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Motivation : Cyber-Physical Systems (CPSs)

Hybrid system models enable formal analysis of safety-critical CPSs:

Discrete control:

if (v > speed_limit)

a := -1; //apply brakes

else

a := 0; //cruise
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Hybrid system models enable formal analysis of safety-critical CPSs:

Discrete control:

if (v > speed_limit)

a := -1; //apply brakes

else

a := 0; //cruise

Continuous dynamics:

x ′ = v , v ′ = a︸ ︷︷ ︸
Ordinary Differential Equations (ODEs)
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Motivation : Cyber-Physical Systems (CPSs)

Hybrid system models enable formal analysis of safety-critical CPSs:

Discrete control:

if (v > speed_limit)

a := -1; //apply brakes

else

a := 0; //cruise

Continuous dynamics:

x ′ = v , v ′ = a︸ ︷︷ ︸
ODEs need proofs too!
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Correctness Specifications for CPSs

XSafely under speed limit

XGets to destination

System is safe and live

XSafely under speed limit
×Not moving at all!

System is safe but not live
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ODEs and Domain Constraints

Ordinary Differential Equation (ODE)︷ ︸︸ ︷
x ′ = f (x)

ODE: Models continuous physics of
the system

x'=f(x)

Trains drive on tracks prescribed by
the ODEs.
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ODEs and Domain Constraints

ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q

Domain: Specifies the domain of
definition for ODEs

Q
x'=f(x)

There are no train tracks across the
national park!
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Safety & Liveness for ODEs

Safety: [

ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q] P︸︷︷︸

Safe region

Q

P

✓

✓
⨯

✓

Liveness: 〈
ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q〉 P︸︷︷︸

Goal region

Q

P

✓
⨯
⨯
⨯

XTrains stay in Porto (P) while
driving on tracks.
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⨯
⨯
⨯

XTrains stay in Porto (P) while
driving on tracks.

XTrains reach Porto (P) by driving
on tracks.
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Safety & Liveness for ODEs

Safety: [

ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q] P︸︷︷︸
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x ′ = f (x) &Q〉 P︸︷︷︸
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Q

P

✓
⨯
⨯
⨯

Prior work: complete invariance
proofs for ODE safety [LICS’18]

XTrains reach Porto (P) by driving
on tracks.
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Safety & Liveness for ODEs

Safety: [

ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q] P︸︷︷︸

Safe region

Q

P

✓

✓
⨯

✓

Liveness: 〈
ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q〉 P︸︷︷︸

Goal region

Q

P

✓
⨯
⨯
⨯

Prior work: complete invariance
proofs for ODE safety [LICS’18]

This talk: proving ODE liveness in
differential dynamic logic (dL)
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An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Goals of surveyed paper

Differential Variants [1] Liveness proofs for inequalities

Bounded/Compact Eventuality [3, 4] Automatic SOS liveness proofs

Set Lyapunov Functions [5] Finding basin of attraction

Staging Sets + Progress [6] Indirect liveness proofs for P

Eq. Differential Variants [7] Synthesizing switching logic

Yields generalizations of existing liveness arguments “for free”.

Liveness arguments in the literature are used for a wide variety of purposes.
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An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] ×
Bounded/Compact Eventuality [3, 4] × ×
Set Lyapunov Functions [5] × ×
Staging Sets + Progress [6]

Eq. Differential Variants [7] × ×

Yields generalizations of existing liveness arguments “for free”.

Several arguments have technical glitches, making them unsound (×).
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An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] X × X
Bounded/Compact Eventuality [3, 4] × X × X
Set Lyapunov Functions [5] × X × X
Staging Sets + Progress [6] X X

Eq. Differential Variants [7] × X × X

Yields generalizations of existing liveness arguments “for free”.

Our approach formalizes the underlying liveness arguments in a sound (X),
foundational, and uniform framework. It also corrects (× X) the
technical glitches.
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An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] X × X
Bounded/Compact Eventuality [3, 4] × X × X
Set Lyapunov Functions [5] × X × X
Staging Sets + Progress [6] X X

Eq. Differential Variants [7] × X × X

Yields generalizations of existing liveness arguments “for free”.

New Liveness Arguments Without Domains With Domains

Higher Differential Variants X -

[1] + [3, 4] + [6] X -

[1] + [3, 4] + [6] + Higher Diff. Var. - X
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A Simple Liveness Refinement

Portugal

Porto

Trains that reach Porto also reach Portugal since Porto is part of Portugal.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

X 〈x ′ = f (x)〉Porto→ 〈x ′ = f (x)〉Portugal
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A Simple Liveness Refinement

Portugal

Porto Braga

Can train reach Porto if it reaches Braga? Not true for all trains.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

? 〈x ′ = f (x)〉Braga→ 〈x ′ = f (x)〉Porto
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A Simple Liveness Refinement

Portugal

Porto Braga

Must use specific properties of the ODE / train track.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

[x ′ = f (x) &¬Porto]¬Braga→
(
〈x ′ = f (x)〉Braga→ 〈x ′ = f (x)〉Porto

)
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Diamond Refinement Axioms

[x ′ = f (x) &¬Porto]¬Braga︸ ︷︷ ︸
Need to show

→
(
〈x ′ = f (x)〉Braga︸ ︷︷ ︸

Known liveness property

→ 〈x ′ = f (x)〉Porto
)︸ ︷︷ ︸

Desired liveness property

Q ⋀ ¬P

B

︸ ︷︷ ︸
Need to show

→

Q

B

︸ ︷︷ ︸
Known liveness property

→

Q

P B

︸ ︷︷ ︸
Desired liveness property
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Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)

Q

R

︸ ︷︷ ︸
Need to show

→

R

P

︸ ︷︷ ︸
Known liveness property

→

Q

R

P

︸ ︷︷ ︸
Desired liveness property

〈x ′ = f (x) &R〉B

DR〈·〉
[x ′=f (x) &R]Q︷︸︸︷→ 〈x ′ = f (x) &Q〉B

K〈&〉
[x ′=f (x) &¬P]¬B︷︸︸︷→ 〈x ′ = f (x) &Q〉P

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.
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ODE Liveness Example

P

-2 -1 0 1 2

-3

-2

-1

0

1

Example: Train reaches Porto
suburbs (P).
For simplicity, no domain constraint.

Model ODE:

x ′ = −y , y ′ = 4x2
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Equational Differential Variants

Surveyed Liveness Arguments Goals of surveyed paper

Eq. Differential Variants [7] Synthesizing switching logic

Derived proof rule:

dVM
=

p = 0 ` P p < 0 ` p′ ≥ ε()

Γ, ε() > 0, p ≤ 0 ` 〈x ′ = f (x)〉P
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Equational Differential Variants

Surveyed Liveness Arguments Goals of surveyed paper

Eq. Differential Variants [7] Synthesizing switching logic

Derived proof rule:

dVM
=

p = 0 ` P p < 0 ` p′ ≥ ε()

Γ, ε() > 0, p ≤ 0 ` 〈x ′ = f (x)〉P

Additional condition for soundness X:
Either solution exists for sufficient duration or x ′ = f (x) is globally
Lipschitz continuous.
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Equational Differential Variants

Surveyed Liveness Arguments Goals of surveyed paper

Eq. Differential Variants [7] Synthesizing switching logic

Derived proof rule:

dVM
=

Step 3︷ ︸︸ ︷
p = 0 ` P

Step 1︷ ︸︸ ︷
p < 0 ` p′ ≥ ε()

Γ, ε() > 0, p ≤ 0︸ ︷︷ ︸
Step 2

` 〈x ′ = f (x)〉P

Underlying refinement chain:

〈x ′ = f (x), t′ = 1〉t > c()

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉p ≥ 0

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉p = 0

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P
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Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷−→

P

-2 -1 0 1 2

-3

-2

-1

0

1

Intuition: Reduce liveness for (complicated) region P to (simple) circle.
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Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷−→

r

-2 -1 0 1 2

-3

-2

-1

0

1

Intuition: Since train starts outside circle, reduce further to liveness for
disk.
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Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

t = 0.0, r = 3.9

t = 0.3, r = 2.5

t = 0.7, r = 2.0
t = 1.0, r = 1.7

t = 1.4, r = 0.8

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷−→

r

-2 -1 0 1 2

-3

-2

-1

0

1

Intuition: Symbolically analyze derivatives to lower bound time required
to reach disk for the train.
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Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

t ≥ 0.0, r ≤ 3.9

t ≥ 0.3, r ≤ 2.5

t ≥ 0.7, r ≤ 2.0
t ≥ 1.0, r ≤ 1.7

t ≥ 1.4, r ≤ 0.8

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷
−→

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷
−→

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷
−→

P

-2 -1 0 1 2

-3

-2

-1

0

1

The train reaches Porto (P) if it is driven for > 1.4 hours:

〈x ′ = f (x), t ′ = 1〉t > 1.4→ 〈x ′ = f (x)〉P
19



Existence Properties

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

GEx 〈x ′ = f (x), t ′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)
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Existence Properties

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

GEx 〈x ′ = f (x), t ′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

Apply to ODE example:

GEx︷ ︸︸ ︷
〈x ′ = f (x), t ′ = 1〉t > 1.4

Train reaches Porto (P) if driven for > 1.4 hours︷ ︸︸ ︷
〈x ′ = f (x), t ′ = 1〉t > 1.4→ 〈x ′ = f (x)〉P
〈x ′ = f (x)〉P
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Existence Properties

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

GEx 〈x ′ = f (x), t ′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

Apply to ODE example:

Not for x ′ = −y , y ′ = 4x2︷ ︸︸ ︷
〈x ′ = f (x), t ′ = 1〉t > 1.4

Train reaches Porto (P) if driven for > 1.4 hours︷ ︸︸ ︷
〈x ′ = f (x), t ′ = 1〉t > 1.4→ 〈x ′ = f (x)〉P
〈x ′ = f (x)〉P
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3 Problem: Finite time blowup may
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This non-linear ODE is not globally Lipschitz!
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Equational Differential Variants

Surveyed Liveness Arguments Goals of surveyed paper

Eq. Differential Variants [7] Synthesizing switching logic

Derived proof rule:

dVM
=

p = 0 ` P p < 0 ` p′ ≥ ε()

Γ, ε() > 0, p ≤ 0 ` 〈x ′ = f (x)〉P

Additional condition for soundness X:
Either solution exists for sufficient duration or x ′ = f (x) is globally
Lipschitz continuous.
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A Common Technical Glitch

Several errors (×) due to insufficient technical assumptions about
existence of solutions.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1]

Bounded/Compact Eventuality [3, 4] ×
Set Lyapunov Functions [5] × ×
Staging Sets + Progress [6]

Eq. Differential Variants [7] × ×
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A Common Technical Glitch

Other errors (×) were due to more subtle issues but they were also caught
by our approach.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] ×
Bounded/Compact Eventuality [3, 4] ×
Set Lyapunov Functions [5]

Staging Sets + Progress [6]

Eq. Differential Variants [7]
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More Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
COR ¬P ∧ [x ′ = f (x) &R ∧ ¬P]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
SAR [x ′ = f (x) &R ∧ ¬(P ∧ Q)]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
GEx 〈x ′ = f (x), t′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

BEx 〈x ′ = f (x), t′ = 1〉(¬B(x) ∨ t > c())

Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

Idea 4: Reducing ODE liveness arguments to basic liveness refinements
isolates and minimizes the possibility of soundness errors.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.
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An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] X × X
Bounded/Compact Eventuality [3, 4] × X × X
Set Lyapunov Functions [5] × X × X
Staging Sets + Progress [6] X X

Eq. Differential Variants [7] × X × X

Yields generalizations of existing liveness arguments “for free”.

New Liveness Arguments Without Domains With Domains

Higher Differential Variants X -

[1] + [3, 4] + [6] X -

[1] + [3, 4] + [6] + Higher Diff. Var. - X
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