
An Axiomatic Approach to Liveness
for Differential Equations

Yong Kiam Tan André Platzer

Computer Science Department, Carnegie Mellon University

FM, 10th Oct 2019

1



Outline

1 Motivation

2 Logical Approach to ODE Liveness

3 Concrete Example

4 More ODE Liveness Arguments

2



Outline

1 Motivation

2 Logical Approach to ODE Liveness

3 Concrete Example

4 More ODE Liveness Arguments

3



Motivation : Cyber-Physical Systems (CPSs)

Hybrid system models enable formal analysis of safety-critical CPSs:

Discrete control:

if (v > speed_limit)

a := -1; //apply brakes

else

a := 0; //cruise

4



Motivation : Cyber-Physical Systems (CPSs)

Hybrid system models enable formal analysis of safety-critical CPSs:

Discrete control:

if (v > speed_limit)

a := -1; //apply brakes

else

a := 0; //cruise

Continuous dynamics:

x ′ = v , v ′ = a︸ ︷︷ ︸
Ordinary Differential Equations (ODEs)

4



Motivation : Cyber-Physical Systems (CPSs)

Hybrid system models enable formal analysis of safety-critical CPSs:

Discrete control:

if (v > speed_limit)

a := -1; //apply brakes

else

a := 0; //cruise

Continuous dynamics:

x ′ = v , v ′ = a︸ ︷︷ ︸
ODEs need proofs too!

4



Correctness Specifications for CPSs

XSafely under speed limit

XGets to destination

System is safe and live

XSafely under speed limit
×Not moving at all!

System is safe but not live

5



Correctness Specifications for CPSs

XSafely under speed limit

XGets to destination

System is safe and live

XSafely under speed limit

×Not moving at all!

System is safe but not live

5



Correctness Specifications for CPSs

XSafely under speed limit
XGets to destination

System is safe and live

XSafely under speed limit
×Not moving at all!

System is safe but not live

5



ODEs and Domain Constraints

Ordinary Differential Equation (ODE)︷ ︸︸ ︷
x ′ = f (x)

ODE: Models continuous physics of
the system

x'=f(x)

Trains drive on tracks prescribed by
the ODEs.

6



ODEs and Domain Constraints

ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q

Domain: Specifies the domain of
definition for ODEs

Q
x'=f(x)

There are no train tracks across the
national park!

6



Safety & Liveness for ODEs

Safety: [

ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q] P︸︷︷︸

Safe region

Q

P

✓

✓
⨯

✓

Liveness: 〈
ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q〉 P︸︷︷︸

Goal region

Q

P

✓
⨯
⨯
⨯

XTrains stay in Porto (P) while
driving on tracks.

7



Safety & Liveness for ODEs

Safety: [

ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q] P︸︷︷︸

Safe region

Q

P

✓

✓
⨯

✓

Liveness: 〈
ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q〉 P︸︷︷︸

Goal region

Q

P

✓
⨯
⨯
⨯

XTrains stay in Porto (P) while
driving on tracks.

XTrains reach Porto (P) by driving
on tracks.

7



Safety & Liveness for ODEs

Safety: [

ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q] P︸︷︷︸

Safe region

Q

P

✓

✓
⨯

✓

Liveness: 〈
ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q〉 P︸︷︷︸

Goal region

Q

P

✓
⨯
⨯
⨯

Prior work: complete invariance
proofs for ODE safety [LICS’18]

XTrains reach Porto (P) by driving
on tracks.

7



Safety & Liveness for ODEs

Safety: [

ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q] P︸︷︷︸

Safe region

Q

P

✓

✓
⨯

✓

Liveness: 〈
ODE with domain Q︷ ︸︸ ︷
x ′ = f (x) &Q〉 P︸︷︷︸

Goal region

Q

P

✓
⨯
⨯
⨯

Prior work: complete invariance
proofs for ODE safety [LICS’18]

This talk: proving ODE liveness in
differential dynamic logic (dL)

7



An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Goals of surveyed paper

Differential Variants [1] Liveness proofs for inequalities

Bounded/Compact Eventuality [3, 4] Automatic SOS liveness proofs

Set Lyapunov Functions [5] Finding basin of attraction

Staging Sets + Progress [6] Indirect liveness proofs for P

Eq. Differential Variants [7] Synthesizing switching logic

Yields generalizations of existing liveness arguments “for free”.

Liveness arguments in the literature are used for a wide variety of purposes.

8



An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] ×
Bounded/Compact Eventuality [3, 4] × ×
Set Lyapunov Functions [5] × ×
Staging Sets + Progress [6]

Eq. Differential Variants [7] × ×

Yields generalizations of existing liveness arguments “for free”.

Several arguments have technical glitches, making them unsound (×).

8



An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] X × X
Bounded/Compact Eventuality [3, 4] × X × X
Set Lyapunov Functions [5] × X × X
Staging Sets + Progress [6] X X

Eq. Differential Variants [7] × X × X

Yields generalizations of existing liveness arguments “for free”.

Our approach formalizes the underlying liveness arguments in a sound (X),
foundational, and uniform framework. It also corrects (× X) the
technical glitches.

8



An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] X × X
Bounded/Compact Eventuality [3, 4] × X × X
Set Lyapunov Functions [5] × X × X
Staging Sets + Progress [6] X X

Eq. Differential Variants [7] × X × X

Yields generalizations of existing liveness arguments “for free”.

8



An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] X × X
Bounded/Compact Eventuality [3, 4] × X × X
Set Lyapunov Functions [5] × X × X
Staging Sets + Progress [6] X X

Eq. Differential Variants [7] × X × X

Yields generalizations of existing liveness arguments “for free”.

New Liveness Arguments Without Domains With Domains

Higher Differential Variants X -

[1] + [3, 4] + [6] X -

[1] + [3, 4] + [6] + Higher Diff. Var. - X

8



Outline

1 Motivation

2 Logical Approach to ODE Liveness

3 Concrete Example

4 More ODE Liveness Arguments

9



A Simple Liveness Refinement

Portugal

Porto

Trains that reach Porto also reach Portugal since Porto is part of Portugal.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

X 〈x ′ = f (x)〉Porto→ 〈x ′ = f (x)〉Portugal

10



A Simple Liveness Refinement

Portugal

Porto Braga

Can train reach Porto if it reaches Braga? Not true for all trains.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

? 〈x ′ = f (x)〉Braga→ 〈x ′ = f (x)〉Porto

10



A Simple Liveness Refinement

Portugal

Porto Braga

Must use specific properties of the ODE / train track.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

[x ′ = f (x) &¬Porto]¬Braga→
(
〈x ′ = f (x)〉Braga→ 〈x ′ = f (x)〉Porto

)

10



A Simple Liveness Refinement

Portugal

Porto Braga

Must use specific properties of the ODE / train track.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

[x ′ = f (x) &¬Porto]¬Braga→
(
〈x ′ = f (x)〉Braga︸ ︷︷ ︸

Known liveness property

→ 〈x ′ = f (x)〉Porto
)︸ ︷︷ ︸

Desired liveness property

10



A Simple Liveness Refinement

Portugal

Porto Braga

Must use specific properties of the ODE / train track.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

[x ′ = f (x) &¬Porto]¬Braga︸ ︷︷ ︸
Need to show

→
(
〈x ′ = f (x)〉Braga︸ ︷︷ ︸

Known liveness property

→ 〈x ′ = f (x)〉Porto
)︸ ︷︷ ︸

Desired liveness property

10



A Simple Liveness Refinement

Portugal

Porto Braga

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

[x ′ = f (x) &¬Porto]¬Braga︸ ︷︷ ︸
Need to show

→
(
〈x ′ = f (x)〉Braga︸ ︷︷ ︸

Known liveness property

→ 〈x ′ = f (x)〉Porto
)︸ ︷︷ ︸

Desired liveness property

10



Diamond Refinement Axioms

[x ′ = f (x) &¬Porto]¬Braga︸ ︷︷ ︸
Need to show

→
(
〈x ′ = f (x)〉Braga︸ ︷︷ ︸

Known liveness property

→ 〈x ′ = f (x)〉Porto
)︸ ︷︷ ︸

Desired liveness property

Q ⋀ ¬P

B

︸ ︷︷ ︸
Need to show

→

Q

B

︸ ︷︷ ︸
Known liveness property

→

Q

P B

︸ ︷︷ ︸
Desired liveness property

11



Diamond Refinement Axioms

[x ′ = f (x) &¬P]¬B→
(
〈x ′ = f (x)〉B→〈x ′ = f (x)〉P

)

Q ⋀ ¬P

B

︸ ︷︷ ︸
Need to show

→

Q

B

︸ ︷︷ ︸
Known liveness property

→

Q

P B

︸ ︷︷ ︸
Desired liveness property

11



Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)

Q ⋀ ¬P

B

︸ ︷︷ ︸
Need to show

→

Q

B

︸ ︷︷ ︸
Known liveness property

→

Q

P B

︸ ︷︷ ︸
Desired liveness property

11



Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)

Q ⋀ ¬P

B

︸ ︷︷ ︸
Need to show

→

Q

B

︸ ︷︷ ︸
Known liveness property

→

Q

P B

︸ ︷︷ ︸
Desired liveness property

11



Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)

Q

R

︸ ︷︷ ︸
Need to show

→

R

P

︸ ︷︷ ︸
Known liveness property

→

Q

R

P

︸ ︷︷ ︸
Desired liveness property

〈x ′ = f (x) &R〉B

DR〈·〉
[x ′=f (x) &R]Q︷︸︸︷→ 〈x ′ = f (x) &Q〉B

K〈&〉
[x ′=f (x) &¬P]¬B︷︸︸︷→ 〈x ′ = f (x) &Q〉P

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

12



Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

〈x ′ = f (x) &R〉B

DR〈·〉
[x ′=f (x) &R]Q︷︸︸︷→ 〈x ′ = f (x) &Q〉B

K〈&〉
[x ′=f (x) &¬P]¬B︷︸︸︷→ 〈x ′ = f (x) &Q〉P

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

12



Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

〈x ′ = f (x) &R〉B

DR〈·〉
[x ′=f (x) &R]Q︷︸︸︷→

〈x ′ = f (x) &Q〉B

K〈&〉
[x ′=f (x) &¬P]¬B︷︸︸︷→ 〈x ′ = f (x) &Q〉P

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

12



Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

〈x ′ = f (x) &R〉B

DR〈·〉
[x ′=f (x) &R]Q︷︸︸︷→ 〈x ′ = f (x) &Q〉B

K〈&〉
[x ′=f (x) &¬P]¬B︷︸︸︷→ 〈x ′ = f (x) &Q〉P

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

12



Outline

1 Motivation

2 Logical Approach to ODE Liveness

3 Concrete Example

4 More ODE Liveness Arguments

13



ODE Liveness Example

P

-2 -1 0 1 2

-3

-2

-1

0

1

Example: Train reaches Porto
suburbs (P).
For simplicity, no domain constraint.

Model ODE:

x ′ = −y , y ′ = 4x2

14



Equational Differential Variants

Surveyed Liveness Arguments Goals of surveyed paper

Eq. Differential Variants [7] Synthesizing switching logic

Derived proof rule:

dVM
=

p = 0 ` P p < 0 ` p′ ≥ ε()

Γ, ε() > 0, p ≤ 0 ` 〈x ′ = f (x)〉P

15



Equational Differential Variants

Surveyed Liveness Arguments Goals of surveyed paper

Eq. Differential Variants [7] Synthesizing switching logic

Derived proof rule:

dVM
=

p = 0 ` P p < 0 ` p′ ≥ ε()

Γ, ε() > 0, p ≤ 0 ` 〈x ′ = f (x)〉P

Additional condition for soundness X:
Either solution exists for sufficient duration or x ′ = f (x) is globally
Lipschitz continuous.

15



Equational Differential Variants

Surveyed Liveness Arguments Goals of surveyed paper

Eq. Differential Variants [7] Synthesizing switching logic

Derived proof rule:

dVM
=

Step 3︷ ︸︸ ︷
p = 0 ` P

Step 1︷ ︸︸ ︷
p < 0 ` p′ ≥ ε()

Γ, ε() > 0, p ≤ 0︸ ︷︷ ︸
Step 2

` 〈x ′ = f (x)〉P

Underlying refinement chain:

〈x ′ = f (x), t′ = 1〉t > c()

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉p ≥ 0

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉p = 0

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

15



Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷−→

P

-2 -1 0 1 2

-3

-2

-1

0

1

Intuition: Reduce liveness for (complicated) region P to (simple) circle.

16



Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷−→
P

r

-2 -1 0 1 2

-3

-2

-1

0

1

Intuition: Reduce liveness for (complicated) region P to (simple) circle.

16



Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷−→

r

-2 -1 0 1 2

-3

-2

-1

0

1

Intuition: Since train starts outside circle, reduce further to liveness for
disk.

17



Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

t = 0.0, r = 3.9

t = 0.3, r = 2.5

t = 0.7, r = 2.0
t = 1.0, r = 1.7

t = 1.4, r = 0.8

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷−→

r

-2 -1 0 1 2

-3

-2

-1

0

1

Intuition: Symbolically analyze derivatives to lower bound time required
to reach disk for the train.

18



Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

t ≥ 0.0, r ≤ 3.9

t ≥ 0.3, r ≤ 2.5

t ≥ 0.7, r ≤ 2.0
t ≥ 1.0, r ≤ 1.7

t ≥ 1.4, r ≤ 0.8

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷−→

r

-2 -1 0 1 2

-3

-2

-1

0

1

Intuition: Symbolically analyze derivatives to lower bound time required
to reach disk for the train.

18



Proving Liveness for Train

〈x ′ = f (x), t′ = 1〉t > 1.4

Step 1
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r ≤ 1

Step 2
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉r = 1

Step 3
K〈&〉︷︸︸︷
→ 〈x ′ = f (x)〉P

t ≥ 0.0, r ≤ 3.9

t ≥ 0.3, r ≤ 2.5

t ≥ 0.7, r ≤ 2.0
t ≥ 1.0, r ≤ 1.7

t ≥ 1.4, r ≤ 0.8

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷
−→

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷
−→

r

-2 -1 0 1 2

-3

-2

-1

0

1

K〈&〉︷︸︸︷
−→

P

-2 -1 0 1 2

-3

-2

-1

0

1

The train reaches Porto (P) if it is driven for > 1.4 hours:

〈x ′ = f (x), t ′ = 1〉t > 1.4→ 〈x ′ = f (x)〉P
19



Existence Properties

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

GEx 〈x ′ = f (x), t ′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

20



Existence Properties

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

GEx 〈x ′ = f (x), t ′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

Apply to ODE example:

GEx︷ ︸︸ ︷
〈x ′ = f (x), t ′ = 1〉t > 1.4

Train reaches Porto (P) if driven for > 1.4 hours︷ ︸︸ ︷
〈x ′ = f (x), t ′ = 1〉t > 1.4→ 〈x ′ = f (x)〉P
〈x ′ = f (x)〉P

20



Existence Properties

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

GEx 〈x ′ = f (x), t ′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

Apply to ODE example:

Not for x ′ = −y , y ′ = 4x2︷ ︸︸ ︷
〈x ′ = f (x), t ′ = 1〉t > 1.4

Train reaches Porto (P) if driven for > 1.4 hours︷ ︸︸ ︷
〈x ′ = f (x), t ′ = 1〉t > 1.4→ 〈x ′ = f (x)〉P
〈x ′ = f (x)〉P

20



Existence Properties

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

GEx 〈x ′ = f (x), t ′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

P

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 Problem: Finite time blowup may
prevent solutions from reaching goal.

x ′ = −y , y ′ = 4x2︸ ︷︷ ︸
This non-linear ODE is not globally Lipschitz!

Goal reached

x2+y2

0.5 1 1.5 2 2.5 3 3.5 t 20



Equational Differential Variants

Surveyed Liveness Arguments Goals of surveyed paper

Eq. Differential Variants [7] Synthesizing switching logic

Derived proof rule:

dVM
=

p = 0 ` P p < 0 ` p′ ≥ ε()

Γ, ε() > 0, p ≤ 0 ` 〈x ′ = f (x)〉P

Additional condition for soundness X:
Either solution exists for sufficient duration or x ′ = f (x) is globally
Lipschitz continuous.

21



A Common Technical Glitch

Several errors (×) due to insufficient technical assumptions about
existence of solutions.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1]

Bounded/Compact Eventuality [3, 4] ×
Set Lyapunov Functions [5] × ×
Staging Sets + Progress [6]

Eq. Differential Variants [7] × ×

22



A Common Technical Glitch

Other errors (×) were due to more subtle issues but they were also caught
by our approach.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] ×
Bounded/Compact Eventuality [3, 4] ×
Set Lyapunov Functions [5]

Staging Sets + Progress [6]

Eq. Differential Variants [7]

22



Outline

1 Motivation

2 Logical Approach to ODE Liveness

3 Concrete Example

4 More ODE Liveness Arguments

23



More Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
COR ¬P ∧ [x ′ = f (x) &R ∧ ¬P]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
SAR [x ′ = f (x) &R ∧ ¬(P ∧ Q)]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
GEx 〈x ′ = f (x), t′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

BEx 〈x ′ = f (x), t′ = 1〉(¬B(x) ∨ t > c())

Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

Idea 4: Reducing ODE liveness arguments to basic liveness refinements
isolates and minimizes the possibility of soundness errors.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

24



More Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
COR ¬P ∧ [x ′ = f (x) &R ∧ ¬P]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
SAR [x ′ = f (x) &R ∧ ¬(P ∧ Q)]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
GEx 〈x ′ = f (x), t′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

BEx 〈x ′ = f (x), t′ = 1〉(¬B(x) ∨ t > c())

Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

Idea 4: Reducing ODE liveness arguments to basic liveness refinements
isolates and minimizes the possibility of soundness errors.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

24



More Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
COR ¬P ∧ [x ′ = f (x) &R ∧ ¬P]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
SAR [x ′ = f (x) &R ∧ ¬(P ∧ Q)]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
GEx 〈x ′ = f (x), t′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

BEx 〈x ′ = f (x), t′ = 1〉(¬B(x) ∨ t > c())

Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

Idea 4: Reducing ODE liveness arguments to basic liveness refinements
isolates and minimizes the possibility of soundness errors.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

24



More Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
COR ¬P ∧ [x ′ = f (x) &R ∧ ¬P]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
SAR [x ′ = f (x) &R ∧ ¬(P ∧ Q)]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
GEx 〈x ′ = f (x), t′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

BEx 〈x ′ = f (x), t′ = 1〉(¬B(x) ∨ t > c())

Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

Idea 4: Reducing ODE liveness arguments to basic liveness refinements
isolates and minimizes the possibility of soundness errors.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

24



More Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
COR ¬P ∧ [x ′ = f (x) &R ∧ ¬P]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
SAR [x ′ = f (x) &R ∧ ¬(P ∧ Q)]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
GEx 〈x ′ = f (x), t′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

BEx 〈x ′ = f (x), t′ = 1〉(¬B(x) ∨ t > c())

Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

Idea 4: Reducing ODE liveness arguments to basic liveness refinements
isolates and minimizes the possibility of soundness errors.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

24



More Diamond Refinement Axioms

K〈&〉 [x ′ = f (x) &Q ∧ ¬P]¬B →
(
〈x ′ = f (x) &Q〉B → 〈x ′ = f (x) &Q〉P

)
DR〈·〉 [x ′ = f (x) &R]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
COR ¬P ∧ [x ′ = f (x) &R ∧ ¬P]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
SAR [x ′ = f (x) &R ∧ ¬(P ∧ Q)]Q →

(
〈x ′ = f (x) &R〉P → 〈x ′ = f (x) &Q〉P

)
GEx 〈x ′ = f (x), t′ = 1〉t > c() (if x ′ = f (x) globally Lipschitz)

BEx 〈x ′ = f (x), t′ = 1〉(¬B(x) ∨ t > c())

Idea 1: ODE safety has effective reasoning principles [LICS’18], so use
ODE safety to justify refinement steps.

Idea 2: Implication chains build complicated liveness arguments from
simple building blocks.

Idea 3: Basic liveness properties of ODEs can be justified by a small
number of simple axioms.

Idea 4: Reducing ODE liveness arguments to basic liveness refinements
isolates and minimizes the possibility of soundness errors.

Key Idea: Liveness arguments can and should be understood using
liveness refinement steps.

24



An Axiomatic Approach to Liveness for ODEs

Why take a logical approach?

Understand the core principles behind ODE liveness proofs.

Surveyed Liveness Arguments Without Domains With Domains

Differential Variants [1] X × X
Bounded/Compact Eventuality [3, 4] × X × X
Set Lyapunov Functions [5] × X × X
Staging Sets + Progress [6] X X

Eq. Differential Variants [7] × X × X

Yields generalizations of existing liveness arguments “for free”.

New Liveness Arguments Without Domains With Domains

Higher Differential Variants X -

[1] + [3, 4] + [6] X -

[1] + [3, 4] + [6] + Higher Diff. Var. - X

25



References I

[1] André Platzer. 2010. Differential-algebraic Dynamic Logic for
Differential-algebraic Programs. J. Log. Comput. 20, 1 (2010),
309–352. https://doi.org/10.1093/logcom/exn070

[2] André Platzer and Yong Kiam Tan. 2018. Differential Equation
Axiomatization: The Impressive Power of Differential Ghosts. In
LICS, Anuj Dawar and Erich Grädel (Eds.). ACM, New York,
819–828. https://doi.org/10.1145/3209108.3209147

[3] Stephen Prajna and Anders Rantzer. 2005. Primal-Dual Tests for
Safety and Reachability. In HSCC (LNCS), Manfred Morari and
Lothar Thiele (Eds.), Vol. 3414. Springer, Heidelberg, 542–556.
https://doi.org/10.1007/978-3-540-31954-2_35

[4] Stephen Prajna and Anders Rantzer. 2007. Convex Programs for
Temporal Verification of Nonlinear Dynamical Systems. SIAM J.
Control Optim. 46, 3 (2007), 999–1021.
https://doi.org/10.1137/050645178

26

https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1007/978-3-540-31954-2_35
https://doi.org/10.1137/050645178


References II

[5] Stefan Ratschan and Zhikun She. 2010. Providing a Basin of
Attraction to a Target Region of Polynomial Systems by Computation
of Lyapunov-Like Functions. SIAM J. Control Optim. 48, 7 (2010),
4377–4394. https://doi.org/10.1137/090749955

[6] Andrew Sogokon and Paul B. Jackson. 2015. Direct Formal
Verification of Liveness Properties in Continuous and Hybrid
Dynamical Systems. In FM (LNCS), Nikolaj Bjørner and Frank S.
de Boer (Eds.), Vol. 9109. Springer, Cham, 514–531.
https://doi.org/10.1007/978-3-319-19249-9_32

[7] Ankur Taly and Ashish Tiwari. 2010. Switching logic synthesis for
reachability. In EMSOFT, Luca P. Carloni and Stavros Tripakis
(Eds.). ACM, New York, 19–28.
https://doi.org/10.1145/1879021.1879025

27

https://doi.org/10.1137/090749955
https://doi.org/10.1007/978-3-319-19249-9_32
https://doi.org/10.1145/1879021.1879025

	Motivation
	Logical Approach to ODE Liveness
	Concrete Example
	More ODE Liveness Arguments

