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α ≡
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(
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{
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Monitor whether transitions from previous state ~x to next state ~x+ are consistent with
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Provable Monitor  Provable Sandbox 7

Sandboxed controller uses external controller when decision is safe, else uses verified
fallback. Detects non-compliant plants.

~x := ∗;
?φ(
~x+ := extCtrl
( ?ctrlMon(~x , ~x+)
∪ fallback );

~x :=~x+

~x+ := ∗
?plantMon(~x , ~x+);
~x :=~x+)∗

V := ∗; ε := ∗; d := ∗; t := ∗;
?d ≥ 0 ∧ V ≥ 0 ∧ ε ≥ 0;(

t+ := ∗; v+ := ∗; d+ := d ;
( ?ctrlMon(d , t, v , d+, t+, v+)
∪ t+ := 0; v+ := 0 );

t := t+; v := v+;
d+ := ∗; t+ := ∗;
?plantMon(d , t, v , d+, t+, v+);
d := d+; t := t+)∗



Intervals Make ctrlMon and plantMon Computable 8

Example: Check whether π < e, efficiently.
Solution: Conservative interval approximation

Example
Let νI = {pi 7→ [3, 4], e 7→ [2, 3]}, then

• pi <w e is false (⊥)

• pi <w e + 3 is true (>)

• pi <w e + 1 is a known unknown (U)
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Intervals Make ctrlMon and plantMon Computable 8

Example: Check whether π < e, efficiently.
Solution: Conservative interval approximation

Example
Let νI = {pi 7→ [3, 4], e 7→ [2, 3]}, then

• pi <w e is false (⊥)

• pi <w e + 3 is true (>)

• pi <w e + 1 is a known unknown (U)
When truth values can be unknown, resulting logic is 3-valued



Interval dL is 3-Valued ( Lukasiewicz) 9

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

ωI [(θ1 + θ2)] = [l1+̌w l2, u1+̂w u2] where ωI [(θi )] = [li , ui ]

ωI [(θ1<θ2)] =


> if ωI [(θi )] = (li , ui ) and u1 < l2
⊥ if ωI [(θi )] = (li , ui ) and l1 ≥ u2

U otherwise

(ωI , νI) ∈ [(α ∪ β)] iff (ωI , νI) ∈ [(α)] or (ωI , νI) ∈ [(β)]



Interval dL is a Sound Approximation 10

Theorem (Interval Soundness for Formulas)

• If ω ∈ ωI and ωI [(φ)]=> then ω ∈ [[φ]]
• If ω ∈ ωI and ωI [(φ)]=⊥ then ω /∈ [[φ]]
• No claims when ωI [(φ)]=U

Generalizes naturally to programs, but CakeML sandbox only runs simpler formula case



Sandbox HP Already Verified 11

V := ∗; ε := ∗; d := ∗; t := ∗; // ~x := ∗
?d ≥ 0 ∧ V ≥ 0 ∧ ε ≥ 0; // ?φ(

t+ := ∗; v+ := ∗; d+ := d ; // ~x+ := extCtrl
( ?ctrlMon(d , t, v , d+, t+, v+)
∪ t+ := 0; v+ := 0 ); // ~x+ := fallback

t := t+; v := v+; // ~x :=~x+

d+ := ∗; t+ := ∗; // ~x+ := ∗
?
(
0≤t+≤ε ∧ d+≥v(ε− t+)

)
; // ?plantMon(~x , ~x+)

d := d+; t := t+ // ~x :=~x+)∗



Verified CakeML Source is Generated 11

CakeML source incorporates external control, actuation, sensing

fun cmlSandbox state =
if not (stop ()) then

state.ctrl+:= extCtrl state;
state.ctrl := if intervalSem ctrlMon state = >

then state.ctrl+

else fallback state;
actuate state.ctrl;
state.sensors+:= sense ();
if intervalSem plantMon state = > then

Runtime.fullGC ();
state.sensors := state.sensors+;
cmlSandbox state

else violation "Plant Violation"



CakeML Sandbox is Sound 12

Theorem (Soundness for CakeML Sandbox, Main Case)
If
(
[{ω}], [{ν}]

)
∈ [{cmlSandbox}] then ([(ω)], [(ν)]) ∈ [(sandbox)]



CakeML Compiler Preserves Guarantees 13



Code Executed on GoPiGo Robot 14
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Proof Chain Justifies Transformations 15

ν |= ψ

⇑

(ω, ν) ∈ [[sandbox]]
dL (KeYmaera X)

Real arithmetic,
nondeterministic

⇑(
ωI , νI

)
∈ [(sandbox)]

dL (Isabelle/HOL)

Interval word arithmetic,
nondeterministic

⇑(
[{ω}], [{ν}]

)
∈ [{cmlSandbox}]

CakeML (HOL4)

Interval word arithmetic,
deterministic

⇑(
{|ω|}, {|ν|}

)
∈ {|CML(cmlSandbox)|}

ARM/x64

Interval word arithmetic,
machine-executable
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Isabelle/HOL Cross-Checks KeYmaera X 18

Problem: Later pipeline stages need understanding of dL semantics, which
KeYmaera X lacks

Solution: Import soundly into Isabelle/HOL from KeYmaera X

• Proof term exported from KeYmaera X, serialized
• Proof checker verified in Isabelle/HOL, extending [BRV+17]
• Executable checker code-generated [MO12]
• Scales to 100K’s of proof steps (≈6 seconds)
• Eliminates KeYmaera X core from trusted base!
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Isabelle/HOL → HOL4 Translation is Trusted 19

Isabelle/HOL Strength: Library Access
• Analysis libraries (absolute must for dL soundness)
• Machine word libraries (must for interval arithmetic)

Isabelle/HOL Weakness: Weaker Verified Compiler Support
• This is a problem: need to generate source code!

We jump to HOL4 for access to verified CakeML compiler:
• Manually translate Isabelle/HOL definitions to HOL4
• Justification: Similar logical foundation
• Could be automated in principle, see OpenTheory [Hur11]
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Future Work 20

Improve pipeline components:
• Reduce trusted base: OpenTheory, arithmetic witnesses in KeYmaera X
• Floating-point, mixed precision interval arithmetic
• Generalize proof-driven monitor synthesis

Exploit pipeline in case studies:
• UAVs
• High-speed robots
• Your favorite CPS
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