Verifying Switched System Stability With Logic

Yong Kiam Tan Stefan Mitsch André Platzer
Computer Science Department, Carnegie Mellon University

HSCC, Online, 5 May 2022

Outline

(1) Switched Systems and Stability
(2) Switched Systems as Hybrid Programs
(3) Loop Invariants for Stability
(4) Implementation \& Case Studies
(5) Conclusion

Outline

(1) Switched Systems and Stability
(2) Switched Systems as Hybrid Programs
(3) Loop Invariants for Stability
4. Implementation \& Case Studies
(5) Conclusion

Hybrid Systems \& Stability

Many real world systems feature hybrid (discrete + continuous) dynamics:

Hybrid Systems \& Stability

Many real world systems feature hybrid (discrete + continuous) dynamics:

Various controllers driving a car near cruising velocity V_{c} :

Stability is a key correctness criterion for control systems deserving proofs.
Prior work: Stability verification for ordinary diff. eqs. [TACAS'21].

Switched Systems \& Stability

Fact: Hybrid switching control can be used to achieve control objectives that cannot otherwise be achieved by purely continuous means.

Example: Discontinuity in controller, e.g., with switching, is needed to invert pendulum globally, from all initial states.
Others: Adaptive control, bang-bang control, gain scheduling, ...

Switched Systems \& Stability

Fact: Hybrid switching control can be used to achieve control objectives that cannot otherwise be achieved by purely continuous means.
Fact: Discrete switching between stable continuous ODEs can be unstable.

\checkmark Stable ODE

\times Unstable switching

\checkmark Stable ODE

\checkmark Stable switching

Switched Systems \& Stability

Fact: Hybrid switching control can be used to achieve control objectives that cannot otherwise be achieved by purely continuous means.
Fact: Discrete switching between stable continuous ODEs can be unstable.

\checkmark Stable ODE

\checkmark Stable ODE

Challenge: Need adequate stability justification for switching designs, e.g., state-dependent [1, 5], time-dependent [8], automata-based [3, 4], ...

This work: Trustworthy, uniform stability verification framework for switching designs by combining ideas from controls \& verification.

Verifying Switched System Stability With Logic

Outline

(1) Switched Systems and Stability
(2) Switched Systems as Hybrid Programs
(3) Loop Invariants for Stability
(4) Implementation \& Case Studies
(5) Conclusion

Switched Systems

Switched systems consist of a family of continuous ODEs and a discrete switching signal choosing between those ODEs.
Switched system:

Hybrid Programs

Differential dynamic logic (dL) uses the hybrid programs language to model hybrid systems.

Hybrid programs:

Hybrid Programs

Differential dynamic logic (dL) uses the hybrid programs language to model hybrid systems.

Hybrid programs:

Properties of hybrid program α are specified in dL's formula language.
Specifications:

Red boxes are key for switched system stability specifications.

Switched Systems as Hybrid Programs [ADHS'21]

Repeat switching in a loop

Each iteration nondet. picks an ODE to run

Switched Systems as Hybrid Programs [ADHS'21]

Repeat switching in a loop

Hybrid program:

Each iteration nondet. picks an ODE to run

Hybrid program (simplified):
$\alpha_{\mathrm{ctrl}} \equiv\left(u:=\operatorname{ctrl}(x) ; x^{\prime}=f_{u}(x)\right)^{*}$
Switching uses specification and reasoning for loops in dL.

Uniform Global Pre-Asymptotic Stability [Goebel et al.]

Switched system model α \& specification

Switched system is UGpAS iff:

- Unif. Stable: for all $\varepsilon>0$, there exists $\delta>0$, all switching solutions φ from $\|\varphi(0)\|<\delta$ satisfy $\|\boldsymbol{\varphi}(t)\|<\varepsilon$ for all times.
- Unif. Pre-Attractive: for all $\varepsilon>0, \delta>0$, there exists $T \geq 0$, all switching solutions φ from $\|\boldsymbol{\varphi}(0)\|<\delta$ satisfy $\|\boldsymbol{\varphi}(t)\|<\varepsilon$ for all times $T \leq t$.
dL UGpAS specification:
- Unif. Stable:

$$
\begin{array}{r}
\forall \varepsilon>0 \exists \delta>0 \forall x(\|x\|<\delta \rightarrow \\
[\alpha]\|x\|<\varepsilon)
\end{array}
$$

- Unif. Pre-Attractive:

$$
\forall \varepsilon>0 \forall \delta>0 \exists T \geq 0 \forall x(\|x\|<\delta \rightarrow
$$

$$
\left.\left[t:=0 ; \alpha, t^{\prime}=1\right](T \leq t \rightarrow\|x\|<\varepsilon)\right)
$$

Uniform Global Pre-Asymptotic Stability [Goebel et al.]

Switched system model α \& specification

Switched system is UGpAS iff:

- Unif. Stable: for all $\varepsilon>0$, there exists $\delta>0$, all switching solutions φ from $\|\varphi(0)\|<\delta$ satisfy $\|\boldsymbol{\varphi}(t)\|<\varepsilon$ for all times.
dL UGpAS specification:
- Unif. Stable:

$$
\begin{aligned}
\forall \varepsilon>0 \exists \delta>0 \forall x(\|x\|<\delta \rightarrow \\
{[\alpha]\|x\|<\varepsilon) }
\end{aligned}
$$

This talk: Focuses on deductive dL proofs of (uniform) stability for switched systems, i.e., "if system starts close to origin, it stays close".

Outline

(1) Switched Systems and Stability

(2) Switched Systems as Hybrid Programs
(3) Loop Invariants for Stability
4. Implementation \& Case Studies
(5) Conclusion

Stability Under Arbitrary Switching

Hybrid program \& Stability:

$$
\left.\left[\alpha_{\mathrm{arb}}\right]\|x\|<\varepsilon\right)
$$

Stability Under Arbitrary Switching

Hybrid program \& Stability:

$$
\begin{array}{r}
\alpha_{\mathrm{arb}} \equiv\left(\bigcup_{p \in \mathcal{P}} x^{\prime}=f_{p}(x)\right)^{*} \\
\forall \varepsilon>0 \exists \delta>0 \forall x(\|x\|<\delta \rightarrow \\
\left.\left[\alpha_{\mathrm{arb}}\right]\|x\|<\varepsilon\right)
\end{array}
$$

Arithmetic conditions on common Lyapunov function V for all modes:

- $V(0)=0$ and $V(x)>0$ for all $\|x\|>0$;
- for each ODE $x^{\prime}=f_{p}(x), p \in \mathcal{P}$, the Lie derivative $\mathcal{L}_{f_{p}}(V)$ satisfies $\mathcal{L}_{f_{p}}(V) \leq 0$.

Stability Under Arbitrary Switching

Hybrid program \& Stability:

$$
\begin{array}{r}
\alpha_{\mathrm{arb}} \equiv\left(\bigcup_{p \in \mathcal{P}} x^{\prime}=f_{p}(x)\right)^{*} \\
\forall \varepsilon>0 \exists \delta>0 \forall x(\|x\|<\delta \rightarrow \\
\left.\left[\alpha_{\mathrm{arb}}\right]\|x\|<\varepsilon\right)
\end{array}
$$

Loop invariant Inv is preserved across all loop iterations for $\alpha_{\text {arb }}$:

Stability Under Arbitrary Switching

Hybrid program \& Stability:

$$
\begin{array}{r}
\alpha_{\mathrm{arb}} \equiv\left(\bigcup_{p \in \mathcal{P}} x^{\prime}=f_{p}(x)\right)^{*} \\
\forall \varepsilon>0 \exists \delta>0 \forall x(\|x\|<\delta \rightarrow \\
\left.\left[\alpha_{\mathrm{arb}}\right]\|x\|<\varepsilon\right)
\end{array}
$$

$\operatorname{Inv} \equiv\|x\|<\varepsilon \wedge V<W$

Formal proof syntactically deduces sound arithmetic conditions on V :

Deduction

$$
\vdash V(0)=0 \quad\|x\|>0 \vdash V(x)>0 \quad \vdash \mathcal{L}_{f_{p}}(V)(x) \leq 0
$$

$\uparrow \frac{\vdots}{\Gamma \vdash \ln v}$
$\cdots \quad$ (hybrid program reasoning)
$\operatorname{lnv} \vdash\left[\bigcup_{p \in \mathcal{P}} x^{\prime}=f_{p}(x)\right] \ln v$
$\Gamma \vdash\left[\alpha_{\text {arb }}\right]\|x\|<\varepsilon$
$\cdots \quad$ (logic $/$ arithmetic reasoning for Γ)

$$
\vdash \forall \varepsilon>0 \exists \delta>0 \forall x\left(\|x\|<\delta \rightarrow\left[\alpha_{\text {arb }}\right]\|x\|<\varepsilon\right)
$$

Stability Under Arbitrary Switching

Hybrid program \& Stability:

$$
\begin{array}{r}
\alpha_{\mathrm{arb}} \equiv\left(\bigcup_{p \in \mathcal{P}} x^{\prime}=f_{p}(x)\right)^{*} \\
\forall \varepsilon>0 \exists \delta>0 \forall x(\|x\|<\delta \rightarrow \\
\left.\left[\alpha_{\mathrm{arb}}\right]\|x\|<\varepsilon\right)
\end{array}
$$

Formal proof syntactically deduces sound arithmetic conditions on V :

Summarized as a derived dL proof rule and implemented in KeYmaera X :

$$
\mathrm{CLF} \frac{\vdash V(0)=0 \quad\|x\|>0 \vdash V(x)>0 \quad \vdash \mathcal{L}_{f_{p}}(V)(x) \leq 0}{\vdash \forall \varepsilon>0 \exists \delta>0 \forall x\left(\|x\|<\delta \rightarrow\left[\alpha_{\mathrm{arb}}\right]\|x\|<\varepsilon\right)}
$$

Stability Under Controlled Switching

Hybrid program \& Stability:

$$
\alpha_{\mathrm{ctr} 1} \equiv\left(u:=\operatorname{ctrl}(x) ; x^{\prime}=f_{u}(x)\right)^{*}
$$

$$
\begin{array}{r}
\forall \varepsilon>0 \exists \delta>0 \forall x(\|x\|<\delta \rightarrow \\
\left.\left[\alpha_{\text {ctrl }}\right]\|x\|<\varepsilon\right)
\end{array}
$$

Compositional proof yields correct-by-construction conditions on V_{p} :

Deduction

$$
\begin{aligned}
& \text { (hybrid program reasoning) } \\
& \begin{array}{l}
\text { loop } \frac{\overline{\Gamma \vdash \operatorname{Inv}} \quad \operatorname{lnv} \vdash\left[u:=\operatorname{ctrl}(x) ; x^{\prime}=f_{u}(x)\right] \operatorname{Inv}}{\Gamma \vdash\left[\alpha_{\mathrm{ctrr} 1}\right]\|x\|<\varepsilon} \quad \overline{\ln v \vdash\|x\|<\varepsilon} \\
\end{array} \\
& \text { (logic/arithmetic reasoning for } \Gamma \text {) } \\
& \vdash \forall \varepsilon>0 \exists \delta>0 \forall x\left(\|x\|<\delta \rightarrow\left[\alpha_{\text {ctrl }}\right]\|x\|<\varepsilon\right)
\end{aligned}
$$

Outline

(1) Switched Systems and Stability

(2) Switched Systems as Hybrid Programs
(3) Loop Invariants for Stability
(4) Implementation \& Case Studies
(5) Conclusion

KeYmaera X Modeling \& Proof Interface

The implementation adds switched system support to KeYmaera X's IDE and fully automates arguments for standard switching designs.

KeYmaera X Modeling \& Proof Interface

The implementation adds switched system support to KeYmaera X's IDE and fully automates arguments for standard switching designs.

Case Studies (see paper)

Semi-automated verification of non-standard switching design/arguments:

Nonholonomic Integrator:

$$
x^{\prime}=u, y^{\prime}=v, z^{\prime}=x v-y u
$$

Canonical Max System:

$$
x^{\prime}=y, y^{\prime}=-a x-b y+\max (f x+g y+\gamma, 0)
$$

Automatic cruise controller:


```
\forall eps ( eps > 0 -> ... // Abridged stability specification
    [ ... // Initialize
    { { ... ++ // Transitions for other modes
            ?mode = normalPI();
            { {?13<= v & v <= 15 & -500 <= x & x <= 500; t := 0;}
            mode := sbrakeact(); ++ ... } }
            { ... ++ // Plant ODEs for other modes
            ?mode = normalPI();
            { v' = -0.001*x-0.052*v, x' = v, t' = 0 & ... } }
    }* // Switching loop
    ] v^2 < eps^2
```


Case Studies (see paper)

Semi-automated verification of non-standard switching design/arguments:

Nonholonomic Integrator:

$$
x^{\prime}=u, y^{\prime}=v, z^{\prime}=x v-y u
$$

Uses an initial event- or time-triggered control u, v to drive system out of inapplicable region.

Canonical Max System:

$$
x^{\prime}=y, y^{\prime}=-a x-b y+\max (f x+g y+\gamma, 0)
$$

Automatic cruise controller:


```
\forall eps ( eps > 0 -> ... // Abridged stability specification
    [ ... // Initialize
    { { ... ++ // Transitions for other modes
            ?mode = normalPI();
            { {?13<= v & v <= 15 & -500 <= x & x <= 500; t := 0;}
            mode := sbrakeact(); ++ ... } }
            { ... ++ // Plant ODEs for other modes
            ?mode = normalPI();
            { v' = -0.001*x-0.052*v, x' = v, t' = 0 & ... } }
    }* // Switching loop
    ] v^2 < eps^2
```


Case Studies (see paper)

Semi-automated verification of non-standard switching design/arguments:

Nonholonomic Integrator:

$$
x^{\prime}=u, y^{\prime}=v, z^{\prime}=x v-y u
$$

Uses an initial event- or time-triggered control u, v to drive system out of inapplicable region.

Canonical Max System:
$x^{\prime}=y, y^{\prime}=-a x-b y+\max (f x+g y+\gamma, 0)$

Models longitudinal flight dynamics with elevator controller. Proof uses "non-customary" Lyapunov function.

Automatic cruise controller:


```
\forall eps ( eps > 0 -> ... // Abridged stability specification
    [ ... // Initialize
    { { ... ++ // Transitions for other modes
            ?mode = normalPI();
            { {?13<= v & v <= 15 & -500<= x & x <= 500; t := 0;}
            mode := sbrakeact(); ++ ... } }
            { ... ++ // Plant ODEs for other modes
            ?mode = normalPI();
            { v' = -0.001*x-0.052*v, x' = v, t' = 0 & ... } }
    }* // Switching loop
    ] v^2 < eps^2
```


Case Studies (see paper)

Semi-automated verification of non-standard switching design/arguments:

Nonholonomic Integrator:

$$
x^{\prime}=u, y^{\prime}=v, z^{\prime}=x v-y u
$$

Uses an initial event- or time-triggered control u, v to drive system out of inapplicable region.

Canonical Max System:
$x^{\prime}=y, y^{\prime}=-a x-b y+\max (f x+g y+\gamma, 0)$

Models longitudinal flight dynamics with elevator controller. Proof uses "non-customary" Lyapunov function.

Automatic cruise controller:

```
\forall eps ( eps > 0 -> ... // Abridged stability specification [ ... // Initialize
```

Hybrid automaton with 6 modes and 11 transitions: PI control, acceleration, service braking (2 modes), and emergency braking (2 modes).

Outline

(1) Switched Systems and Stability

(2) Switched Systems as Hybrid Programs
(3) Loop Invariants for Stability

4 Implementation \& Case Studies
(5) Conclusion

Verifying Switched System Stability With Logic

This work: Automated support for modeling and trustworthy stability verification of various switching designs using dL and KeYmaera X .

References I

[1] Branicky, M. S. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control., 43(4):475-482.
[2] Goebel, R., Sanfelice, R. G., and Teel, A. R. (2012). Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press.
[3] Möhlmann, E. and Theel, O. E. (2013). Stabhyli: a tool for automatic stability verification of non-linear hybrid systems. In Belta, C. and Ivancic, F., editors, HSCC, pages 107-112. ACM.
[4] Podelski, A. and Wagner, S. (2006). Model checking of hybrid systems: From reachability towards stability. In Hespanha, J. P. and Tiwari, A., editors, HSCC, volume 3927 of LNCS, pages 507-521. Springer.
[5] Prajna, S. and Papachristodoulou, A. (2003). Analysis of switched and hybrid systems - beyond piecewise quadratic methods. In ACC, volume 4, pages 2779-2784 vol.4.

References II

[6] Tan, Y. K. and Platzer, A. (2021a). Deductive stability proofs for ordinary differential equations. In Groote, J. F. and Larsen, K. G., editors, TACAS, volume 12652 of LNCS, pages 181-199. Springer.
[7] Tan, Y. K. and Platzer, A. (2021b). Switched systems as hybrid programs. In Jungers, R. M., Ozay, N., and Abate, A., editors, ADHS, volume 54 of IFAC-PapersOnLine, pages 247-252. Elsevier.
[8] Zhai, G., Hu, B., Yasuda, K., and Michel, A. N. (2001). Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach. Int. J. Syst. Sci., 32(8):1055-1061.

