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Abstract. The Next-Generation Airborne Collision Avoidance System (ACAS X)
is intended to be installed on all large aircraft to give advice to pilots and prevent
mid-air collisions with other aircraft. It is currently being developed by the Fed-
eral Aviation Administration (FAA). In this paper we determine the geometric
configurations under which the advice given by ACAS X is safe under a precise
set of assumptions and formally verify these configurations using hybrid systems
theorem proving techniques. We conduct an initial examination of the current
version of the real ACAS X system and discuss some cases where our safety
theorem conflicts with the actual advisory given by that version, demonstrating
how formal, hybrid approaches are helping ensure the safety of ACAS X. Our
approach is general and could also be used to identify unsafe advice issued by
other collision avoidance systems or confirm their safety.

1 Introduction

With growing air traffic, the airspace becomes more crowded, and the risk of airborne
collisions between aircraft increases. In the 1970s, after a series of mid-air collisions,
the Federal Aviation Administration (FAA) decided to develop an onboard collision
avoidance system: the Traffic Alert and Collision Avoidance System (TCAS). This pro-
gram had great success, and prevented many mid-air collisions over the years. Some
accidents still happened; for example, a collision over Überlingen in 2002 occurred due
to conflicting orders between TCAS and air traffic control. Airspace management will
evolve significantly over the next decade with the introduction of the next-generation air
traffic management system; this will create new requirements for collision avoidance.
To meet these new requirements, the FAA has decided to develop a new system: the
Next-Generation Airborne Collision Avoidance System, known as ACAS X [4,9,13].

Like TCAS, ACAS X avoids collisions by giving vertical guidance to an aircraft’s
pilot. A typical scenario involves two aircraft: the ownship where ACAS X is installed,
and another aircraft called the intruder that is at risk of colliding with the ownship.
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Table 1. Sample advisories and their modeling variables; full table in Technical Report [10]

ACAS X Specification [12] Our model
Vertical Rate Range Strength Delay Sign Advisory

Advisory Min (ft/min) Max (ft/min) ar dp (s) w ḣf (ft/min)
DNC −∞ 0 g/4 5 −1 0

MCL current +∞ g/4 5 +1 current
CL1500 +1500 +∞ g/4 5 +1 +1500

SCL2500 +2500 +∞ g/3 3 +1 +2500

COC −∞ +∞ Not applicable

ACAS X is designed to avoid Near Mid-Air Collisions (NMACs), situations where two
aircraft come within rp = 500 ft horizontally and hp = 100 ft vertically [13] of each
other. The NMAC definition describes a volume centered around the ownship, shaped
like a hockey puck of radius rp and half-height hp.

In order to be accepted by pilots, and thus operationally suitable, ACAS X needs to
strike a balance between giving advice that helps pilots avoid collisions but also mini-
mizes interruptions. These goals oppose each other, and cannot both be perfectly met in
the presence of unknown pilot behavior. This paper focuses on precisely characterizing
the circumstances in which ACAS X gives advice that is safe. An integral part of the
ACAS X development process, this work is intended to help ensure that the design of
ACAS X is correct, potentially by identifying ways it should be adjusted.

Airborne Collision Avoidance System ACAS X. In order to prevent an NMAC with
other aircraft, ACAS X uses various sensors to determine the position of the ownship, as
well as the positions of any intruders [5]. It computes its estimate of the best pilot action
by linearly interpolating a precomputed table of actions, and, if appropriate, issuing an
advisory to avoid potential collisions [6] through a visual display and a voice message.

An advisory is a request to the pilot of the ownship to alter or maintain her ver-
tical speed. ACAS X advisories are strictly vertical, and never request any horizontal
maneuvering. Table 1 shows a sample of the advisories ACAS X can issue. For exam-
ple, Do-Not-Climb (DNC) requests that the pilot not climb, and Climb-1500 (CL1500)
requests that the pilot climb at more than 1500 ft/min. ACAS X can issue a total of
16 different advisories plus Clear-of-Conflict (COC), which indicates that no action is
necessary. To comply with an advisory, the pilot must adjust her vertical rate to fall
within the corresponding vertical rate range. Based on previous research [12], the pilot
is assumed to do so using a vertical acceleration of strength at least ar starting after a
delay of at most dp after the advisory has been announced by ACAS X.

At the heart of ACAS X is a table whose domain describes possible configurations
for the current state of an encounter, and whose range is a set of scores for each possible
action [12,14]. The table is obtained from a Markov Decision Process (MDP) approxi-
mating the dynamics of the system in a discretization of the state-space, and optimized
using dynamic programming to maximize the expected value of events over all future
paths for each action [12]. Near Mid-Air Collision events, for example, are associated
with large negative values and issuing an advisory is associated with a small negative
value. The policy is to choose the action with the highest expected value from a multi-
linear interpolation of grid points in this table. ACAS X uses this table, along with some
heuristics, to determine the best action to take for the geometry in which it finds itself.
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Fig. 1. Trajectory of ownship (red) and safe region for the intruder (green), immediate response

Identifying Formally Verified Safe Regions. Since ACAS X involves both discrete
advisories to the pilot and continuous dynamics of aircraft, it is natural to formally ver-
ify it using hybrid systems. However the complexity of ACAS X, which uses at its core
a large lookup table—defining 29,212,664 interpolation regions within a 5-dimensional
state-space—makes the direct use of hybrid systems verification techniques intractable.
Our approach is different. It identifies safe regions in the state space of the system where
the current positions and velocities of the aircraft ensure that a particular advisory, if
followed, prevents all possible NMACs. Then it compares these regions to the configu-
rations where the ACAS X table returns this same advisory. Moreover our safe regions
are symbolic in their parameters, and can thus be easily adapted to new parameters.

Our results provide independent characterizations of the ACAS X behavior to pro-
vide a clear and complete picture of its performance. Our method can be used by the
ACAS X development team in two ways. It provides a mathematical proof—with re-
spect to a model—that ACAS X is absolutely safe for some configurations of the air-
craft. Additionally, when ACAS X is not safe, it is able to identify unsafe or unexpected
behaviors and suggests ways of correcting them.

Our approach of formally deriving safe regions then comparing them to the behavior
of an industrial system is, as far as we are aware, the first of its kind in the formal
verification of hybrid systems. The approach may be valuable for verifying or assessing
properties of other systems with similar complexities, or also using large lookup tables,
which is a common challenge in practice. Finally, the constraints we identified for safety
are fairly general and could be used to analyze other collision avoidance systems.

The paper is organized as follows. After an overview of the method in Sect. 2, we
start with a simple two-dimensional model assuming immediate reaction of the pilot
in Sect. 3. We extend the model to account for the reaction time of the pilot in Sect. 4,
and extend the results to a three-dimensional model in Sect. 5. In Sect. 6, we conduct
an initial analysis of ACAS X whereby we compare the advisory recommended by a
core component of ACAS X with our safe regions, identifying the circumstances where
safety of those ACAS X advisories is guaranteed within our model.

2 Overview of the ACAS X Modelling Approach

To construct a safe region of an advisory for an aircraft, imagine following all allow-
able trajectories of the ownship relative to the intruder, accounting for every possible
position of the ownship and its surrounding puck at every future moment in time. The
union of all such positions of the puck describes a potentially unsafe region; for each
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I ḣ0 ḣ1
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Fig. 2. Top view (left) and side view (right) of an encounter, with NMAC puck in gray

point there exists a trajectory that results in an NMAC. Dually, if the intruder is outside
this set, i.e., in the safe region, an NMAC cannot occur in the model.

Fig. 1 depicts an example of a head-on encounter and its associated safe region for
the advisory CL1500, projected in a vertical plane with both aircraft. It is plotted in a
frame fixed to the intruder and centered at the initial position of the ownship. The own-
ship, surrounded by the puck, starts at position 1 and traces out a trajectory following
the red curve. It first accelerates vertically with g/4 until reaching the desired verti-
cal velocity of +1500 ft/min at position 3. It then climbs at +1500 ft/min, respecting
the specification of Table 1. The green safe-region indicates starting points in the state
space for which the aircraft will remain safe for the duration of the encounter. Note that
no safe region exists above the trajectory since the ownship could accelerate vertically
at greater than g/4 or climb more than +1500 ft/min, in accordance with Table 1.

Model of Dynamics. Let us consider an encounter between two planes—ownship O
and intruder I , as portrayed in Fig. 2. Following the notation of the ACAS X commu-
nity [12], let r be the horizontal distance between the aircraft and h the height of the
intruder relative to the ownship. We assume that the relative horizontal velocity ~rv of
the intruder with respect to the ownship is constant throughout the encounter. I.e., from
a top view, the planes follow straight-line trajectories. Let θv be the non-directed angle
between ~rv and the line segment ~r. In the vertical dimension, we assume that the own-
ship’s vertical velocity ḣ0 can vary at any moment, while the intruder’s vertical velocity
ḣ1 is fixed throughout the encounter. Moreover, we assume that the magnitude of the
vertical acceleration of the ownship cannot exceed ad in absolute value.

For a typical encounter, r varies between 0 nmi and 7 nmi,3 h between −4,000 ft
and 4,000 ft, rv between 0 kts and 1,000 kts, and ḣ0 and ḣ1 between −5,000 ft/min
and +5,000 ft/min. The acceleration ad is usually g/2, where g is Earth’s gravitational
acceleration. The NMAC puck has radius rp = 500 ft and half-height hp = 100 ft.

Model of Advisories. Recall that ACAS X prevents NMACs by giving advisories to
the ownship’s pilot. Every advisory, except COC, has a vertical rate range of the form
(−∞, ḣf ] or [ḣf ,+∞) for some vertical rate ḣf (Table 1), which we call the target
vertical velocity. We model any advisory by its corresponding target vertical velocity
ḣf , and a binary variable w for its orientation, whose value is −1 if the vertical rate
range of the advisory is (−∞, ḣf ] and +1 if it is [ḣf ,+∞). This symbolic encoding
can represent many advisories and is robust to changes in the ACAS X advisory set.

3 We use units most common in the aerospace community, even though they are not part of the
international system, including nautical miles nmi (1,852metres), knots kts (nautical miles per
hour), feet ft (0.3048meter) and minutes min (60 seconds).
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Following ACAS X design work [12], we assume that the ownship pilot complies
with each advisory within dp seconds, and that she accelerates with acceleration at least
ar to reach the target vertical velocity.

3 Safe Region for an Immediate Pilot Response

We present in this section a simplified version of the dynamics from Sect. 2. We give a
hybrid model for this simplified system and prove its safety. The new assumptions will
be relaxed in later sections to achieve the safety verification of the full model of Sect. 2.

Model. In this section, we assume that the ownship and intruder are flying head-
on (θv = 180◦). We also assume that the pilot reacts immediately to any advisory
(dp = 0 s), and that the advisory COC is not allowed. These assumptions will be re-
laxed in Sect. 4 and Sect. 5. We assume that r is a scalar: if r ≥ 0 then the ownship is
flying towards the intruder, otherwise it is flying away from it. Both cases could require
an advisory. Since the ownship and intruder are flying head-on with straight line trajec-
tories, there exists a vertical plane containing both their trajectories. In this plane, the
puck becomes a rectangle centered around the ownship, of width 2rp and height 2hp,
and there is an NMAC if and only if the intruder is in this rectangle (in gray on Fig. 1).

Differential Dynamic Logic and KeYmaera. We model our system using Differen-
tial Dynamic Logic dL [17,18,19], a logic for reasoning about hybrid programs. The
logic dL allows discrete assignments, control structures, and execution of differential
equations. It is implemented in the theorem prover KeYmaera [21], that we use to ver-
ify our safe regions with respect to our models. All the KeYmaera models and proofs
of this paper can be found at http://www.ls.cs.cmu.edu/pub/acasx.zip,
and statistics in Technical Report [10].

The dL formula for the model that we use in this section is given in Eq. (1).

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ ar > 0 ∧ (w = −1 ∨ w = 1) ∧ Cimpl(r, h, ḣ0)→
2 [( ( ?true ∪ ḣf := ∗; (w := −1 ∪ w := 1); ?Cimpl(r, h, ḣ0); advisory := (w, ḣf ) );

3 a := ∗; {r′ = −rv, h′ = −ḣ0, ḣ
′
0 = a & wḣ0 ≥ wḣf ∨ wa ≥ ar}

4 )∗] (|r| > rp ∨ |h| > hp)

(1)

This formula of the form p→ [α]q says all executions of program α starting in a state
satisfying logical formula p end up in a state satisfying q. It is akin to the Hoare triple
{p}α{q} with precondition p and postcondition q. The precondition in Eq. (1) imposes
constraints on several constants, as well as the formula Cimpl(r, h, ḣ0) (defined below)
that forces the intruder to be in a safe region for an initial advisory (w, ḣf ). We cannot
guarantee safety if the intruder starts initially in an unsafe region. The postcondition
encodes absence of NMAC. Line 2 expresses the action of the ACAS X system. The
nondeterministic choice operator ∪ expresses that the system can either continue with
the same advisory by doing nothing—just testing ?true—this ensures it always has a
valid choice and cannot get stuck. Otherwise it can choose a new advisory (w, ḣf ) that
passes the safety condition Cimpl(r, h, ḣ0)—advisory will be the next message to the
pilot. Line 3 expresses the action of the ownship, first nondeterministically choosing an

http://www.ls.cs.cmu.edu/pub/acasx.zip
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arbitrary acceleration (a := ∗) then following the continuous dynamics. The evolution
of the variables r, h and ḣ0 is expressed by a differential equation, and requires (using
the operator &) that the ownship evolves towards its target vertical velocity ḣf at ac-
celeration ar (condition wa ≥ ar), unless it has already reached vertical velocity ḣf
(condition wḣ0 ≥ wḣf ). Finally, the star ∗ on line 4 indicates that the program can be
repeated any number of times, allowing the system to go through several advisories.

Implicit Formulation of the Safe Region. As explained in Sect. 2, we use a frame
fixed to the intruder and with its origin at the initial position of the ownship (see Fig. 1).

First case: if w = +1 and ḣf ≥ ḣ0. Fig. 1 shows, in red, a possible trajectory of
an ownship following exactly the requirements of ACAS X. This nominal trajectory
of the ownship is denoted by N . The pilot reacts immediately, and the ownship starts
accelerating vertically with acceleration ar until reaching the target vertical velocity
ḣf—describing a parabola—then climbs at vertical velocity ḣf along a straight line.
Horizontally, the relative velocity rv remains constant. Integrating the differential equa-
tions in Eq. (1) line 3, the ownship position (rt, ht) at time t along N is given by:

(rt, ht) =


(
rvt ,

ar

2 t
2 + ḣ0t

)
if 0 ≤ t < ḣf−ḣ0

ar
(a)(

rvt , ḣf t− (ḣf−ḣ0)
2

2ar

)
if ḣf−ḣ0

ar
≤ t (b)

(2)

Recall that in the ACAS X specification, the ownship moves vertically with accel-
eration of at least ar, then continues with vertical velocity of at least ḣf . Therefore
all possible future positions of the ownship are above the red nominal trajectory. An
intruder is safe if its position is always either to the side of or under any puck centered
on a point in N , that is:

∀t.∀rt.∀ht.
(
(rt, ht) ∈ N → |r − rt| > rp ∨ h− ht < −hp

)
(3)

We call this formulation the implicit formulation of the safe region. It does not give
explicit equations for the safe region border, but expresses them instead implicitly with
respect to the nominal trajectory.

Generalization. The reasoning above is generalized to the case where ḣf < ḣ0, and
symmetrically to the case w = −1. The most general implicit formulation of the safe
region is Cimpl in Fig. 3, and verified to be safe in KeYmaera:

Theorem 1 (Correctness of implicit safe regions). The dL formula given in Eq. (1) is
valid. That is as long as the advisories obey formula Cimpl there will be no NMAC.

Explicit Formulation of the Safe Region. The implicit formulation of the safe region
gives an intuitive understanding of where it is safe for the intruder to be. However,
because it still contains quantifiers, its use comes at the extra cost of eliminating the
quantifiers. An efficient comparison with the ACAS X table, as described in Sect. 6,
can only be achieved with a quantifier-free, explicit formulation, that we present in this
section. We show that both formulations are equivalent. As for the implicit formulation,
we derive the equations for one representative case before generalizing them.
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Implicit formulation

A(t, ht, ḣ0) ≡

(
0 ≤ t < max(0, w(ḣf − ḣ0))

ar
∧ ht =

war
2
t2 + ḣ0t

)

∨

(
t ≥ max(0, w(ḣf − ḣ0))

ar
∧ ht = ḣf t−

wmax(0, w(ḣf − ḣ0))
2

2ar

)
Cimpl(r, h, ḣ0) ≡ ∀t.∀rt.∀ht.

(
rt = rvt ∧A(t, ht, ḣ0)

→ (|r − rt| > rp ∨ w(h− ht) < −hp)

)
Explicit formulation

case1(r, ḣ0) ≡ −rp ≤ r < −rp −
rv min(0, wḣ0)

ar

bound1(r, h, ḣ0) ≡ wr2vh <
ar
2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

case2(r, ḣ0) ≡ −rp −
rv min(0, wḣ0)

ar
≤ r ≤ rp −

rv min(0, wḣ0)

ar

bound2(r, h, ḣ0) ≡ wh < −
min(0, wḣ0)

2

2ar
− hp

case3(r, ḣ0) ≡ rp −
rv min(0, wḣ0)

ar
< r ≤ rp +

rv max(0, w(ḣf − ḣ0))

ar

bound3(r, h, ḣ0) ≡ wr2vh <
ar
2
(r − rp)2 + wrvḣ0(r − rp)− r2vhp

case4(r, ḣ0) ≡ rp +
rv max(0, w(ḣf − ḣ0))

ar
< r

bound4(r, h, ḣ0) ≡ (rv = 0) ∨
(
wrvh < wḣf (r − rp)−

rv max(0, w(ḣf − ḣ0))
2

2ar
− rvhp

)
case5(r, ḣ0) ≡ −rp ≤ r < −rp +

rv max(0, w(ḣf − ḣ0))

ar

bound5(r, h, ḣ0) ≡ wr2vh <
ar
2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

case6(r, ḣ0) ≡ −rp +
rv max(0, w(ḣf − ḣ0))

ar
≤ r

bound6(r, h, ḣ0) ≡ (rv = 0 ∧ r > rp)

∨
(
wrvh < wḣf (r + rp)−

rv max(0, w(ḣf − ḣ0))
2

2ar
− rvhp

)
Cexpl(r, h, ḣ0) ≡

(
wḣf ≥ 0→

4∧
i=1

(casei(r, ḣ0)→ boundi(r, h, ḣ0))

)

∧

(
wḣf < 0→

6∧
i=5

(casei(r, ḣ0)→ boundi(r, h, ḣ0))

)

Fig. 3. Implicit and explicit formulations of the safe region for an immediate response
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First case: if w = +1, rv > 0, ḣ0 < 0 and ḣf ≥ 0. We are in the case shown in
Fig. 1 and described in detail above. The nominal trajectory N is given by Eq. (2)(a)
and Eq. (2)(b). The boundary of the (green) safe region in Fig. 1 is drawn by either the
bottom left hand corner, the bottom side or the bottom right hand corner of the puck.
This boundary can be characterized by a set of equations:

0. positions left of the puck’s initial position (r < −rp) are in the safe region;
1. then the boundary follows the bottom left hand corner of the puck as it is going

down the parabola of Eq. (2)(a); therefore for −rp ≤ r < −rp − rvḣ0

ar
, the position

(r, h) is safe if and only if h < ar

2r2v
(r + rp)

2 + ḣ0

rv
(r + rp)− hp;

2. following this, the boundary is along the bottom side of the puck as it is at the
bottom of the parabola of Eq. (2)(a); therefore for −rp − rvḣ0

a ≤ r ≤ rp − rvḣ0

ar
,

the position (r, h) is in the safe region if and only if h < − ḣ2
0

2ar
− hp;

3. then the boundary follows the bottom right hand corner of the puck as it is going
up the parabola of Eq. (2)(a); therefore for rp − rvḣ0

ar
< r ≤ rp +

rv(ḣf−ḣ0)
ar

, the

position (r, h) is safe if and only if h < ar

2r2v
(r − rp)2 + ḣ0

rv
(r − rp)− hp;

4. finally the boundary follows the bottom right hand corner of the puck as it is going
up the straight line of Eq. (2)(b); therefore for rp +

rv(ḣf−ḣ0)
ar

< r, the position

(r, h) is in the safe region if and only if h < ḣf

rv
(r − rp)− (ḣf−ḣ0)

2

2ar
− hp.

Generalization. The general case is given in the formula Cexpl of Fig. 3. The cases 1-
4 and their associated bounds are for the case wḣf ≥ 0, whereas cases 5 and 6 and
associated bounds are for wḣf < 0. We again use KeYmaera to formally prove that this
explicit safe region formulation is equivalent to its implicit counterpart.

Lemma 1 (Correctness of explicit safe regions). If w = ±1, rp ≥ 0, hp > 0, rv ≥ 0

and ar > 0, then the conditions Cimpl(r, h, ḣ0) and Cexpl(r, h, ḣ0) are equivalent.

4 Safe Region for a Delayed Pilot Response

We generalize the model of Sect. 3 to account for a non-deterministic, non-zero pilot
delay, and for periods of time where the system does not issue an advisory (i.e., COC).

Model. In this section, we still assume that the ownship and intruder are flying head-
on (θv = 180◦). We use the same conventions as in Sect. 3 for r and rv . The model
includes an initial period where there is no compliance with any advisory—the ownship
accelerates non-deterministically (within limits) in the vertical direction. As before, we
derive the safe regions by considering all possible positions of the ownship’s puck in all
possible trajectories that might evolve in the encounter. To represent pilot delay for an
advisory, the model assumes an immediate advisory, and period of non-compliance dp,
representing the time it takes the pilot to respond. To represent COC, the model looks
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Fig. 4. Trajectory of the ownship (red) and safe region for the intruder (green), delayed responsefor a safe advisory it can issue d` in the future if necessary, (d` being the system delay,
and shortest COC) so the period of non-compliance is dp + d`.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ ar > 0 ∧ ad ≥ ∧dp ≥ 0 ∧ d` ≥ 0

2 ∧(w = −1 ∨ w = 1) ∧Dimpl(r, h, ḣ0, d)→
3 [(
(
?true ∪ ḣf := ∗; (w := −1 ∪ w := 1);

4 (d := dp; ?Dimpl(r, h, ḣ0, d); advisory := (w, ḣf ) ∪
5 d := dp + d`; ?Dimpl(r, h, ḣ0, d); advisory := COC)

)
;

6 a := ∗; ?(wa ≥ −ad); t` := 0;

7 {r′ = −rv, h′ = −ḣ0, ḣ′0 = a,d′ = −1, t′` = 1 &

8 (t` ≤ d`) ∧ (d ≤ 0→ wḣ0 ≥ wḣf ∨ wa ≥ ar)}
9 )∗] (|r| > rp ∨ |h| > hp)

(4)

We modify the model of Eq. (1) to capture these new ideas, and obtain the model
of Eq. (4), highlighting the differences in bold. The structure, precondition (lines 1 and
2) and postcondition (line 9) are similar. The clock d, if positive, represents the amount
of time until the ownship pilot must respond to the current advisory to remain safe.
Lines 3 to 5 represent the actions of the ACAS X system. As before, the system can
continue with the same advisory (?true). Otherwise it can select a safe advisory (w, ḣf )
to be applied after at most delay dp; or it can safely remain silent, displaying COC, if it
knows an advisory (w, ḣf ) that is safe if applied after delay dp + d`. In line 6, the pilot
non-deterministically chooses an acceleration (a := ∗), within some limit (wa ≥ −ad).
The set of differential equations in line 7 describes the system’s dynamics, and the
conditions in line 8 use the clock t` to ensure that continuous time does not evolve
longer than system delay d` without a system response (t` ≤ d`). Those conditions
also ensure that when d ≤ 0 the pilot starts complying with the advisory. The model
is structured so that the pilot can safely delay responding to an advisory for up to dp,
and to an advisory associated with COC for up to dp + d`—considering upper bounds
on the reaction delay is necessary to get a formal proof of safety. Because of the loop
in our model (line 9), the safety guarantees of this theorem apply to encounters whose
advisories change as the encounter evolves, encounters with periods of no advisory, and
encounters where the pilot exhibits some non-deterministic behavior.

In the rest of the section we use the same approach as in Sect. 3: we first derive
an implicit formulation, then an equivalent explicit formulation of the safe region, and
prove that the safe region guarantees that the intruder cannot cause an NMAC.
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Implicit formulation

B(t, ht, ḣ0, d) ≡ 0 ≤ t < max(0, d) ∧ ht = −
wad
2
t2 + ḣ0t

const ≡ hd = −wad
2

max(0, d)2 + ḣ0 max(0, d) ∧ ḣd − ḣ0 = −wad max(0, d)

Dimpl(r, h, ḣ0, d) ≡ ∀t.∀rt.∀ht.∀hd.∀ḣd.(
rt = rvt ∧ (B(t, ht, ḣ0, d) ∨ const ∧A(t−max(0, d), ht − hd, ḣd))

→ (|r − rt| > rp ∨ w(h− ht) < −hp)
)

Explicit formulation
rd = rv max(0, d) ḣd = ḣ0 − wad max(0, d)

hd = −wad
2

max(0, d)2 + ḣ0 max(0, d)

case7(r) ≡ −rp ≤ r ≤ rp bound7(r, h) ≡ wh < −hp

case8(r) ≡ rp < r ≤ rd + rp case9(r) ≡ −rp ≤ r < rd − rp

bound8(r, h) ≡ wr2vh < −
ad
2
(r − rp)2 + wrvḣ0(r − rp)− r2vhp

bound9(r, h) ≡ wr2vh < −
ad
2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

Dexpl(r, h, ḣ0, d) ≡

(
9∧

i=7

(casei(r)→ boundi(r, h))

)
∧ Cexpl(r − rd, h− hd, ḣd)

Fig. 5. Implicit and explicit formulations of the safe region for a delayed response

Formulations of the Safe Region. As in Sect. 3, let us place ourselves in the referential
centered on the current position of the ownship and where the intruder is fixed, and let us
first assume that the ownship receives an advisory (w, ḣf ) such that w = +1, and that
d ≥ 0. Let us focus on the period of time before the pilot reacts, which we henceforth
call delay. During the delay, the ownship can take any vertical acceleration less than ad
in absolute value, therefore its nominal trajectory Nd is to accelerate the opposite way
of the advisory, at acceleration −ad. Horizontally, its speed is constant at rv . It thus
describes a delay parabola, in red on Fig. 4, and its position (rt, ht) along the nominal
trajectory for 0 ≤ t < d is given by (rt, ht) =

(
rvt,−ad

2 t
2 + ḣ0t

)
.

After the delay, i.e., after time d, the nominal trajectoryNd is the same as a nominal
trajectory N from Sect. 3, translated by time d and by its position at time d given by
rd = rt(d) and hd = ht(d), and starting with vertical velocity ḣd = ḣ0 − add. As in
Sect. 3, we can now express the implicit formulation of the safe region:

∀t.∀rt.∀ht.
(
(rt, ht) ∈ Nd → |r − rt| > rp ∨ h− ht < −hp

)
Symmetrically, the reasoning of this section extends to the case where w = −1. More-
over, we can handle cases where d < 0, i.e., after the pilot has reacted, by replacing d
by max(0, d). The generalized implicit formulation of the safe region is given as Dimpl

in Fig. 5. Note that it involves the expression A(t−max(0, d), ht−hd, ḣd) from Fig. 3
capturing the implicit safe region of Sect. 3 translated by time max(0, d), vertical height
hd, and starting at vertical speed ḣd. It is proved correct in KeYmaera.
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Theorem 2 (Correctness of delayed safe regions). The dL formula given in Eq. (4) is
valid. That is as long as the advisories obey formula Dimpl there will be no NMAC.

Similarly as in Sect. 4, we determine an explicit formulation of the safe region, called
Dexpl in Fig. 5 based on Fig. 3, and prove it correct in KeYmaera.

Lemma 2 (Correctness of delayed explicit safe regions). If w = −1 or w = +1,
rp ≥ 0, hp > 0, rv ≥ 0, ar > 0, ad ≥ 0, dp ≥ 0 and d` ≥ 0 then the two conditions
Dimpl(r, h, ḣ0, d) and Dexpl(r, h, ḣ0, d) are equivalent.

5 Reduction from 3D Dynamics to 2D Dynamics

In this section, we show that, with respect to our assumptions, any 3-dimensional en-
counter (Sect. 2) can be reduced to a 2-dimensional encounter (Sect. 3) without loss of
generality. This is done using a change of reference frame and a dimension reduction.

For the sake of clarity, let us use a reference frame (O,~i,~j,~k) fixed to the ownship
(O). In this reference frame, the position of an intruder I is represented by the tuple
(x, y, h), and the differential equation system that governs its motion is given by ẋ =
rx, ẏ = ry , ḧ = a, where rx, ry and a remain constant as time evolves. Therefore, the
motion of the encounter can be decoupled into a 2-dimensional horizontal encounter in
the reference frame (O,~i,~j) (horizontal plane) and a 1-dimensional vertical encounter
in the reference frame (O,~k). In what follows, we reduce the horizontal encounter from
a 2-dimensional motion to a 1-dimensional motion, thereby simplifying the problem
conceptually and computationally by reducing its number of variables.

Fig. 6 depicts a top view of a generic encounter. We denote by ~r the position, and
~rv the velocity, of the intruder relative to the ownship, and by rv ≥ 0 the norm of ~rv .

O

I

~r

−~rv

~i

~j

~i′
~j′

O′
s

n

Fig. 6. Top view of the two reference frames

First suppose rv > 0. The idea is
to choose a reference frame (O′,~i′,~j′)

in which one axis ~i′ is aligned with ~rv ,
such that no relative motion happens in
the other direction ~j′. Its fixed center O′

is defined as the orthogonal projection of
point O on the direction of ~rv . The unit
vector~i′ is defined as ~rv

rv
, and ~j′ is a unit

such that (O′,~i′,~j′) is positively oriented.
Let ~v|O (resp. ~v|O′ ) denote the coordi-

nates of a vector ~v relative to the reference
frame (O,~i,~j) (resp. (O′,~i′,~j′)). Then, the coordinates for ~r and ~rv are: ~r|O = (x, y),
~rv|O = (rx, ry), ~r|O′ = (s, n) and ~rv|O′ = (−rv, 0). The scalar product ~r · ~rv and the
cross product ~r × ~rv are independent of the horizontal reference frame, therefore:

xrx + yry = −srv xry − yrx = nrv (5)

Given rx and ry , Eqns. (5) imply that the coordinates (x, y) are uniquely determined
by the choice of (s, n), as long as rv 6= 0 (using r2v = r2x + r2y). For any 2-dimensional
configuration, the encounter can thus be considered a head-on encounter where s plays
the role of r and where a new puck radius, denoted sp, plays the role of rp.
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Table 2. Summary of the points of the state space at which we examined ACAS X

Range Relative speed Angle Relative Vertical rates Previous
r (ft) rv (ft/s) θv (degrees) altitude h (ft) ḣ0, ḣ1 (ft/s) advisory

Min value 1,500 100 180◦ -4,000 -41.67 None
Max value 200,000 2,200 180◦ 4,000 41.67 None
Number of values 80 10 1 33 132 1

Let us now determine the radius sp of the dimension-reduced encounter, and prove
that the absence of NMAC in (O,~i,~j)—characterized by r2 > r2p—is equivalent to the
absence of NMAC in (O′,~i′,~j′)—characterized by s2 > s2p. Using (5):

r2vr
2 = r2v(x

2 + y2) = (xrx + yry)
2 + (xry − yrx)2 = r2v(s

2 + n2) .

Since rv 6= 0, this implies r2 = s2+n2. Therefore, r2 > r2p if and only if s2+n2 > r2p
or equivalently s2 > r2p − n2. If r2p − n2 < 0, the direction of the vector ~rv does not
intersect the puck, the inequality s2 > r2p−n2 is trivially true, and the encounter is safe.
If r2p−n2 ≥ 0, we choose the new puck radius sp for the dimension-reduced encounter
as sp =

√
rp2 − n2 ≥ 0, and the safety condition in (O′,~i′,~j′) becomes s2 ≥ s2p.

When θv = 180◦, one has s = r, n = 0 and sp = rp as in Sect. 3–4.
As the encounter evolves in (O,~i,~j) along ẋ = rx, ẏ = ry , its dimension-reduced

version evolves in (O′,~i′,~j′) along the differential equations ṡ = −rv, ṅ = 0, obtained
by differentiating Eqns. (5) and canceling rv . The following proposition, proved in
KeYmaera, combines both dynamics and shows that the absence of an NMAC of radius
rp in (O,~i,~j) is equivalent to the absence of an NMAC of radius sp in (O′,~i′,~j′).

Proposition 1 (Horizontal Reduction). The following dL formula is valid(
xrx + yry = −srv ∧ xry − yrx = nrv ∧ x2 + y2 = n2 + s2 ∧ r2v = r2x + r2y

)
→ [ẋ = rx, ẏ = ry, ṡ = −rv, ṅ = 0]

(
x2 + y2 > r2p ↔ s2 > r2p − n2

)
(6)

Observe that the horizontal NMAC condition in (O′,~i′,~j′) only depends on the change
of one variable rather than two. The proposition also applies to the special case rv = 0.
In this case the origin O′ is no longer defined, and Eqns. (5) are trivially true. The
variables s and n are constants (ṡ = 0, ṅ = 0), their initial values are only restricted by
the condition n2 + s2 = x2 + y2 in the assumption of the proposition, but they are not
unique. When the relative position between the two aircraft does not evolve over time,
if the intruder is at a safe distance initially, the encounter is still safe for all time.

6 Initial Examination of the Safety of ACAS X

In this section, we use Theorem 1 to check the safety of advisories given by ACAS X.
We focus on Run 12 (July 2014) of the optimized logic tables, a core component of
ACAS X. The full policy of the system is built on these lookup tables and incorpo-
rates additional components to handle various operational scenarios. We compare the
ACAS X table to the explicit regions where the pilot reacts immediately (Sect. 3). For
a given initial state of an encounter, we query the first advisory issued by ACAS X
and check its safety as identified in Theorem 1. In a real scenario, ACAS X could later
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Fig. 7. Original ownship path (cyan) and intruder path (red) vs. ownship responding to a do-not-
climb (DNC) advisory issued by the ACAS X tables in starting state: r = 4,000 ft, rv = 200 ft/s,
θv = 180◦, h = 600 ft, ḣ0 = 1,980 ft/min, ḣ1 = −1,500 ft/min.

strengthen or reverse the first advisory as the encounter evolves. But the safety of the
first advisory is critical from an operational prospective as later changes are undesirable.

Our initial analysis considers a nominal set of discrete states—summarized in Ta-
ble 2—of the ACAS X MDP model where no advisory has yet been issued. All com-
pared states are head-on encounters: in a sense, they are the most obviously dangerous
configurations. For those states, the ACAS X advisories are compared against the safe
regions stated in Fig. 3. Overall, 4,461,600 discrete states were examined, among which
44,306 states (1.2%) did not meet the conditions of Fig. 3: 11,524 of these were unre-
solvable, i.e., the intruder was too close for any advisory to avoid NMAC; while 32,782
could have been resolved with a different safe advisory that satisfies Theorem 1.

Our analysis led to the identification of unexpected behavior in the ACAS X lookup
tables. In some cases, the ACAS X advisory seems to induce an NMAC (Fig. 7), i.e.,
if the initial advisory is not strengthened or reverted later, an NMAC will occur. In
other cases, the advisory does not seem to have any benefit, that is flying at vertical
rates disallowed by the advisory would actually avoid NMAC while not all allowed
vertical rates are safe. Of course, such unsafe advisories would be disallowed by our
safe regions. Notice that these behaviors are not necessarily all deemed undesirable,
as ACAS X tries to minimize alerting the pilot unless it has to do so; for some cases,
ACAS X will strengthen the advisory later and hence does not issue a disruptive alert
immediately. Fig. 7 depicts a typical example where the ACAS X advisory induces an
NMAC. The ownship is flying from the left and the intruder from the right. As time
counts down, the intruder evolves towards the ownship and an NMAC happens at t = 0.
The original path of the ownship does not lead to an NMAC. However, ACAS X gives a
Do-Not-Climb advisory. If the pilot, following this advisory, decides to stop climbing,
its trajectory will cause an NMAC. (Other examples are in Technical Report [10].)

The development of the safe regions gave an insight into possible improvements for
the ACAS X system. Although we are not analyzing the complete system, nor the subse-
quent advisories, we automatically pointed out some subregions of the state space worth
looking at. Some of those problems were independently identified by the ACAS X team
using simulation-based testing, and will be addressed in subsequent revisions of the sys-
tem. When extended to check contiguous regions of the state space, our approach will
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have the potential for a complete analysis of the system over all potential encounter
configurations, thereby reducing vulnerability to the sampling of encounter scenarios.

7 Related Work

Kochenderfer and Chryssanthacopoulos [12] describe the design of the ACAS X lookup-
tables. Their principled approach, based on optimizing an MDP, guarantees the selec-
tion of optimal advisories according to a cost model. The state space and dynamics are
discretized. Their notion of optimality depends on costs assigned to various events.

Von Essen and Giannakopoulou [3] use probabilistic model-checking to analyze
an MDP based on [12]. They investigate the probability of several undesirable events
occurring. Because they ostensibly analyze an MDP, their work inherits many of the as-
sumptions of ACAS X, including discretized dynamics. Their analysis depends heavily
on the MDP considered and thus needs to be redone on every version of ACAS X.

Lygeros and Lynch [16] use hybrid techniques to formally verify the TCAS conflict
resolution algorithms. They assume—rather than prove—that TCAS ends up in a state
where one aircraft has a climbing advisory and the other a descending advisory. They
then prove (by hand) a lower bound on the vertical separation of both aircraft at the point
of closest approach. In contrast, we do not assume anything on ACAS X’s advisories.

Holland et al. [9] and Chludzinski [1] simulate large numbers of encounters, includ-
ing tracks from recorded flight data, to evaluate the performance of ACAS X. These
simulations account for high-fidelity details of an encounter, but they only cover a finite
set of the continuous state space with no formal guarantees.

Tomlin et al. [22], Platzer and Clarke [20], Loos et al. [15] and more recently Ghor-
bal et al. [8] use hybrid systems approaches to design safe horizontal maneuvers for
collision avoidance. Dowek et al. [2] and Galdino et al. [7] describe and verify in the
PVS theorem prover a collision avoidance system of their design called KB3D.

Overall, our approach is different from previous complementary work in that:
– unlike [3,12], we rely on an independent model from the one used to design ACAS X;
– unlike [2,7,8,15,20,22] we analyze an independent industrial system and not a safe-

by-design system;
– unlike [2,3,7] our analysis uses realistic, continuous dynamics;
– unlike [16,22] we provide universal safe regions that can be reused for new versions

of ACAS X or even for new systems;
– unlike [1,9,11,16,22], we provide mechanized proofs of correctness of our model.

8 Conclusion and Future Work

We developed a general strategy for analyzing the safety of complicated, real-world
collision avoidance systems, and applied it to ACAS X. Our strategy identifies safe
regions where an advisory is proved to always keep the aircraft clear of NMAC, under
some assumptions. We identified states where ACAS X is provably safe, and fed others
showing unexpected behaviors back to the ACAS X development team. The identified
safe regions are independent from the version of ACAS X and can thus be reused for
future versions. In future work, we plan to extend our hybrid model to account for
curved trajectories of both aircraft as well as vertical acceleration of the intruder.



A Formally Verified Hybrid System for ACAS X 35

Acknowledgments. The authors would like to warmly thank Stefan Mitsch and Jan-
David Quesel for their support of the KeYmaera tool. The authors would also like to
thank Jeff Brush, Jessica Holland, Robert Klaus, Barbara Kobzik-Juul, Mykel Kochen-
derfer, Ted Londner, Sarah Loos, Ed Morehouse, Wes Olson, Michael Owen, Joshua
Silbermann, Neal Suchy, and the ACAS X development team for interesting remarks.

References

1. Chludzinski, B.J.: Evaluation of TCAS II version 7.1 using the FAA fast-time encounter
generator model. Tech. Rep. ATC-346, MIT Lincoln Laboratory (April 2009)
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