
A method for invariant generation for
polynomial continuous systems

Andrew Sogokon 1 Khalil Ghorbal 2 Paul B. Jackson 1

André Platzer 2

1Laboratory for Foundations of Computer Science, University of Edinburgh

2Computer Science Department, Carnegie Mellon University

VMCAI’16, St. Petersburg, Florida
18th January, 2018

Continuous systems

Continuous systems describe the continuous state evolution inside operating
modes in hybrid systems (HS).

They are given by systems of ordinary differential equations (ODEs) defined on
Rn and evolving under constraints, i.e.

ẋ1 = f1(~x),
ẋ2 = f2(~x),

...

ẋn = fn(~x),
~x ∈ H ⊆ Rn.

We write this more concisely in vector form as ~̇x = f(~x) & H .

When the system is initialized in a state ~x0 ∈ H , the (unique) solution gives
the state of the system at time t ∈ R, which is written as ϕt(~x0) ∈ Rn.

Continuous systems (example)

Consider the Van der Pol system.

One may impose some evolution constraint, e.g. the fourth quadrant of R2.

ẋ1 = x2,

ẋ2 =
(
1− x2

1
)
x2 − x1,

H ≡ x1 ≤ 0 ∧ x2 ≥ 0.

Continuous systems (example)

Consider the Van der Pol system.

One may impose some evolution constraint, e.g. the fourth quadrant of R2.

ẋ1 = x2,

ẋ2 =
(
1− x2

1
)
x2 − x1,

H ≡ x1 ≤ 0 ∧ x2 ≥ 0.

Continuous systems (example)

Consider the Van der Pol system.

One may impose some evolution constraint, e.g. the fourth quadrant of R2.

ẋ1 = x2,

ẋ2 =
(
1− x2

1
)
x2 − x1,

H ≡ x1 ≤ 0 ∧ x2 ≥ 0.

Safety assertions

Interested in verifying safety assertions of form

Starting from ψ, by continuously evolving inside H for any amount of
time, the system remains within the safe region φ.

where
ψ, φ are quantifier-free formulas of real arithmetic describing regions of Rn
~̇x = f(~x) & H is a system of ODEs under some evolution constraint H .

In FOL:

∀ ~x ∈ ψ. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (~x) ∈ H)→ ϕt(~x) ∈ φ

In differential dynamic logic (dL):

ψ → [~̇x = f(~x) & H] φ

As a (continuous) Hoare triple:

{ψ} ~̇x = f(~x) & H {φ}

Safety assertions

Interested in verifying safety assertions of form

Starting from ψ, by continuously evolving inside H for any amount of
time, the system remains within the safe region φ.

where
ψ, φ are quantifier-free formulas of real arithmetic describing regions of Rn
~̇x = f(~x) & H is a system of ODEs under some evolution constraint H .

In FOL:

∀ ~x ∈ ψ. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (~x) ∈ H)→ ϕt(~x) ∈ φ

In differential dynamic logic (dL):

ψ → [~̇x = f(~x) & H] φ

As a (continuous) Hoare triple:

{ψ} ~̇x = f(~x) & H {φ}

Safety assertions

Interested in verifying safety assertions of form

Starting from ψ, by continuously evolving inside H for any amount of
time, the system remains within the safe region φ.

where
ψ, φ are quantifier-free formulas of real arithmetic describing regions of Rn
~̇x = f(~x) & H is a system of ODEs under some evolution constraint H .

In FOL:

∀ ~x ∈ ψ. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (~x) ∈ H)→ ϕt(~x) ∈ φ

In differential dynamic logic (dL):

ψ → [~̇x = f(~x) & H] φ

As a (continuous) Hoare triple:

{ψ} ~̇x = f(~x) & H {φ}

Safety assertions

Interested in verifying safety assertions of form

Starting from ψ, by continuously evolving inside H for any amount of
time, the system remains within the safe region φ.

where
ψ, φ are quantifier-free formulas of real arithmetic describing regions of Rn
~̇x = f(~x) & H is a system of ODEs under some evolution constraint H .

In FOL:

∀ ~x ∈ ψ. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (~x) ∈ H)→ ϕt(~x) ∈ φ

In differential dynamic logic (dL):

ψ → [~̇x = f(~x) & H] φ

As a (continuous) Hoare triple:

{ψ} ~̇x = f(~x) & H {φ}

Proof method for safety verification (continuous invariants)

Definition (Continuous invariant)

A set I ⊆ Rn is a continuous invariant for ~̇x = f(~x) & H if and only if

∀ ~x ∈ I. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (~x) ∈ H)→ ϕt(~x) ∈ I.

Continuous invariants are used in safety verification

(Safety) ` ψ → I `

I → [~̇x = f(~x) & H] I

` I → φ

` ψ → [~̇x = f(~x) & H] φ

Caveat: ϕt is often impossible to obtain in closed-form. Instead, it is possible
to work with the ODEs directly, i.e. only work with f instead of ϕt.

It is decidable to check whether the invariance assertion below is true

I → [~̇x = f(~x) & H] I

if I, H are semi-algebraic and f polynomial (Liu, Zhan, Zhao, EMSOFT’11).

Proof method for safety verification (continuous invariants)

Definition (Continuous invariant)

A set I ⊆ Rn is a continuous invariant for ~̇x = f(~x) & H if and only if

∀ ~x ∈ I. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (~x) ∈ H)→ ϕt(~x) ∈ I.

Continuous invariants are used in safety verification

(Safety) ` ψ → I ` I → [~̇x = f(~x) & H] I ` I → φ

` ψ → [~̇x = f(~x) & H] φ

Caveat: ϕt is often impossible to obtain in closed-form. Instead, it is possible
to work with the ODEs directly, i.e. only work with f instead of ϕt.

It is decidable to check whether the invariance assertion below is true

I → [~̇x = f(~x) & H] I

if I, H are semi-algebraic and f polynomial (Liu, Zhan, Zhao, EMSOFT’11).

Proof method for safety verification (continuous invariants)

Definition (Continuous invariant)

A set I ⊆ Rn is a continuous invariant for ~̇x = f(~x) & H if and only if

∀ ~x ∈ I. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (~x) ∈ H)→ ϕt(~x) ∈ I.

Continuous invariants are used in safety verification

(Safety) ` ψ → I ` I → [~̇x = f(~x) & H] I ` I → φ

` ψ → [~̇x = f(~x) & H] φ

Caveat: ϕt is often impossible to obtain in closed-form. Instead, it is possible
to work with the ODEs directly, i.e. only work with f instead of ϕt.

It is decidable to check whether the invariance assertion below is true

I → [~̇x = f(~x) & H] I

if I, H are semi-algebraic and f polynomial (Liu, Zhan, Zhao, EMSOFT’11).

Proof method for safety verification (continuous invariants)

Definition (Continuous invariant)

A set I ⊆ Rn is a continuous invariant for ~̇x = f(~x) & H if and only if

∀ ~x ∈ I. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (~x) ∈ H)→ ϕt(~x) ∈ I.

Continuous invariants are used in safety verification

(Safety) ` ψ → I ` I → [~̇x = f(~x) & H] I ` I → φ

` ψ → [~̇x = f(~x) & H] φ

Caveat: ϕt is often impossible to obtain in closed-form. Instead, it is possible
to work with the ODEs directly, i.e. only work with f instead of ϕt.

It is decidable to check whether the invariance assertion below is true

I → [~̇x = f(~x) & H] I

if I, H are semi-algebraic and f polynomial (Liu, Zhan, Zhao, EMSOFT’11).

Hints at why LZZ works

An induction principle for R

1. ∀t > 0. (∃e ∈ (0 . . . t]. ∀t′ ∈ (t− e . . . t). P (t′))→ P (t)
2. ∀t ≥ 0. P (t)→ ∃e > 0. ∀t′ ∈ (t . . . t+ e). P (t′)
3. P (0)
∀t ≥ 0. P (t)

Want to show p ≥ 0→ [~̇x = f(~x) & H] p ≥ 0
Sufficient to show that when p = 0 at time t, p is non-negative in some
finite open interval after t.

Consider Taylor series for p:

p(t) = p(0) + p′(0)t+ 1
2p

′′(0)t2 + . . .

and look either for all pi(0) derivatives zero or first non-zero derivative
positive.

Only have to check finite many derivatives by an ascending chain
condition argument

Invariant generation

All premises in the proof rule (Safety) are decidable if sets ψ, φ, H, I are
semi-algebraic and f polynomial.

(Safety)` ψ → I ` I → [~̇x = f(~x) & H] I ` I → φ

` ψ → [~̇x = f(~x) & H] φ

Problem: How can we find an appropriate continuous invariant I?

Semi-algebraic continuous invariant templates require fresh variables
(not practical due to the complexity of real quantifier elimination).

Safety verification by computing discrete abstractions of continuous
systems (implicitly) works with continuous invariants and does not
require fresh variables . . .

Invariant generation

All premises in the proof rule (Safety) are decidable if sets ψ, φ, H, I are
semi-algebraic and f polynomial.

(Safety)` ψ → I ` I → [~̇x = f(~x) & H] I ` I → φ

` ψ → [~̇x = f(~x) & H] φ

Problem: How can we find an appropriate continuous invariant I?

Semi-algebraic continuous invariant templates require fresh variables
(not practical due to the complexity of real quantifier elimination).

Safety verification by computing discrete abstractions of continuous
systems (implicitly) works with continuous invariants and does not
require fresh variables . . .

Discrete abstraction

Given a continuous system and a set of polynomials A, e.g. A = {p1, p2},
partition the state space into regions where the polynomials do not
change sign to obtain the discrete states (below, left), denoted S, and

only connect neighbouring discrete states with discrete transitions to
obtain a neighbouring transition relation Tn ⊂ S × S (below, right).

1

23

4

6

7

9

5

5

4

7

8

8

1 3

4 5 6

2

7
8

9

Exact discrete abstraction

Construct using polynomials p1, . . . pm

States si are non-empty intersections

H ∩ p1 ∼1 0 ∩ · · · ∩ pm ∼m 0

where ∼i∈ {<,=, >} for 1 ≤ i ≤ m.

Add transition si −→ sj if and only if the system may evolve continuously
from si into sj without leaving si ∪ sj .

∃~x. si ∧ 〈 ~̇x = f(~x) & (si ∨ sj) 〉 sj

Or equivalently:

¬(si → [~̇x = f(~x) & (si ∨ sj)] si)

which is decidable by LZZ procedure.

Exact discrete abstraction

Construct using polynomials p1, . . . pm

States si are non-empty intersections

H ∩ p1 ∼1 0 ∩ · · · ∩ pm ∼m 0

where ∼i∈ {<,=, >} for 1 ≤ i ≤ m.

Add transition si −→ sj if and only if the system may evolve continuously
from si into sj without leaving si ∪ sj .

∃~x. si ∧ 〈 ~̇x = f(~x) & (si ∨ sj) 〉 sj

Or equivalently:

¬(si → [~̇x = f(~x) & (si ∨ sj)] si)

which is decidable by LZZ procedure.

Exact discrete abstraction

Construct using polynomials p1, . . . pm

States si are non-empty intersections

H ∩ p1 ∼1 0 ∩ · · · ∩ pm ∼m 0

where ∼i∈ {<,=, >} for 1 ≤ i ≤ m.

Add transition si −→ sj if and only if the system may evolve continuously
from si into sj without leaving si ∪ sj .

∃~x. si ∧ 〈 ~̇x = f(~x) & (si ∨ sj) 〉 sj

Or equivalently:

¬(si → [~̇x = f(~x) & (si ∨ sj)] si)

which is decidable by LZZ procedure.

Exact discrete abstraction (example)

Exact abstractions do not suffer from unsoundness and coarseness issues
found in some other abstraction methods for non-linear systems.

For example, let the continuous system be given by ẋ1 = 1, ẋ2 = 0 and
consider two polynomials for abstraction A = {x2

1 + x2, x2 − x2
1}.

x1

x 2

The intersecton of the two curves x2
1 + x2 = 0 ∧ x2 − x2

1 = 0 is precisely the
point at the origin, (0, 0). Clearly not an invariant set...

Exact discrete abstraction (example)

Figure: Abstraction (S, T∼) using method by Tiwari, FMSD 2008.

Figure: Exact abstraction (S, T).

Exact discrete abstraction (example)

Figure: Abstraction (S, T∼) using method by Tiwari, FMSD 2008.

Figure: Exact abstraction (S, T).

Invariant generation using exact abstraction

Given a continuous system ~̇x = f(~x) & H , an initial set ψ, and a set of
polynomials A, want to compute the strongest invariant I in the abstraction
generated by A.

Basic

Establish all non-empty states si.
Construct full transition relation

Initial states A0 are all those with non-empty intersection with ψ

Compute invariant I as all abstract states reachable from A0.

LazyReach

As Approach 1, but explore state space from A0 lazily.

State space explosion problem
The main problem with using discrete abstraction for invariant generation is
scalability. The number of discrete states and transitions grows exponentially
with the number of polynomials |A|.

What can be done?

Given: continuous system ~̇x = f(~x) & H , an initial set ψ, and a set of
polynomials A.

Challenge: refine the constraint H in a way that some polynomials can be
removed from A without making the abstraction any coarser.

We address this problem by employing sound proof rules for safety
verification.

State space explosion problem
The main problem with using discrete abstraction for invariant generation is
scalability. The number of discrete states and transitions grows exponentially
with the number of polynomials |A|.

What can be done?

Given: continuous system ~̇x = f(~x) & H , an initial set ψ, and a set of
polynomials A.

Challenge: refine the constraint H in a way that some polynomials can be
removed from A without making the abstraction any coarser.

We address this problem by employing sound proof rules for safety
verification.

State space explosion problem
The main problem with using discrete abstraction for invariant generation is
scalability. The number of discrete states and transitions grows exponentially
with the number of polynomials |A|.

What can be done?

Given: continuous system ~̇x = f(~x) & H , an initial set ψ, and a set of
polynomials A.

Challenge: refine the constraint H in a way that some polynomials can be
removed from A without making the abstraction any coarser.

We address this problem by employing sound proof rules for safety
verification.

Proof rules. Differential Weakening (Platzer, 2008)
The DW rule says that it is always sound to conclude system safety if the
evolution constraint H contains no unsafe states.

(DW) H → φ

ψ → [~̇x = f(~x) & H] φ

Obvious, since in this case every reachable state is safe.

If this rule applies, then one may forget about computing an abstraction and
simply return the constraint H as the continuous invariant.

Proof rules. Differential Cut (Platzer, 2008)
The DC rule says that it is always sound to refine the evolution domain H by
some continuous invariant F , provided that it includes the initial set ψ, i.e.

(DC)ψ → [~̇x = f(~x) & H]F ψ → [~̇x = f(~x) & H ∧ F]φ
ψ → [~̇x = f(~x) & H] φ

For example, consider the Van der Pol system below where H ≡ x1 ≥ 0.
Apply DC with F ≡ x2 > 0 (below, right) and then prove safety using DW.

x1

x 2

x1

x 2

N.B. the polynomial x2 is sign-invariant in the refined constraint. If x2 ∈ A,
then it can be removed because x2 cannot partition the refined constraint.

Proof rules. Differential Cut (Platzer, 2008)
The DC rule says that it is always sound to refine the evolution domain H by
some continuous invariant F , provided that it includes the initial set ψ, i.e.

(DC)ψ → [~̇x = f(~x) & H]F ψ → [~̇x = f(~x) & H ∧ F]φ
ψ → [~̇x = f(~x) & H] φ

For example, consider the Van der Pol system below where H ≡ x1 ≥ 0.
Apply DC with F ≡ x2 > 0 (below, right) and then prove safety using DW.

x1

x 2

x1

x 2

N.B. the polynomial x2 is sign-invariant in the refined constraint. If x2 ∈ A,
then it can be removed because x2 cannot partition the refined constraint.

Differential divide and conquer (DDC)

Differential divide and conquer (DDC) works to split the safety assertion into
3 independent safety assertions about smaller systems. DDC requires a
polynomial p in order to partition the constraint H and the initial set ψ.

Proposition

The proof rule DDC given below (with five premises) is sound.

(DDC)

p = 0→ [~̇x = f(~x) & H] p = 0
p = 0→ [~̇x = −f(~x) & H] p = 0

ψ ∧ p > 0→ [~̇x = f(~x) & H ∧ p > 0] φ
ψ ∧ p = 0→ [~̇x = f(~x) & H ∧ p = 0] φ
ψ ∧ p < 0→ [~̇x = f(~x) & H ∧ p < 0] φ

ψ → [~̇x = f(~x) & H] φ

The set of real zeros of p, i.e. p = 0 is required to be a continuous invariant in
both positive and negative time. This means that there can be no continuous
flow between the three regions p > 0, p = 0 and p < 0 within the system.

Differential divide and conquer (DDC)

Differential divide and conquer (DDC) works to split the safety assertion into
3 independent safety assertions about smaller systems. DDC requires a
polynomial p in order to partition the constraint H and the initial set ψ.

Proposition

The proof rule DDC given below (with five premises) is sound.

(DDC)

p = 0→ [~̇x = f(~x) & H] p = 0
p = 0→ [~̇x = −f(~x) & H] p = 0

ψ ∧ p > 0→ [~̇x = f(~x) & H ∧ p > 0] φ
ψ ∧ p = 0→ [~̇x = f(~x) & H ∧ p = 0] φ
ψ ∧ p < 0→ [~̇x = f(~x) & H ∧ p < 0] φ

ψ → [~̇x = f(~x) & H] φ

The set of real zeros of p, i.e. p = 0 is required to be a continuous invariant in
both positive and negative time. This means that there can be no continuous
flow between the three regions p > 0, p = 0 and p < 0 within the system.

Invariant generation algorithms DWC and DWCL

DWC

1 Apply DW, DC and DDC exhaustively.

2 This results in two collections C1 and C2 of non-overlapping subsets of
the original H , where:

each H ′ ∈ C1 is from a DW application and satisfies H ′ ⊆ φ,
each member of C2 is from a DC or DDC application.
Nothing further known about them.

3 Return formula for C1 ∪ C2

DWCL

As DWC, but in step 3, further cut down each element of C1 by
applying LazyReach using polynomials not removed by DC or DDC
rules.

Invariant generation example (DWCL)

ẋ1 = 2x1
(
x2

1 − 3
) (

4x2
1 − 3

) (
x2

1 + 21x2
2 − 12

)
,

ẋ2 = x2
(

35x6
1 + 105x2

2x
4
1 − 315x4

1 − 63x4
2x

2
1 + 378x2

1 + 27x6
2 − 189x4

2 + 378x2
2 − 216

)
,

H = R2,

ψ ≡ (x1 − 1) 2 + x2
2 <

1
4
,

φ ≡ x2
1 + x2

2 < 8.

The algorithm DWCL generates the following continuous invariant in under 2 minutes
(using 7 polynomials from the post-condition and the factors of the RHS of the ODEs) :((

35x6
1 + 105

(
x2

2 − 3
)
x4

1 + 27
(
x6

2 − 7x4
2 + 14x2

2 − 8
)
< 63x2

1
(
x4

2 − 6
)
∨ x2 = 0

)
∧ 4x2

1 = 3 ∧ x1 > 0
)
∨

(
x2 = 0 ∧

(
0 < x1 <

√
3

2
∨
√

3
2

< x1 <
√

3
))

∨
(

35x6
1 + 105

(
x2

2 − 3
)
x4

1 + 27
(
x6

2 − 7x4
2 + 14x2

2 − 8
)
< 63x2

1
(
x4

2 − 6
)

∧ x2
1 + 21x2

2 < 12 ∧
(

0 < x1 <

√
3

2
∨

(
2x1 >

√
3 ∧ x2

1 < 3 ∧ x2 6= 0
)))

.

Invariant generation example (DWCL)

ẋ1 = 2x1
(
x2

1 − 3
) (

4x2
1 − 3

) (
x2

1 + 21x2
2 − 12

)
,

ẋ2 = x2
(

35x6
1 + 105x2

2x
4
1 − 315x4

1 − 63x4
2x

2
1 + 378x2

1 + 27x6
2 − 189x4

2 + 378x2
2 − 216

)
,

H = R2,

ψ ≡ (x1 − 1) 2 + x2
2 <

1
4
,

φ ≡ x2
1 + x2

2 < 8.

The algorithm DWCL generates the following continuous invariant in under 2 minutes
(using 7 polynomials from the post-condition and the factors of the RHS of the ODEs) :((

35x6
1 + 105

(
x2

2 − 3
)
x4

1 + 27
(
x6

2 − 7x4
2 + 14x2

2 − 8
)
< 63x2

1
(
x4

2 − 6
)
∨ x2 = 0

)
∧ 4x2

1 = 3 ∧ x1 > 0
)
∨

(
x2 = 0 ∧

(
0 < x1 <

√
3

2
∨
√

3
2

< x1 <
√

3
))

∨
(

35x6
1 + 105

(
x2

2 − 3
)
x4

1 + 27
(
x6

2 − 7x4
2 + 14x2

2 − 8
)
< 63x2

1
(
x4

2 − 6
)

∧ x2
1 + 21x2

2 < 12 ∧
(

0 < x1 <

√
3

2
∨

(
2x1 >

√
3 ∧ x2

1 < 3 ∧ x2 6= 0
)))

.

Invariant generation example (DWCL)

ẋ1 = 2x1
(
x2

1 − 3
) (

4x2
1 − 3

) (
x2

1 + 21x2
2 − 12

)
,

ẋ2 = x2
(

35x6
1 + 105x2

2x
4
1 − 315x4

1 − 63x4
2x

2
1 + 378x2

1 + 27x6
2 − 189x4

2 + 378x2
2 − 216

)
,

H = R2,

ψ ≡ (x1 − 1) 2 + x2
2 <

1
4
,

φ ≡ x2
1 + x2

2 < 8.

Benchmarks

We have collected a set of 100 safety verification problems featuring mainly
non-linear polynomial continuous systems. Most of the problems are planar
or 3-dimensionsional, but a few problems have up to 5 variables.

ODEs mainly originate from examples found in textbooks on dynamical
systems, papers on the qualitative theory of ODEs and safety verification of
hybrid systems.

We have compared the performance of our algorithms using 4 different
sources of polynomials A for the abstraction:

1 Irreducible factors of the polynomials in the RHS of the ODEs and the
post-condition φ,

2 As in (1), together with their derivatives (doubling the size of A),

3 As in (1), together with polynomials whose real roots define algebraic
invariants for the system at hand (generated using the method in
Ghorbal & Platzer, TACAS’14),

4 As in (2), together with polynomials that define algebraic invariants.

Benchmarks

Factors of the polynomials in the RHS of ODEs and the post-condition.

Benchmarks

Factors of the polynomials in the RHS of ODEs and the post-condition + their
derivatives.

Benchmarks

Factors of the polynomials in the RHS of ODEs and the post-condition +
algebraic invariants (Ghorbal & Platzer, TACAS’14).

Benchmarks

Factors of the polynomials in the RHS of ODEs and the post-condition +
algebraic invariants (Ghorbal & Platzer, TACAS’14) + their derivatives.

Observations & Challenges

Observations:

59 out of 100 safety verification problems could be solved.

DWC and DWCL scale far better than simply extracting reachable sets
from abstractions.

Polynomials with invariant 0 sets (varieties) are often useful for
abstraction. Zaki, Tahar & Bois, SMCAD’06 previously used Darboux
invariants.

Challenges:

Selecting “good” polynomials for abstraction is difficult.

Real arithmetic is expensive.

Conclusion

Exact abstractions of polynomial continuous systems.

Intuitively simple once one has a decision procedure for checking
semi-algebraic continuous invariants.

Remove unsoundness and coarseness issues found in earlier methods.

Invariant generation method for polynomial continuous systems.

Capable of extracting reachable sets of exact abstractions.

Scalability gains due to the use of sound proof rules.

Highly desirable in a theorem proving environment.

Future work:

Implementation in an theorem prover for hybrid systems

Applications to hybrid system verification

End.

Conclusion

Exact abstractions of polynomial continuous systems.

Intuitively simple once one has a decision procedure for checking
semi-algebraic continuous invariants.

Remove unsoundness and coarseness issues found in earlier methods.

Invariant generation method for polynomial continuous systems.

Capable of extracting reachable sets of exact abstractions.

Scalability gains due to the use of sound proof rules.

Highly desirable in a theorem proving environment.

Future work:

Implementation in an theorem prover for hybrid systems

Applications to hybrid system verification

End.

