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Hybrid Systems & Stability

Many real world systems feature hybrid (discrete + continuous) dynamics:
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Hybrid Systems & Stability

Many real world systems feature hybrid (discrete + continuous) dynamics:

V' |v" Cruise control V| x Converge to V. V| xStay close to V.

t

Stability is a key correctness criterion for control systems deserving proofs.
Prior work: Stability verification for ordinary diff. egs. [TACAS'21]. J
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Switched Systems & Stability

Fact: Hybrid switching control can be used to achieve control objectives
that cannot otherwise be achieved by purely continuous means.

accelerate

—

Example: Discontinuity in controller, e.g., with switching, is needed to
invert pendulum globally, from all initial states.
Others: Adaptive control, bang-bang control, gain scheduling, ...
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Switched Systems & Stability

Fact: Hybrid switching control can be used to achieve control objectives
that cannot otherwise be achieved by purely continuous means.
Fact: Discrete switching between stable continuous ODEs can be unstable.
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Switched Systems & Stability

Fact: Hybrid switching control can be used to achieve control objectives
that cannot otherwise be achieved by purely continuous means.
Fact: Discrete switching between stable continuous ODEs can be unstable.

-02 0 02 0 -02 0 02 0

v Stable ODE Vv'Stable ODE

Challenge: Need adequate stability justification for switching designs,
e.g., state-dependent [1, 5], time-dependent [8], automata-based [3, 4], ...

This work: Trustworthy, uniform stability verification framework for
switching designs by combining ideas from controls & verification.

X Unstable switching v'Stable switching 5/10
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Switched Systems

Switched systems consist of a family of continuous ODEs and a discrete
switching signal choosing between those ODEs.

Switched system:

7 = fa(t)(x)
o x' = fp(x),p € P, finite
family of autonomous ODEs

ODE to follow at time t

@ o(t), switching signal chooses

a(t)

Controller 1

Controller 2 |-

Controller 3 |-y~
Switching

I

Controlled
Switching

Plant

A

A
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Hybrid Programs

Differential dynamic logic (dL) uses the hybrid programs language to
model hybrid systems.

Hybrid programs:
a,B = x'=f(x) &Q]x—e\7Q]aB|aUB]a

r'd A
Discrete Seq Nondet. Nondet.
ODE Assign. Test Compose Choice } Loop
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Hybrid Programs

Differential dynamic logic (dL) uses the hybrid programs language to
model hybrid systems.

Hybrid programs:
0B = X = f(x) )0 | 28 e |ad <

r'd A
T Seq Nondet. Nondet.
est Compose Choice Loop

Properties of hybrid program « are specified in dL's formula language.

Discrete

. Assign.

Specifications:

¢ =e~E|PAY | - WX¢|3X¢|[CM]¢| )

<
Compare For all, ¢ true after d) true after
>, >, = Or etc Exists all & runs some o run

Red boxes are key for switched system stability specifications.
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Switched Systems as Hybrid Programs [ADHS'21]

Repeat switching in a loop

Controller 1

Arbitrary
Switching

Plant

Controller 3

Controller 2 |-

Switching
Logic

N

J

Hybrid program: \

*
Qarb = ( U X, = fP(X))
o
U ap=arUasU.\.Uapy
pEP

Each iteration nondet. picks an ODE to

run
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Switched Systems as Hybrid Programs [ADHS'21]

Repeat switching in a loop

Hybrid program:

T

Arbitrary *
W | suitching iy = ( U = fp(x))
N pEP
Controller 3 [y /\/
|:]Switching U ap = o1 U U.\.Uam
Logic
pEP
Each iteration nondet. picks an ODE to run
| Hybrid program (simplified):
Controlled
Switching &
—(,_ o
B — Oectrl = (u =ctrl(x); x" = fu(x))
Controller 3 [ /\/
. e Switching uses specification and

reasoning for loops in dL.
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Uniform Global Pre-Asymptotic Stability [Goebel et al.]

Switched system model « & specification

Switched system is UGpAS iff: dL UGpAS specification:

@ Unif. Stable: for all £ > 0, @ Unif. Stable:
there exists § > 0, all switching Ve>036>0Vx (||x|| <8 —
solutions ¢ from ||@(0)|| < o

<

satisfy ||@(t)|| < e for all times. [e]lix]l < 2)

@ Unif. Pre-Attractive: for all @ Unif. Pre-Attractive:
€>0,0>0, there exists T >0, Ve>0V6>03T>0Vx (||x]| <8 —
all switching solutions @ from [t:=0;a,t = 1] (TSt—>||x||<6))

l@(0)[| < 4 satisfy [[@(t)]| <e

for all times T < t.

11/19



Uniform Global Pre-Asymptotic Stability [Goebel et al.]

Switched system model o & specification

Switched system is UGpAS iff: dL UGpAS specification:
@ Unif. Stable: for all £ > 0, @ Unif. Stable:
there exists § > 0, all switching Ve>036>0Vx (||x|| <8 —
solutions ¢ from ||@(0)|| < ¢ o] x| < )

satisfy ||@(t)|| < e for all times.

This talk: Focuses on deductive dL proofs of (uniform) stability for
switched systems, i.e., “if system starts close to origin, it stays close”.
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Stability Under Arbitrary Switching

Hybrid program & Stability:

Olarb = < U x' = fp(x)>*

pEP

Ve>030>0Vx (||x|| < d —
[cars] [|X]] < 5)
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Stability Under Arbitrary Switching

Hybrid program & Stability:

Olarb = ( U x' = fp(x)>*

pEP

Ve>030>0Vx (||x|| < d —
[oas] [Ix]| <€)

Arithmetic conditions on common Lyapunov function V for all modes:

e V(0) =0 and V(x)> 0 for all ||x]| > 0;
e for each ODE x’' = f,(x), p € P, the Lie derivative L (V) satisfies
Le(V)<o0.
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Stability Under Arbitrary Switching

Hybrid program & Stability:

Olarb = < U x' = fp(x)>*

pEP

Ve>030>0Vx (||x|| < d —
[ovarn] [|X]] < €) Inv= x| <e ANV < W

Loop invariant /nv is preserved across all loop iterations for cary:

Qarp
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Stability Under Arbitrary Switching

Hybrid program & Stability:

Olarb = < U x' = fp(x)>*

pEP

Ve>030>0Vx (||x|| < d —
[ovarn] [|X]] < €) Inv= x| <e ANV < W

Formal proof syntactically deduces sound arithmetic conditions on V:

Deduction | ) _o x>0 V(x) >0 F £, (V)(x) <0
(hybrid program reasoning) :
I+ Inv InvE [Uyep x' = f(x)] Inv InvE ||x]| <e
M e |Ix]] < e
(logic/arithmetic reasoning for I')
F Ve>036>0Vx ([|x]| <8 — [cars] [|x]| < )

loop
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Stability Under Arbitrary Switching

Hybrid program & Stability:

Olarp = < U x' = fp(x)>*

pEP

Ve>030>0Vx (||x|| < d —
[ovarn] [|X]] < €) Inv= x| <e ANV < W

Formal proof syntactically deduces sound arithmetic conditions on V:

Summarized as a derived dL proof rule and implemented in KeYmaera X:

FV(0)=0 [x|[>0F V(x) >0 F L, (V)(x) <0

CLF
- Ve>030>0Vx (|[x]] < 6 — [aams] [X]| < 2)
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Stability Under Controlled Switching

Hybrid program & Stability:
Qegr1 = <u = c1.“r/(x);x’:7"'u(x))>k

Ve>030>0Vx (||x|| < d —

[cer] [|X|| < 8) Inv=||x|| <eA \/ (u =pAV,< W)
pEP

Compositional proof yields correct-by-construction conditions on V/:
Deduction

InvE [u:=ctrl(x)] Inv InvE [x' = fu(x)] Inv
: (hybrid program reasoning) :
I+ Inv Invk [u:=ctrl(x); x' = f,(x)] Inv Invk ||x|| <€
MF [oen] x| <e
(logic/arithmetic reasoning for I')
F Ve>036>0Vx ([|x]| <0 = [oeen] [|x]| < )

loop
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KeYmaera X Modeling & Proof Interface

Switched Systems G StartProof* | %

Switching Autonomous  Timed Guarded | Generic

subgraph automaton Top-Down @
Model("x'=1 & x<=5")
Mode2("x'=-1 & x>=-5")

automaton
Model —=>|"?7x>=5;x:=0;"| Mode2 Mode1: x'=1 & x<=5 ‘
Mode2 =-=>|"7x<=-5;x:9\; ?-1<=x&x<=4;"| Model
end /\
N Init: x:=0; ———P» W>=5;x:20;  Ix<=-5;x:=*;7-1<=x@&x<=4;
Users switched systems
. Mode2: x'=-1 & x>=-5
in graph-based language. . s
Automatically generated, user-
Specification | Stability | Attractivity Custom Customizable dL models and specifi-
. ( . . ..
{{node:=Hode1(); ++ mode:=Hode2();} xi=0;} cations for stability/attractivity/etc.
. {

?mode = Model(); {{?x >= 5; x:=0;} mode:=Mode2(); ++ mode:=mode;}
++
7mode = Mode2(); {{?x <= (-5); x:=k; ?(-1) <= x & x <= 4;} mode:=Model(); ++ mode:=mode;}

}
{ ?mode = Model(); {x'=1 & x <= 5} ++ ?mode = Mode2(); {x'=(-1) & x >= (-5)} }
*

] x*2 < eps™2

The implementation adds switched system support to KeYmaera X's IDE
and fully automates arguments for standard switching designs.
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KeYmaera X Modeling & Proof Interface

Users can input Lyapunov function(s) or generate can-

. stabilityStatq didates automatically with sum-of-squares techniques. 2

Provide tactic input | \/ "

SB[t p(x) & Q] ( Vp <=0 Vp<W i [a]] Up<W I = Vp(0)=0 A (xI=0 -> Vp >0)
I~ vE>03A>0 vxc<A* [{ a: X' =I_p(x) & Q [ [x=<€< &

Select formula (hover and click to select typical formulas, press “ro
KeYmaera X automates stability
. e reasoning for standard classes
0 - . . 5 o
el of switching mechanisms using
( . .
Gl -0 the input Lyapunov function(s).
v X
v x2

(
X172 4+ x272 < del®2 -
®1

{
{x1"=—x1 + 10 * x2, x2'=(-100) * x1 — x2 & x1 + x2 =2 0}
u

{x1"=—x1 + 100 * x2, x2'=(-10) * x1 — x2 & x1 + x2 =0}
1*

The implementation adds switched system support to KeYmaera X's IDE
and fully automates arguments for standard switching designs.
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Case Studies (see paper)

Semi-automated verification of non-standard switching design/arguments:

Nonholonomic Integrator:

X' =uy =v,z =xv—yu

Canonical Max System:

xX'=yy =

—ax—by+max(fx+gy+7,0)

\4

Automatic cruise controller: | \tora11 eps ( eps > 0 -> ..
[ ... // Initialize
{ {...
normalPl: v' = -0.001*x-0.052*v, X' = v, t' = 0 ?mode = normalPI();
&-15<=v &v<=15
&-500 <= X & X <= 500
mode := sbrakeact(); ++
{...
2(13<=va&v<=15& 2(A5<=vav<=-148& - .
500 <= X & X <=500); t :=0;  -500 <= X & X <= 500); Tmode = normalPI();
{ v’ = -0.001*x-0.052*v, x’
}* // Switching loop
[shrakeact: ] accelerate: ] ] v"2 < eps”2

{ {?13 <= v & v <= 15 & -500 <= x & x <= 500; t

. // Abridged stability specification

++ // Transitions for other modes

++ // Plant ODEs for other modes

03}
. +}

=v,t’=0& ... }}
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Case Studies (see paper)

Semi-automated verification of non-standard switching design/arguments:

Nonholonomic Integrator:
X' =uy =v,z =xv—yu

Uses an initial event- or
time-triggered control u, v to drive
system out of inapplicable region.

Canonical Max System:
X' =y,y’ = —ax—by+max(fx+gy-+v,0)

\4

Automatic cruise controller: \forall eps ( eps > 0 -> ... // Abridged stability specification
[ ... // Initialize
{ { ... ++ // Transitions for other modes
normalPl: v' = -0.001*x-0.052*v, X' = v, t' = 0 ?mode = normalPI();
&&50§§:§§§§‘§00 { {713 <= v & v <= 16 & -500 <= x & x <= 500; t := 0;}
L mode := sbrakeact(); ++ .3}
{ ... ++ // Plant ODEs for other modes
500 S a  en 500 1m0 500 < x &% <2 500N mode = normalPIO);
{ v’ = -0.001%x-0.052%v, x> = v, t> =0 & ... } }
5 }* // Switching loop
sbrakeact: ] {accelerate: ] ] v°2 < eps”2
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Case Studies (see paper)

Semi-automated verification of non-standard switching design/arguments:

Nonholonomic Integrator:

X' =uy =v,z =xv—yu

Uses an initial event- or
time-triggered control u, v to drive with elevator controller. Proof uses
system out of inapplicable region. “non-customary” Lyapunov function.

Canonical Max System:

x' =y,y" = —ax—by+max(fx+gy+7,0)
o/

Models longitudinal flight dynamics

Automatic cruise controller:

15<=v&v<=15
& -500 <= X & x <= 500

normalPl: v' = -0.001*x-0.052*v, X' = v, t' = 0}
& -

?2(13<=v&v<=15&

500 <= X & X <= 500); t := 0;

2(15<=v&vV<=-14 &
500 <= X & X <= 500);

‘ sbrakeact: ... ]

{ accelerate: ... ]

™

7

\forall eps ( eps > 0 -> ... // Abridged stability specification
[ ... // Initialize
{ { ... ++ // Transitions for other modes

?mode = normalPI();
{ {?13 <= v & v <= 15 & -500 <= x & x <= 500; t := 0;}

mode := sbrakeact(); ++ ... } }
{ ... ++ // Plant ODEs for other modes
?mode = normalPI();
{ v’ = -0.001%x-0.052%v, x> = v, t> =0 & ... } }

}* // Switching loop
] v"2 < eps”2
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Case Studies (see paper)

Semi-automated verification of non-standard switching design/arguments:

Nonholonomic Integrator: Canonical Max System:
X' =uy =v,z =xv—yu x' =y,y" = —ax—by+max(fx+gy+7,0)
o/
Uses an initial event- or Models longitudinal flight dynamics
time-triggered control u, v to drive with elevator controller. Proof uses
system out of inapplicable region. “non-customary” Lyapunov function.

7
,f,

~T /9

X

Automatic cruise controller:

\forall eps ( eps > 0 -> ... // Abridged stability specification
[ ... // Initialize
Hybrid automaton with 6 modes and 11 transitions: Pl control,
acceleration, service braking (2 modes), and emergency braking (2 modes).J
T T o = a0
{ v’ = -0.001%x-0.052%v, x> = v, t> =0 & ... } }
p }* // Switching loop
‘ sbrakeact: w {accelerate: J ] v°2 < eps”2
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This work: Automated support for modeling and trustworthy stability
verification of various switching designs using dL and KeYmaera X.

19/19



References |

[1] Branicky, M. S. (1998). Multiple Lyapunov functions and other
analysis tools for switched and hybrid systems. IEEE Trans. Autom.
Control., 43(4):475-482.

[2] Goebel, R., Sanfelice, R. G., and Teel, A. R. (2012). Hybrid Dynamical

Systems: Modeling, Stability, and Robustness. Princeton University
Press.

[3] M&hlmann, E. and Theel, O. E. (2013). Stabhyli: a tool for automatic
stability verification of non-linear hybrid systems. In Belta, C. and
Ivancic, F., editors, HSCC, pages 107-112. ACM.

[4] Podelski, A. and Wagner, S. (2006). Model checking of hybrid systems:
From reachability towards stability. In Hespanha, J. P. and Tiwari, A.,
editors, HSCC, volume 3927 of LNCS, pages 507-521. Springer.

[5] Prajna, S. and Papachristodoulou, A. (2003). Analysis of switched and
hybrid systems - beyond piecewise quadratic methods. In ACC,
volume 4, pages 2779-2784 vol 4.

1/2



References Il

[6] Tan, Y. K. and Platzer, A. (2021a). Deductive stability proofs for
ordinary differential equations. In Groote, J. F. and Larsen, K. G.,
editors, TACAS, volume 12652 of LNCS, pages 181-199. Springer.

[7] Tan, Y. K. and Platzer, A. (2021b). Switched systems as hybrid
programs. In Jungers, R. M., Ozay, N., and Abate, A., editors, ADHS,
volume 54 of IFAC-PapersOnLine, pages 247-252. Elsevier.

[8] Zhai, G., Hu, B., Yasuda, K., and Michel, A. N. (2001). Stability
analysis of switched systems with stable and unstable subsystems: An
average dwell time approach. Int. J. Syst. Sci., 32(8):1055-1061.

2/2



	Switched Systems and Stability
	Switched Systems as Hybrid Programs
	Loop Invariants for Stability
	Implementation & Case Studies
	Conclusion
	Appendix
	References


