results in Application

For our experiments we model check the following formula (null hypothesis)

H0 :M |= P≥θ(¬F100G1(FuelF lowRate = 0)) (14)

for different values of threshold θ and sensors fault rates. We test whether with
probability greater than θ it is not the case that within 100 seconds the fuel
flow rate stays zero for one second. The fault rates are expressed in seconds and
represent the mean interarrival time between two faults (in a given sensor). In
experiment 1, we use uniform priors over (0, 1), with null and alternate hypotheses
equally likely a priori. In experiment 2, we use informative priors, i.e., Beta priors
highly concentrated around the true probability that the model satisfies the BLTL
formula (this was obtained simply by using our Bayesian estimation algorithm —
see below.) The Bayes Factor threshold is T = 1000, so by Theorem 2 both Type
I and II errors are bounded by .001.

Probability threshold θ
.9 .99

Fault
(3 7 8) 7 (8/21s) 7 (2/5s)

rates
(10 8 9) 7 (710/1738s) 7 (8/21s)

(20 10 20) 3 (44/100s) 7 (1626/3995s)
(30 30 30) 3 (44/107s) 3 (239/589s)

Table 1 Number of samples / verification time when testing (14) with uniform, equally likely
priors and T = 1000: 7 = ‘H0 rejected’, 3 = ‘H0 accepted’.
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Probability threshold θ
.9 .99

Fault
(3 7 8) 7 (8/21s) 7 (2/5s)

rates
(10 8 9) 7 (255/632s) 7 (8/21s)

(20 10 20) 3 (39/88s) 7 (1463/3613s)
(30 30 30) 3 (33/80s) 3 (201/502s)

Table 2 Number of samples / verification time when testing (14) with informative priors and
T = 1000: 7 = ‘H0 rejected’, 3 = ‘H0 accepted’.

In Tables 1 and 2 we report our results. Even in the longest run (for θ = .99
and fault rates (20 10 20) in Table 1), Bayesian SMC terminates after 3995s
already. This is very good performance for a test with such a small (.001) error
probability run on a desktop computer. We note that the total time spent for
this case on actually computing the statistical test, i.e., Bayes factor computation,
was just about 1s. The dominant computation cost is system simulation. Also, by
comparing the sample sizes of Table 1 and 2 we note that the use of an informative
prior generally helps the algorithm — i.e., fewer samples are required to decide.

Interval coverage c
.99 .999

Fault
(3 7 8) .3569 / 606 .3429 / 972

rates
(10 8 9) .8785 / 286 .8429 / 590

(20 10 20) .9561 / 112 .9625 / 158
(30 30 30) .9778 / 43 .9851 / 65
C-H bound 922 1382

Table 3 Posterior mean / number of samples for estimating probability of (15) with uniform
prior and δ = .05, and sample size required by the Chernoff-Hoeffding bound [27].

Interval coverage c
.99 .999

Fault
(3 7 8) .3558/15205 .3563/24830

rates
(10 8 9) .8528/8331 .8534/13569

(20 10 20) .9840/1121 .9779/2583
(30 30 30) .9956/227 .9971/341
C-H bound 23026 34539

Table 4 Posterior mean / number of samples when estimating probability of (15) with uniform
prior and δ = .01, and sample size required by the Chernoff-Hoeffding bound [27].

Next, we estimate the probability thatM satisfies the following property, using
our Bayesian estimation algorithm:

M |= (¬F100G1(FuelF lowRate = 0)) . (15)

In particular, we ran two sets of tests, one with half-interval size δ = .05 and
another with δ = .01. In each set we used different values for the interval coefficient
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c and different sensor fault rates, as before. Experimental results are in Tables 3
and 4. We used uniform priors in both cases.

Finally, since both Bayesian estimation and hypothesis testing are general tech-
niques, they can be applied to a variety of models. In fact, we have recently applied
both approaches to verify computational models of biological signaling pathways
[20] and analog circuits [47]. In the systems biology application, models are in-
herently probabilistic because of the stochastic nature of the (quantum) physics
underlying chemical reactions. In particular, the pioneering work of Gillespie [19]
showed that, under some reasonable assumptions, one can use continuous-time
Markov chains to approximate the temporal evolution of chemical reaction net-
works. In our work [20] we used the BioNetGen rule-based language [26] to suc-
cinctly describe the reactions of an important signaling pathway in cancer. The
model (i.e., the resulting continuous-time Markov chain) is then efficiently simu-
lated by the BioNetGen simulator and verified against known behavioral proper-
ties expressed in BLTL. The size of the model — to the order of 1040 states — is
currently out of the reach of (standard) probabilistic model checking techniques.

In analog circuits, low-voltage operations and process variability in the fabri-
cation process can affect the nominal performance of a circuit, effectively turning
a deterministic system into a stochastic one. In [47] we studied a gate-level model
of an operational amplifier. We used the tool SPICE as the model specification
language and simulator. (SPICE is a popular tool used by analog designers and
validation engineers.) Stochastic behavior was introduced to model process vari-
ation. In particular, we assumed that four parameters of each transistor in the
model were subject to normally-distributed noise. Transient properties of the cir-
cuit model were described using BLTL, which proved to be a useful specification
language in this domain, too. Again, the combination of efficient statistical tech-
niques and simulation has made verification accessible for analog circuit designs.

7.2 Discussion

A general trend shown by our experimental results and additional simulations
is that our Bayesian estimation model checking algorithm is generally faster at
the extremes, i.e., when the unknown probability p is close to 0 or close to 1.
Performance is worse when p is closer to 0.5. In contrast, the performance of our
Bayesian hypothesis testing model checking algorithm is faster when the unknown
true probability p is far from the threshold probability θ.

We note the remarkable performance of our estimation approach compared to
the technique based on the Chernoff-Hoeffding bound [25]. From Table 3, 4, and
5 we see that when the unknown probability is close to 1, our algorithm can be
up to two orders of magnitude faster. (The same argument holds when the true
probability is close to 0.) Chernoff-Hoeffding bounds hold for any random variable
with bounded variance. Our Bayesian approach, instead, explicitly constructs the
posterior distribution on the basis of the Bernoulli sampling distribution and the
prior.

We chose the Chernoff-Hoeffding technique as a comparison because it provides
bounded confidence intervals, i.e., the interval’s coverage probability is bounded
below by a desired value. Similarly, our Bayesian estimation technique provides
bounded confidence intervals (for given a prior distribution.) There are other,
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standard confidence interval techniques (see for example [40, Chapter 4]) based
on the Central Limit Theorem (CLT). However, they are based on finite-sample
approximations of the CLT. As a result, the coverage probability of the computed
interval is not guaranteed to be equal to or larger than the desired value. One only
has an approximate coverage probability, depending on the chosen sample size.
The coverage probability will of course converge to desired value as the sample
size tends to infinity.

Finally, we point out that the choice of a prior is obviously subjective. The user
may employ previous knowledge, empirical observations, and other information
sources to decide on a particular prior distribution. However, in statistical model
checking the cost of sampling is relatively low, so the choice of an adequate prior is
not much of a problem. For all practical purposes, we have found that a “simple”
prior such as the uniform distribution is fine. If the user has an informative prior
(i.e., highly concentrated around a specific value), then this can certainly be used,
and it will in general lead to a reduction in the number of samples needed. Also,
even with reasonably “wrong” priors, the evidence coming from the samples will
eventually overcome the prior. A prior with zero probability on some regions would,
however, rule out such regions from any further Bayesian inference. In fact, the
posterior probability of those regions would always be zero.

Bayesian estimation
Chernoff-Hoeffding bound

p = .9999 p = .999 p = .5
δ = .01 c = .99 230 258 16582 23026
δ = .001 c = .99999 6662 23385 4877844 5756463

Table 5 Number of samples for Chernoff-Hoeffding bound and Bayesian estimation via Monte
Carlo simulation. The number of samples for Bayesian estimation is the average of 10 repeti-
tions for the δ = .001 case, and of 100 repetitions for δ = .01 (numbers rounded to the nearest
integer).

7.3 Performance Evaluation

We have conducted a series of Monte Carlo simulations to analyze the performance
(measured as number of samples) of our sequential Bayesian estimation algorithm
with respect to the unknown probability p. In particular, we have run simulations
for values of p ranging from .0001 to .9999, with coverage (c) of .99 and .99999,
interval half-size (δ) of .05, .01 and .001, and uniform prior.

Our experiments (see Figure 2) show that Bayesian estimation is very fast
when p is close to either 0 or 1, while a larger number of samples is needed when p

is close to 1
2 . In a sense, our algorithm can decide easier PMC instances faster: if

the probability p of a formula being true is very small or very large, we need fewer
samples. This is another advantage of our approach that it is not currently matched
by other SMC estimation techniques (e.g., [25]). Our findings are consistent with
those of Yu et al. [51] in the VLSI testing domain.

Our simulations also indicate that the performance of the algorithm depends
more strongly on the half-size δ of the interval than on the coverage c of the
interval. It is much faster to estimate an interval of half-size δ = .05 with coverage
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c = .99999 than it is to estimate an interval of δ = .01 with c = .99, as we
can see from Figure 2 and Table 6. More theoretical work is needed, however, to
characterize fully the behavior of the Bayesian sequential estimation algorithm.
Our initial findings suggest that the algorithm scales very well.
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Fig. 2 Monte Carlo simulation for analyzing the performance of Bayesian estimation in two
different settings. The number of samples is the average of 100 repetitions. The probability p
runs from .01 to .99 with .01 increment, plus the points .0001, .001, .999, and .9999. Uniform
prior.

Bayesian estimation
p = .0001 p = .001 p = .01 p = .99 p = .999 p = .9999

δ = .05 c = .99999 109 113 144 140 113 109
δ = .01 c = .99 228 240 738 660 258 230

Table 6 Number of samples at the extreme points of the Monte Carlo simulations for Bayesian
estimation reported in Figure 2. The number of samples is the average of 100 repetitions,
rounded to the nearest integer.

A study of the relationship between Bayesian intervals and (classical or fre-
quentist) confidence intervals is beyond the scope of this paper, so we will just
provide a brief discussion. We start by recalling the difference between Bayesian
intervals and confidence intervals. The coverage probability of a Bayesian interval
is an actual probability statement about the unknown parameter belonging to that
interval, given the sampled data and the prior. Instead, the coverage probability
carried by a confidence interval procedure tells us that, e.g., 99% of the time the



Bayesian Statistical Model Checking for Stateflow/Simulink 23

procedure will output an interval containing the unknown parameter. Now, re-
call the asymptotic normality of the posterior distribution, i.e., when the sample
size tends to infinity the posterior distribution converges to a normal distribution.
(The result holds also when the actual distribution of the data does not belong
to the same family of the posterior — see [17, Section 4.2] for more details.) This
means that for large sample sizes our posterior distribution converges to a nor-
mal distribution of mean p, the unknown probability to estimate, and variance
proportional to 1

n , where n is the sample size. It follows that, asymptotically, the
coverage probability of Bayesian intervals centered on the posterior mean will be
equal to that of confidence intervals computed via techniques based on the normal
distribution.

For finite (and small) sample sizes, Bayesian techniques using informative priors
can have different properties than frequentist techniques. The reason is because
one can construct arbitrarily strong priors that are quite different from the ac-
tual distribution of the data. However, it is known that by using weak (vague or
non-informative) priors, Bayesian estimates typically enjoy good frequentist prop-
erties such as coverage probability, even for small sample sizes. In particular, this
holds for the normal and Bernoulli distributions, for which Bayesian estimation
techniques can actually produce shorter intervals than frequentist techniques [7,
Section 5.6 and 5.7]. We remind that in our experiments we have always used uni-
form priors, except for the experiments of Table 2, where we have used informative
priors weakly centered around the unknown probability (estimated through our
Bayesian technique).

Finally, we note that the sequential estimation technique presented in [10] is
asymptotically “consistent” (the technique is based on an approximation of the
normal distribution). That is, the coverage probability of the returned interval
is guaranteed to be the desired value only in the limit δ → 0 (interval width
approaching 0). Therefore, given a finite δ > 0 the actual coverage probability
may be less than the desired value.

8 Related Work

Younes, Musliner and Simmons introduced the first algorithm for Statistical Model
Checking [50,49]. Their work uses the SPRT [46], which is designed for simple hy-
pothesis testing4. Specifically, the SPRT decides between the simple null hypothe-
sis H ′0 :M |= P=θ0(φ) against the simple alternate hypothesis H ′1 :M |= P=θ1(φ),
where θ0 < θ1. The SPRT is optimal for simple hypothesis testing, since it min-
imizes the expected number of samples among all the tests satisfying the same
Type I and II errors, when either H ′0 or H ′1 is true [46]. The PMC problem is
instead a choice between two composite hypotheses H0 : M |= P≥θ(φ) versus
H1 : M |= P< θ(φ). The SPRT is not defined unless θ0 6= θ1, so Younes and
Simmons overcome this problem by separating the two hypotheses by an indiffer-

ence region (θ − δ, θ + δ), inside which any answer is tolerated. Here 0 < δ < 1
is a user-specified parameter. It can be shown that the SPRT with indifference

4 A simple hypothesis completely specifies a distribution. For example, a Bernoulli distri-
bution of parameter p is fully specified by the hypothesis p = 0.3 (or some other numerical
value). A composite hypothesis, instead, still leaves the free parameter p in the distribution.
This results, e.g., in a family of Bernoulli distributions with parameter p < 0.3.
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region can be used for testing composite hypotheses, while respecting the same
Type I and II errors of a standard SPRT [46]. However, in this case the test is no
longer optimal, and the maximum expected sample size may be much bigger than
the optimal fixed-size sample test [5]. The Bayesian approach solves instead the
composite hypothesis testing problem, with no indifference region.

The method of [25] uses a fixed number of samples and estimates the proba-
bility that the property holds as the number of satisfying traces divided by the
number of sampled traces. Their algorithm guarantees the accuracy of the results
using the Chernoff-Hoeffding bound. In particular, their algorithm can guarantee
that the difference in the estimated and the true probability is less than ε, with
probability ρ, where ρ < 1 and ε > 0 are user-specified parameters. Our experi-
mental results show a significant advantage of our Bayesian estimation algorithm
in the sample size.

Grosu and Smolka use a standard acceptance sampling technique for verifying
formulas in LTL [21]. Their algorithm randomly samples lassos (i.e., random walks
ending in a cycle) from a Büchi automaton in an on-the-fly fashion. The algorithm
terminates if it finds a counterexample. Otherwise, the algorithm guarantees that
the probability of finding a counterexample is less than δ, under the assumption
that the true probability that the LTL formula is true is greater than ε (δ and ε

are user-specified parameters).

Sen et al. [41] used the p-value for the null hypothesis as a statistic for hypoth-
esis testing. The p-value is defined as the probability of obtaining observations at
least as extreme as the one that was actually seen, given that the null hypothesis
is true. It is important to realize that a p-value is not the probability that the null
hypothesis is true. Sen et al.’s method does not have a way to control the Type
I and II errors. Sen et al. [42] have started investigating the extension of SMC to
unbounded (i.e., standard) LTL properties. Langmead [33] has applied Bayesian
point estimation and SMC for querying Dynamic Bayesian Networks.

It should be noted that with the use of abstraction, efficient tools such as
Prism [31] can verify large instances of probabilistic models using numerical (non-
statistical) techniques. Also, Prism can perform statistical model checking using
the SPRT and the Chernoff-Hoeffding bound as in [25]. Abstraction has been
proposed for hybrid systems [45], as well. However, automated abstraction is still
difficult to perform in general, and in particular for Stateflow/Simulink models.

With respect to the temporal logic used in this work, we note that our BLTL
is a sublogic of Metric Temporal Logic (MTL) [30]. In particular, MTL extends
LTL by endowing the Until operator with an interval of the positive real line with
natural endpoints (or infinite). Such intervals can also be singleton, i.e., MTL can
specify that an event happens at a particular time. For an overview of MTL, its
complexity and decidability see [36]. BLTL formulae can thus be embedded in
MTL simply by assuming that the left endpoint of any interval is 0 and the right
endpoint is positive, and by disallowing infinite endpoints.

The probabilistic logic we have defined, PBLTL, is a simple extension of BLTL
in which formulae have a single outer probabilistic quantifier. The logic PCTL [23]
is another popular probabilistic temporal formalism, which modifies (standard)
CTL by replacing in state formulae the A and E path quantifiers with probabilis-
tic quantifiers. In summary, PBLTL offers a more flexible logic for the temporal
part (nesting of temporal operators), while PCTL is richer on the probabilistic ex-
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tension (nesting of probabilistic operators). Also, PCTL allows unbounded Until
operators.

Finally, our logics do not currently have support for rewards in the model. The
main reason is that we wanted to define a logic as general as possible, so that it
could be used on a variety of computational models. However, certain classes of
models (e.g., Markov Decision Processes) are often associated with reward struc-
tures. Therefore, in a statistical model checking approach to Markov Decision
Processes [24], it might be useful to extend our logic with reward operators.

9 Conclusions and Future Work

Extending our Statistical Model Checking (SMC) algorithm that uses Bayesian
Sequential Hypothesis Testing, we have introduced the first SMC algorithm based
on Bayesian Interval Estimation. For both algorithms, we have proven analytic
bounds on the probability of returning an incorrect answer, which are crucial for
understanding the outcome of Statistical Model Checking. We have used SMC
for Stateflow/Simulink models of a fuel control system featuring fault-tolerance
and hybrid behavior. Because verification is fast in most cases, we expect SMC
methods to enjoy good scalability properties for larger Stateflow/Simulink models.
Our Bayesian estimation is orders of magnitudes faster than previous estimation-
based model checking algorithms.
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A Appendix

A.1 Proofs

In this Section we report proofs for some of the results presented in the paper.

Lemma 1 Function K : S × B(S)→ [0, 1] is a stochastic kernel.

Proof We show that K is in fact a convex combination of two stochastic kernels. It is easy to
see that stochastic kernels are closed with respect to convex combinations.

We have already shown above that the discrete part of K, i.e., the summation term, is a
stochastic kernel. Because jump is a function and x is fixed, jumpe(x) is uniquely determined
from x and e, so the argument from above still applies. For continuous transitions, consider
any (q, x) ∈ S. Then the following integral∫ ∞

0
Πc(q, x)(t) IB(ϕq(t, x)) dt

defines a probability measure over B(S). Note that Πc(q, x) is a probability density over
time, ϕq is a continuous (thus measurable) function of time, and IB is measurable since B ∈
B(S) is a measurable set. Thus, the integral is well-defined and satisfies the usual probability
requirements for B = ∅ and B = S. Countable additivity follows easily from Lebesgue’s
dominated convergence theorem. It remains to prove that, for any B ∈ B(S)

I(x) =

∫ ∞
0

Πc(q, x)(t) IB(ϕq(t, x)) dt

is a measurable function defined over Rn. Again, note that I(x) is finite for all x, because
the integrand functions are all measurable and integrate up to 1. We recall that the Lebesgue
integral of a (non-negative, real) measurable function f with respect to some measure µ, is
defined as ∫

f dµ = sup{
∫
s dµ : s simple, 0 6 s 6 f} (16)
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where a simple function takes only finitely many values (piecewise constant). A measurable

simple function s can be written as a finite sum s =
∑l
i=1 ciICi

, where the ci’s are non-
negative reals, and the Ci’s are disjoint measurable sets. The integral of s with respect to µ is
defined to be the finite sum ∫

s dµ =
l∑
i=1

ciµ(Ci)

and it is easy to check that the integral does not depend on the particular representation of s.
It can be shown (see for example [12, Proposition 2.3.3]) that the Lebesgue integral (16) is

equivalently defined as limi→∞
∫
fi dµ, where {fi} is any non-decreasing sequence of measur-

able simple functions that converges pointwise to f . Such a sequence can always be found [12,
Proposition 2.1.7]. Finally, for any sequence {gi} of (non-negative, real) measurable functions,
the function limi→∞ gi (with domain {x | lim infi→∞ gi(x) = lim supi→∞ gi(x)}), is measur-
able [12, Proposition 2.1.4]. Therefore, I(·) is a measurable function. ut

Lemma 2 (Bounded sampling) The problem “σ |= φ” is well-defined and can be checked
for BLTL formulas φ and traces σ based on only a finite prefix of σ of bounded duration.

Proof According to Lemma 3, the decision “σ |= φ” is uniquely determined (and well-defined)
by considering only a prefix of σ of duration #(φ) ∈ Q≥0. By divergence of time, σ reaches or
exceeds this duration #(φ) in some finite number of steps n. Let σ′ denote a finite prefix of σ
of length n such that

∑
0≤l<n tl ≥ #(φ). Again by Lemma 3, the semantics of σ′ |= φ is well-

defined because any extension σ′′ of σ′ satisfies σ′′ |= φ if and only if σ′ |= φ. Consequently
the semantics of σ′ |= φ coincides with the semantics of σ |= φ. On the finite trace σ′, it is
easy to see that BLTL is decidable by evaluating the atomic formulas x ∼ v at each state si
of the system simulation. ut

Lemma 3(BLTL on bounded simulation traces) Let φ be a BLTL formula, k ∈ N. Then
for any two infinite traces σ = (s0, t0), (s1, t1), . . . and σ̃ = (s̃0, t̃0), (s̃1, t̃1), . . . with

sk+I = s̃k+I and tk+I = t̃k+I ∀I ∈ N with
∑

0≤l<I
tk+l ≤ #(φ) (17)

we have that

σk |= φ iff σ̃k |= φ .

Proof The proof is by induction on the structure of the BLTL formula φ. IH is short for
induction hypothesis.
1. If φ is of the form y ∼ v, then σk |= y ∼ v iff σ̃k |= y ∼ v, because sk = s̃k by using (17)

for i = 0.
2. If φ is of the form φ1 ∨ φ2, then

σk |= φ1 ∨ φ2
iff σk |= φ1 or σk |= φ2

iff σ̃k |= φ1 or σ̃k |= φ2 by IH as #(φ1 ∨ φ2) ≥ #(φ1) and #(φ1 ∨ φ2) ≥ #(φ2)

iff σ̃k |= φ1 ∨ φ2

The proof is similar for ¬φ1 and φ1 ∧ φ2.

3. If φ is of the form φ1Utφ2, then σk |= φ1Utφ2 iff conditions (a),(b),(c) of Definition 6 hold.
Those conditions are equivalent, respectively, to the following conditions (a′),(b′),(c′):

(a′)
∑

0≤l<i t̃k+l ≤ t, because #(φ1Utφ2) ≥ t such that the durations of trace σ and σ̃ are

tk+l = t̃k+l for each index l with 0 ≤ l < i by assumption (17).
(b′) σ̃k+i |= φ2 by induction hypothesis as follows: We know that the traces σ and σ̃ match at

k for duration #(φ1Utφ2) and need to show that the semantics of φ1Utφ2 matches at k.
By IH we know that φ2 has the same semantics at k+i (that is σ̃k+i |= φ2 iff σk+i |= φ2)



Bayesian Statistical Model Checking for Stateflow/Simulink 29

provided that we can show that the traces σ and σ̃ match at k + i for duration #(φ2).
For this, consider any I ∈ N with

∑
0≤l<I tk+i+l ≤ #(φ2). Then

#(φ2) ≥
∑

0≤l<I
tk+i+l =

∑
0≤l<i+I

tk+l −
∑

0≤l<i
tk+l

(a)

≥
∑

0≤l<i+I
tk+l − t

Thus ∑
0≤l<i+I

tk+l ≤ t+ #(φ2) ≤ t+ max(#(φ1),#(φ2)) = #(φ1Utφ2)

As I ∈ N was arbitrary, we conclude from this with assumption (17) that, indeed sI = s̃I
and tI = t̃I for all I ∈ N with ∑

0≤l<I
tk+i+l ≤ #(φ2)

Thus the IH for φ2 yields the equivalence of σk+i |= φ2 and σ̃k+i |= φ2 when using the
equivalence of (a) and (a′).

(c′) for each 0 ≤ j < i, σ̃k+j |= φ1. The proof of equivalence to (c) is similar to that for (b′)
using j < i.

The existence of an i ∈ N for which these conditions (a′), (b′), (c′) hold is equivalent to
σ̃k |= φ1Utφ2.

Theorem 1(Termination of Bayesian estimation) The Sequential Bayesian interval es-
timation Algorithm 2 terminates with probability one.

Proof We follow an argument by DeGroot [14, Section 10.5]. Let p be the actual probability
that the BLTL formula φ holds, and let x1, . . . , xn a sample given by model checking φ over n
simulation traces (i.e., iid as the random variable X defined by (2)). Recall that the estimation
algorithm returns an interval of width 2δ which contains p with posterior probability at least c,
where δ ∈ (0, 1

2
) and c ∈ ( 1

2
, 1) are user-specified parameters. We shall show that the posterior

probability of any open interval containing p must converge almost surely to 1, as n→∞.
Let α, β > 0 be the parameters of the Beta prior. We know that the posterior Xn given

the the sample x1, . . . , xn has a Beta distribution (5) with parameters x + α and n − x + β,
where x =

∑n
i=1 xi. Recall that the posterior mean (8) is:

E[Xn] = p̂n =
x+ α

n+ α+ β

and the posterior variance is (see Appendix A.2):

E[(Xn − p̂n)2] = σ̂2
n =

(x+ α)(n− x+ β)

(n+ α+ β)2(n+ α+ β + 1)
.

Because x 6 n and α, β > 0, we have that

σ̂2
n 6

1

n+ α+ β

and thus limn→∞ σ̂2
n = 0, i.e., the posterior variance tends to 0 as we increase the sample

size. (Intuitively, Xn will be arbitrarily close to its mean, as n → ∞.) Also, note that this is
everywhere convergence, and not just almost sure convergence.

Now, since α and β are fixed, from the law of large numbers it follows that

lim
n→∞

p̂n = p (almost surely) (18)

But limn→∞ σ̂2
n = limn→∞ E[(Xn− p̂n)2] = 0, so Xn converges almost surely to the constant

random variable p. Therefore, the posterior probability P (Xn ∈ I) of any open interval I
containing p must converge almost surely to 1, as n → ∞. Finally, note that the interval
returned by the algorithm is always of fixed size 2δ > 0. ut
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Theorem 2(Error bound for hypothesis testing) For any discrete random variable and
prior, the probability of a Type I-II error for the Bayesian hypothesis testing algorithm 1 is
bounded above by 1

T
, where T is the Bayes Factor threshold given as input.

Proof We present the proof for Type I error only - for Type II it is very similar. A Type I
error occurs when the null hypothesis H0 is true, but we reject it. We then want to bound
P (reject H0 | H0). If the Bayesian algorithm 1 stops at step n, then it will accept H0 if
B(d) > T , and reject H0 if B(d) < 1

T
, where d = (x1, . . . , xn) is the data sample, and the

Bayes Factor is

B(d) =
P (d|H0)

P (d|H1)
.

The event {reject H0} is formally defined as

{reject H0} =
⋃
d∈Ω
{B(d) <

1

T
∧ D = d} (19)

where D is the random variable denoting a sequence of n (finite) discrete random variables,
and Ω is the sample space of D - i.e., the (countable) set of all the possible realizations of D
(in our case D is clearly finite). We now reason:

P (reject H0 | H0)

= (19)

P (
⋃
d∈Ω{B(d) < 1

T
∧ D = d} | H0)

= additivity∑
d∈Ω P ({B(d) < 1

T
∧ D = d} | H0)

= independent events∑
d∈Ω P (B(d) < 1

T
) · P (D = d | H0)

< B(d) < 1
T

iff P (D = d | H0) < 1
T
P (D = d | H1)∑

d∈Ω
1
T
· P (D = d | H1)

= additivity and independence

1
T
· P (

⋃
d∈Ω D = d | H1)

= universal event

1
T
· P (Ω | H1) = 1

T

ut

Theorem 3(Error bound for estimation) For any discrete random variable and prior,
the Type I and II errors for the output interval (t0, t1) of the Bayesian estimation Algorithm 2

are bounded above by
(1−c)π0
c(1−π0)

, where c is the coverage coefficient given as input and π0 is the

prior probability of the hypothesis H0 : p ∈ (t0, t1).

Proof Let (t0, t1) be the interval estimate when the estimation algorithm 2 terminates (with
coverage c). From the hypothesis

H0 : p ∈ (t0, t1) (20)

we compute the Bayes factor for H0 vs. the alternate hypothesis H1 : p /∈ (t0, t1). Then we
use Theorem 2 to derive the bounds on the Type I and II error. If the estimation algorithm 2
terminates at step n with output t0, t1, we have that:∫

H0

f(u|x1, . . . , xn) du =

∫ t1

t0

f(u|x1, . . . , xn) du > c (21)

and therefore (since the posterior is a distribution):∫
H1

f(u|x1, . . . , xn) du 6 1− c. (22)
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By (13) we get the Bayes factor of H0 vs H1, which can then be bounded by (21) and (22) as
follows

(1− π0)

π0
·

∫
H0

f(u|x1, . . . , xn) du∫
H1

f(u|x1, . . . , xn) du
>

(1− π0)

π0
·

c

1− c
.

Therefore, by Theorem 2 the error is bounded above by
(
c(1−π0)
(1−c)π0

)−1
=

(1−c)π0
c(1−π0)

. ut

A.2 The Beta Distribution

For the reader’s convenience, we calculate the mean and variance of a random variable Y with
Beta density of parameters u, v > 0. What we outline below can be found in most textbooks
on Bayesian statistics and special functions, e.g., [39] and [4].

Recall that the Beta density is

∀t ∈ (0, 1) g(t, u, v) =̂
1

B(u, v)
tu−1(1− t)v−1

where the Beta function B(u, v) is defined as:

B(u, v) =̂

∫ 1

0
tu−1(1− t)v−1dt .

It is well known that

B(u, v) =
Γ (u)Γ (v)

Γ (u+ v)

where Γ (·) is Euler’s gamma function defined for z ∈ C with <(z) > 0 as:

Γ (z) =̂

∫ ∞
0

tz−1e−tdt .

Also, the gamma function satisfies the equation Γ (z + 1) = zΓ (z), for <(z) > 0. By means of
a few algebraic steps, we are now able to compute the mean of Y :

E[Y ] =
1

B(u, v)

∫ 1

0
tu(1− t)v−1dt =

B(u+ 1, v)

B(u, v)

=
Γ (u+ 1)Γ (v)

Γ (u+ 1 + v)
·
Γ (u+ v)

Γ (u)Γ (v)
=

uΓ (u)Γ (u+ v)

(u+ v)Γ (u+ v)Γ (u)
=

u

u+ v
.

For the variance, we proceed analogously to show that

E[Y 2] =
1

B(u, v)

∫ 1

0
tu+1(1− t)v−1dt =

(u+ 1)u

(u+ v + 1)(u+ v)

and therefore
V ar[Y ] = E[Y 2]− (E[Y ])2 =

uv

(u+ v)2(u+ v + 1)
.
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