
c© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The original paper was
published in American Control Conference (ACC), 2012. IEEE, 2012. http://dx.doi.org/10.1109/ACC.2012.6315388

Using Theorem Provers to Guarantee Closed-Loop System Properties

Nikos Aréchiga†, Sarah M. Loos‡, André Platzer‡, Bruce H. Krogh†

†Department of Electrical and Computer Engineering {narechig|krogh}@ece.cmu.edu
‡Department of Computer Science {sloos|aplatzer}@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA 15213-3890

Abstract— This paper presents a new approach for leveraging
the power of theorem provers for formal verification to provide
sufficient conditions that can be checked on embedded control
designs. Theorem provers are often most efficient when using
generic models that abstract away many of the controller
details, but with these abstract models very general conditions
can be verified under which desirable properties such as safety
can be guaranteed for the closed-loop system. We propose
an approach in which these sufficient conditions are static
conditions that can be checked for the specific controller design,
without having to include the dynamics of the plant. We demon-
strate this approach using the KeYmaera theorem prover for
differential dynamic logic for two examples: an intelligent cruise
controller and a cooperative intersection collision avoidance
system (CICAS) for left-turn assist. In each case, safety of
the closed-loop system proved using KeYmaera provides static
sufficient conditions that are checked for the controller design.

I. Introduction

Formal methods for verification apply logical analysis to
well defined mathematical models to determine whether or
not mathematically precise specifications are satisfied. The
power of formal methods lies in the precision of the result:
correctness is guaranteed if a formal method concludes the
specification is satisfied, at least in so far as the model
correctly represents the system being analyzed. Tools that
implement formal methods are used regularly in the design
and analysis of digital circuits [8], and there are a growing
number of successful applications of formal methods in other
domains [17], [16]. The application of formal methods to
verify the correctness of automotive control system designs,
and control systems in general, has been limited, however,
for several reasons. Most tools used for control system
development do not use the same modeling formalisms that
are the foundation of the development of formal methods in
computer science. In particular, models for control design
typically include differential equations or other representa-
tions of continuous dynamics that do not arise in strictly
digital applications. Although the controller itself is usually
a digital system, specifications for control systems are for
the closed-loop system behavior, so it is the properties of
the combined digital and continuous dynamic system that
need to be evaluated, not just the input-output behavior of
the digital component.

Research in hybrid dynamic systems focuses on precisely
these types of systems that arise in control, that is, systems
with both discrete and continuous dynamics [7]. Tools for
formal analysis of hybrid systems [5], [6], [13], [14] cannot

deal directly with the complex models used for automotive
control system design, however. Consequently, to analyze
closed-loop system behavior formally, simplified models
need to be constructed for which the verification prob-
lem is tractable. If the simplified models are abstractions,
meaning the set of behaviors represented by the simplified
model include all possible behaviors of the complex model,
verifying the correctness of the simplified model implies
the correctness of the complex model. Thus, the common
proposal for applying formal methods to control systems (and
even digital systems) is to first construct an abstraction of the
system design and then formally verify the correctness of this
abstraction. Some automatic abstraction processes have been
proposed [4], [14].

This paper proposes a different approach to leveraging the
power of formal methods to guarantee the correctness of con-
trol system designs. Rather than constructing an abstraction
of a particular design, we propose that an abstraction be con-
structed that captures the possible behaviors of the closed-
loop system for an entire class of controllers. Theorem
proving is used to verify critical properties, such as safety,
for the closed-loop system, for any controller in this general
abstraction of possible controllers. The proof of correctness
takes into account the continuous dynamics of the plant being
controlled. To verify the correctness of a particular controller,
it is necessary to show only that the controller is in the class
of controllers represented by the abstraction used for formal
verification. This second step, verifying that the controller is
represented by the verification model, is considerably less
complex than verifying the closed-loop system is correct
because the plant dynamics do not need to be included. The
results from formal verification become a set of conditions
on the input-output behavior of the controller that need to be
checked. Provided these conditions are satisfied, the designer
is free to focus on other aspects of the design, such as
specifications for the transient response of the system.

The approach described above is similar in some respects
to the concept of refinement in software development, e.g.,
[1], where formal methods are used to verify the correctness
of the requirements specifications and then the implementa-
tion is constructed by“refining” the abstract model that has
been verified. The difference in our proposal for control sys-
tem verification is that the controller is a refinement of only
part of the closed-loop system that is verified formally. The
continuous dynamics that introduce much of the difficulty
in formal verification are not included in the part of the

http://dx.doi.org/10.1109/ACC.2012.6315388

controller
c(j), tc(j), juc(j), j

sensor
t k

control
t k network

delay: ds(i)
s(i):=
[x (i) t (i) i]

network
delay: dc(i)

uu(k), tu(k), k, jc(k)

plant sampling
x(t)

[xs(i),ts(i),i]

control
update

u(t)

Fig. 1. A control system with general network communication (see text
for signal definitions).

system that is “refined”. Refinement has been proposed in
other contexts or for special systems in the embedded domain
[2], [15], [3]. We make the refinement ideas constructive by
using theorem proving to obtain guarantees about the system
behavior.

The following section describes the proposed approach
more formally. Section III explains differential dynamic logic
and the hybrid system theorem prover KeYmaera, with which
properties of very general closed-loop computer-controlled
dynamic systems can be verified. We use KeYmaera proofs
to provide conditions on the input-output mapping realized
by the digital controller. We illustrate the proposed approach
for safety verification for two automotive control examples in
Sections IV and V, respectively: an intelligent cruise control
system and a cooperative intersection collision avoidance
system. The concluding section summarizes the contributions
of this paper and discusses directions for further research.

II. General Approach

We consider the general control system scenario illustrated
in Fig. 1. The plant is described by a continuous-time state
equation

ẋ = f (x, u), (1)

where x is the plant state and u is the control input. The
control input is generated by a sampled-data controller that
is connected to the plant via a sensor network that delivers
the sampled values from the sensors to the control computer
and a control network that delivers the control values from
the computer to the plant.

The signals shown in Fig. 1 are defined as follows. The
plant state is sampled at times 0 < ts(1) < ts(2) < · · · and the
sampled values of the state at these sample times are denoted
by xs(i) = x(ts(i)), i = 1, 2,1 At the ith sampling time,
the packet πs(i) = [xs(i), ts(i), i] is sent through the sensor
network to the controller. The controller receives these data
packets at times tc(1) < tc(2) < · · · , but because of the sensor
network delays ds(i), which can be different for each packet,
the order in which the packets arrive may not correspond to

1For simplicity of notation, the full state is sampled in the model. The
functions that determine the sensor values that are actually available to the
controller can be incorporated into the controller model.

the order of the sampling sequence. To model this possibility,
we let is(j) denote the index of the sample time at which
the jth received sample was taken. Thus, the value of the
jth packet received by the controller is given by πc(j) =

[xs(is(j)), ts(is(j)), is(j)] and tc(j) = ts(is(j)) + ds(is(j)).
The controller is modeled by the general discrete-time

state equations

z(j + 1) = g(z(j), πc(j), tc(j), j)
uc(j) = h(z(j), πc(j), tc(j), j),

where z is the internal controller state and uc is the controller
output. The controller state is updated at each control instant
tc(j) when a new packet is received over the network. We
assume the initial controller state z(0) is given, and the
control update begins with the first packet received (j = 1).
The information available to the controller includes the time
stamp and index for the sampled state value in πc(j), so that
strategies for dealing with networked communications are
included in this general model of the controller.

The controller sends the control value uc(j) and its index
over the control network to the plant, where the value of the
control input u(t) is updated. As with the sensor network,
the control network introduces a delay dc(j). Therefore, the
control values received at the plant to update the control
input, denoted uu(k), are not necessarily received in the
same order as the control values that were computed and
sent by the controller. Control values and their indices jc(k)
are received at the plant at times tu(1) < tu(2) < · · · , and
tu(k) = tc(jc(k)) + dc(jc(k)).

The control update at the plant is given for k=1,. . . by

u(t) = r(uu(k), tu(k), k, jc(k)) for tu(k) ≤ t < tu(k + 1). (2)

We assume an initial control value u(t) = u0 is specified
for the time 0 ≤ t < tu(1) before the first control update
is received from the controller. The resulting control input
is piecewise continuous, being updated at the update times
tu(k), and the value of the update at each instant is a general
function of the received updated control value, its time stamp
and index, and the original index assigned by the controller.
Note that any information can be included in the control
values uc(j), including the time stamp for the data upon
which it is based.

Verifying the correctness and safety of a control system
of the type described above is very difficult, particularly
for specifications that apply to the closed-loop behavior. In
the standard approach to verification, the problem is made
tractable by creating a simplifying abstraction of the con-
troller, and then verifying the properties of the abstraction.
It is often very difficult and time consuming to construct a
verifiable abstraction of a complex control system. Indeed,
this is perhaps the primary reason formal verification and
theorem proving has not yet become a common tool for
control system engineering.

In this paper, we propose a different approach which starts
with the construction of a verifiable model. Rather than build
an abstraction of a particular controller design, we begin with

nondeterministic
controller

()

x(tu(j))

uu(j)U(x(tu(j),), P

()

uu(j)

plant sampling
x(t)zero-

order-hold

u(t)

nondeterministic
clock

{tu(j)}Tu(), P

Fig. 2. A nondeterministic sampled-data control system for verification
using a theorem prover.

a nondeterministic model of a feedback control system that
represents all possible behaviors of the closed-loop system
for a very general class of controllers. The model used by
the theorem prover to verify specifications for the closed-
loop system is illustrated in Fig. 2. In this model, the control
input is updated by the zero-order-hold to be value uu(j) at
each update time tu(j). The control update values uu(j) are
selected from a set of possible control values Uu(x(tu(j)), ρ),
where ρ is a vector of parameter values selected from a set P.
Moreover, the model represents all possible behaviors for any
sequence of update times chosen from some general class of
sequences Tu(ρ). Although this model does not contain all
details of the control system in Fig. 1 explicitly, it is a type
of closed-loop system for which properties can be verified
using a theorem prover. Moreover, this model can represent
a very general class of possible controllers, where only the
features that facilitate the proof of the desired closed-loop
properties are included in the model.

Given the proof that the closed-loop system satisfies the
desired specification for any controller for which ρ ∈ P,
Tu(ρ), and uu(j) ∈ U(x(tu(j)), ρ), it suffices to show that a
particular control design satisfies this condition on the control
input as a function of the value of the state at each instant
when the control input is updated at the plant. If this can be
done, the closed-loop property for the system is guaranteed,
without having to evaluate the closed-loop system behavior
using the particular controller.

Suppose, for example, that there are no network delays
and the controller is a constant state-feedback gain of the
form uu(j) = Kx(tu(j)) and that the sampling sequence
corresponds to a parameter value p = p′ ∈ P. In this case
it would be sufficient to show that Kx ∈ U(x, p′) for all x.
When the controller has an internal state or there are network
delays, demonstration that a particular control design satisfies
the condition given by U(x(tu(j)), ρ) is more difficult because
the value of the control input at time tu(j) is not a direct
function of x(tu(j)), the value of the state at time tu(j).
In general, the control input u(tu(j)) depends on some past
values of the controller state and sampled plant state. That
is, u(tu(j)) = F(z′c, x

′
s), where z′c, x′s are past values of the

controller and plant states, respectively, and the times when
these state values were determined depend on the possible
network delays. Moreover, the controller state value depends
on the possible histories of the plant state that have driven
the controller state equation.

To take advantage of the proof given by the theorem prover
in this more general situation, it is necessary to determine
a range of possible values for z′c and x′s for any possible
value of x(tu(j)). This will determine the range of possible
values that the control input may have for a given value of
x(tu(j)). If this range can be determined, i.e., if one can find
a set Û(x(tu(j)), ρ) such that F(z′c, x

′
s) ∈ Û(x(tu(j)), ρ) for

all values of z′c and x′s that are possible knowing x(tu(j)), it
is then guaranteed u(tu(j)) ∈ Û(x(tu(j)), ρ). Then it suffices
to show that Û(x(tu(j)), ρ) ⊆ U(x(tu(j)), ρ) to guarantee the
closed-loop system satisfies the property established by the
theorem prover. If this can be done, the desired property of
the control system design is guaranteed without having to
analyze the closed-loop system.

Before illustrating the above approach for two automotive
control system examples in Sections IV and V, we present
the details of a theorem prover that can be used to establish
closed-loop properties of sampled-data control systems in the
following section.

III. Theorem Proving Using Differential Dynamic Logic

We specify system models with controller plant loops
and their properties in differential dynamic logic (dL) [11],
[12], which has been implemented in the theorem prover
KeYmaera. In dL, we describe controller plant loops (or,
more generally, hybrid systems) in a program notation. Such
hybrid programs involve both the discrete controller actions
and the continuous dynamics. Part of the hybrid program
captures the controller, where a programming language is
a natural notation. Another part of the hybrid program
directly allows one to state the plant dynamics. We can
think of hybrid programs as conventional programs with
extra differential equations inside that model the continuous
system dynamics. Hybrid programs can also be understood
as the control code that is generated in model-based design,
but enriched with explicit differential equations to retain the
continuous plant. The logic dL and the prover KeYmaera are
described in detail in [12].

To illustrate, we consider a simple example of a car at
position p with velocity v driving down a straight road.
The Simple Car Control (SCC) sets the acceleration of the
vehicle based on sensor values of state variables p and v.
The controller may choose either to accelerate (A) or brake
(−B < 0) until the car passes a start braking point sb, at
which time the car must apply the brakes until it comes to
a stop. The controller does not have continuous access to
the sensor values for state variables p and v, but receives
updates periodically, therefore the car may overshoot sb
slightly before braking. In the remainder of this section we
use dL to formally model a general class of Simple Car
Controllers (SCC) as a hybrid program which satisfies the
above description.

Model 0 Simplistic Car Controller (SCC) in dL

SCC ≡ (ctrl; dyn)∗ (3)
ctrl ≡ (a := −B) ∪

(
?Safe; a := A) (4)

Safe ≡ p ≤ sb (5)
dyn ≡ p′ = v, v′ = a & v ≥ 0 (6)

The hybrid program SCC is shown in Model 0. The
program shows step by step how the model executes. Line
(3) says that, first, the controller ctrl executes and then (after
the sequential composition ;), the continuous dynamics dyn
evolves for a certain period of time. In Model 0, the execution
of the controller ctrl completes instantly without any time
passing. The continuous dynamics dyn, instead, continues
for some time (≥0). This process (first do ctrl, then do dyn)
repeats, as indicated by the repetition operator ∗ at the end
of (3), because the controller ctrl will again have a chance to
react to situation changes after the continuous evolution went
on for a certain period of time. This repetition (ctrl; dyn)∗

models the sampled-data controller-plant feedback loop. It
is part of the flexibility of hybrid programs that we are not
forced to specify exactly how long the continuous evolution
continues before the controller reacts again. With that, we
can easily model several variations in the controller design
and phenomena like jitter in a single model.

The controller in (4) has the option to brake (a B −B)
or to accelerate (a B A) and may choose between both
options nondeterministically (written ∪). The option a B A,
however, is only available when the system state successfully
passes the test ?Safe that it is safe to accelerate. In the
particular design in (5), this test is simply to check whether
the current system state satisfies p ≤ sbNote here, that the
nondeterminism in (4) leaves the controller both options
when the current system state passes the test ?Safe, but
only leaves the option a B −B when it does not pass
test ?Safe. This nondeterminism is actually beneficial for
the verification, because, if we can verify that Model 0 is
safe, then any implementation with a particular strategy for
arbitrating the nondeterministic choices would also be safe.
For example, a controller that would only brake when it
is not safe to accelerate. Or a controller that additionally
optimizes for fuel consumption. The operations in ctrl are
just assignments, choices, and tests, and, thus, consume
no (noticeable) time, so ctrl indeed terminates instantly, as
expected from a controller in a hybrid system. The ctrl
operations, thus, determine at any instant of time when they
run the set of controls U(x(tu(j)), ρ) at that state. This gives a
set, because of the nondeterminisms in ctrl and the choices of
the parameters ρ (including sb). Since the controllers are not
assumed to run continuously, they correspond to the feedback
of data sampled at certain times, here simply tu(j).

The continuous plant dynamics dyn for Model 0 in (6) is
the continuous state equation for movement of p according
to velocity v and acceleration a, but it is restricted to (written
&) the evolution domain region v ≥ 0. This evolution domain

region makes sure that the car never starts to drive backwards
even when braking (a := −B).

More generally, for polynomial or rational terms θ, hybrid
programs allow arbitrary other combinations of assignments
(x B θ), nondeterministic assignments (x B ∗), differential
equation systems (x′ = θ & H) with evolution domain
constraint H, arithmetic constraints H as tests (?H), non-
deterministic choices (∪), sequential compositions (;), and
nondeterministic repetitions (∗). See [11], [12] for details.

The advantage of representing the model formally in dL is
that we may guarantee safety properties which the controller
will never violate (or, if the controller is flawed, it returns
a situation which violates the safety properties which is
helpful for debugging). Additionally, because we used non-
determinism to model a general class of controllers rather
than any specific implementation, all specific refinements of
the non-deterministic model will inherit the safety guarantees
for free.

For instance, suppose in the simple example described
above the road ends at point s and the car must come to a stop
before that point. We want to prove that, from any initial state
satisfying some conditions start, there is no circumstance
where the SCC model will allow the car to drive past the
end of the road (p < s). We represent this by the following
dL formula:

start→ [SCC](p < s) (7)

The formula start is called a precondition that we assume
to hold before the system SCC runs. And the formula p < s
is the postcondition that we conjecture to hold at all time
after executing SCC. For the simplistic Model 0, it turns out
that dL formula (7) is not true, because the model does not
specify a bound on how long the plant dyn could evolve
before the controller ctrl again has a chance to react to
situation changes. The safety statement (7) is not true for
arbitrary delays. A more realistic model would, thus, include
a bound t ≤ ε on the time t′ = 1 how long the plant evolution
in (6) can continue without interruption by the controller. We
illustrate these phenomena in detail in the sequel.

IV. Example 1: Intelligent Cruise Control
Intelligent Cruise Control (ICC) adjusts the acceleration of

a car based on the velocity and position of the car directly
ahead which has been sampled by sensors or from vehicle to
vehicle (V2V) communication. In this scenario, the follower
car is the one with the ICC and is called the subject vehicle
(SV). The lead car is called the primary other vehicle (POV).
The ICC must control the acceleration of the SV in a way
that will not cause a collision, no matter when or how hard
the POV brakes. This means that a crash must be avoided
even when the POV slams on the brakes and the SV does not
notice that the POV is slowing until it receives sensor data
after a maximum delay. We assume that sensor update delay
is bounded by ε. In this example, we show that a general
class of controllers for ICC is safe. We then show that a
specific PID controller is a refinement of the general ICC,
and therefore inherits the safety guarantee.

An illustration of the ICC scenario is shown in Fig. 3.

Fig. 3. Diagram of the intelligent cruise control scenario

Model 1 Intelligent Cruise Control (ICC) in dL

ICC ≡ (ctrl; dyn)∗ (8)
ctrl ≡ povctrl || svctrl; (9)

povctrl ≡ (apov B ∗; ?(−B ≤ apov ≤ A)) (10)
svctrl ≡

(
asv B ∗; ?(−B ≤ asv ≤ −b)

)
(11)

∪
(
?Safeε; asv B ∗; ?(−B ≤ asv ≤ A)

)
(12)

∪
(
?(vsv = 0); asv B 0

)
(13)

Safeε ≡ psv +
v2
sv

2b
+

(A
b

+ 1
) (A

2
ε2 + εvsv

)
< ppov +

v2
pov

2B
(14)

dyn ≡
(
t := 0; t′ = 1, (15)

p′sv = vsv, v′sv = asv, p′pov = vpov, v′pov = apov (16)
& (vsv ≥ 0 ∧ vpov ≥ 0 ∧ t ≤ ε)

)
(17)

A. dL Model and Proof of Safety

Model 1 shows a generic class of ICCs written as a hybrid
program in dL. The discrete control of the POV is modeled
in line (10) as POVctrl. Since we do not assume that the
POV is using any specific ICC, its acceleration is set non-
deterministically to any value within the physical limits of
the vehicle, thereby capturing the behavior of any sampled-
time controller.

The model of the discrete control of the ICC for the SV
is represented as SVctrl in Model 1. Line (11) allows the car
to brake at any time, and assumes that the brakes are at least
as strong as −b and no stronger than −B. Line (12) says
that, so long as the car is within the safety envelope defined
by Safeε in line (14), the acceleration of SV is set non-
deterministically within the physical limits of the vehicle.
Finally, line (13) simply says that if the car is stopped, it
may choose to remain stopped. Because acceleration is set
non-deterministically, when safety of Model 1 is proved, it
must hold for all possible values of acceleration. Therefore,
if a specific controller can be shown to respect the safety
envelope (i.e. always applying the brakes when Safeε does
not hold), then it inherits the safety verification of Model 1.

The continuous dynamics of the cars are represented by
the differential equations in dyn. We assume here that the
cars are traveling down a straight road, that they are a single
point, and that sensors have no delay and are accurate. Some
of these assumptions will be not be required in the following
sections. The evolution domain in line (17) additionally
requires that the cars may brake to a stop but they will never
reverse (i.e. velocity is always non-negative). It also assumes
that the SV receives fresh data about the position and velocity

of the POV within a maximum of ε time.
To prove that the ICC is safe, we show that at all times the

SV is behind the POV (psv < ppov), given the cars begin in
a controllable state (Safe0 ∧ (psv < ppov)). This is expressed
in dL by the following formula, which has been proved by
the automated theorem prover KeYmaera:

Safe0 ∧ (psv < ppov)→ [ICC](psv < ppov)

This proof has 924 nodes, requires 656 user interactions,
and proves in 329 seconds. For a detailed description of this
model and its proof see [9].

B. PID Controller Design

Now that we have system bounds that have been proved
safe, it is possible to design a more realistic controller to
the specifications required by Model 1. We design a control
system model of an ICC which models a sampled-time PID
controller deterministically setting the acceleration of the SV.
We leverage the proof of safety for a general class of ICCs
from Sect. IV-A to show that safety is still guaranteed under
this specific PID instance of an ICC.

The PID controller has a desired set point, dset, which
represents the distance between the SV and the POV that
the controller tries to maintain. The controller only operates
while the vehicles are traveling within a set minimum and
maximum velocity, vmin and vmax. When the velocity bounds
are not met, we assume another controller with the same
safety guarantees takes control. The PID gains are denoted
by Kp,Ki,Kd. We also bound the integral term from accu-
mulating above zmax and below zmin. The controller then has
the following, standard form:

h(xS (t), zS (t)) =

aPID if − B ≤ aPID ≤ A
A if aPID > A
−B if aPID < −B

where, for some z ∈ [zmin, zmax]:

aPID = Kp((ppov − psv) − dset) + Ki · z + Kd(vpov − vsv)

In order for any specific, deterministic model to inherit the
proof of safety for Model 1, we must prove it is a refinement
of Model 1. That is, when a specific implementation of the
ICC makes a control decision, it falls within the range of
control decisions permissible in Model 1 under the same con-
ditions. For a sampled-time PID controller, the acceleration
of the SV is set based on the position and velocity of the
two vehicles, the gains, and the desired distance between the
two vehicles, as shown in aPID. If the acceleration or braking
returned by the PID formula exceeds the physical limits of
the vehicle, the controller caps it at that limit.

To prove that a sampled-time PID controller is a refine-
ment of Model 1, it suffices to check that when the safety
boundary is violated (i.e. Safeε is false), the PID controller
applies emergency braking, as shown in Model 1, line (11).
This is sufficient because, in the alternative case where
Safeε is true, the proof of safety holds for any choice of

acceleration within the physical limits of the vehicle. The
PID controller satisfies this requirement by design.

We implemented a simple proof of refinement in
KeYmaera which tests algebraically whether, given the pa-
rameters of a fully specified PID controller, the formula for
acceleration would yield only values below −b whenever
Safeε is false. The proof is split into two files which together
have 114 nodes, require 46 user interactions, and prove in
1.8 seconds. If a PID controller does not pass this test, then
it has not been proved to qualify as a refinement of Model 1.

With a simple modification, we were able to change the
test for refinement into a search for a refinement which, for
a given subset of parameters of a PID controller, outputs
constraints on the remaining parameters. For example, given
the PID gains, vmin, vmax, zmin, zmax, A, b, and B, the
refinement search would output a value of dset which would
preserve safety. Because testing refinement only requires
algebraic manipulation, there are a number of programming
and mathematical tools, besides KeYmaera, which could have
implemented these refinement tests.

C. Design for Delay Tolerance

In Sect. IV-B we showed that a non-deterministic, abstract
model of a system, which is far removed from a real world
implementation, can be refined into a specific PID controller
without sacrificing any guarantees on safety. If we also want
the controller to apply to other phenomena not modeled
in the original system, we just need to ensure that it still
checks against the static constraint. Therefore, even though
the original model was of a relatively simplistic controller,
because of the flexibility gained by its non-determinism, it
becomes a powerful tool in verifying safety for increasingly
complex controllers.

For instance, Model 1 makes a simplifying assumption
that messages and sensor data are passed instantly between
vehicles, so that control choices are made based on current
values p(t) and v(t). Unfortunately this would be impossible
to implement in a real system. We can easily create a new
model which inserts a time delay between the sensors and the
controller so that control decisions are based on old values
p(t−d) and v(t−d), where d is the delay between the sensors
and the controller. This new model also requires a modified
formula for the safety boundary. This safety boundary is
more conservative than the original boundary, Safeε, since
there is less accurate information about the current position
and velocity of the POV.

We could reprove safety completely for the updated model;
however, repeating a proof of safety for this more complex
system would be at least as difficult as the full proof of
safety for Model 1. We can avoid this work by proving
that the model with delays is still just a refinement of our
original model. The computational complexity of proving
this refinement is a fraction of the complexity of a full proof
of safety. Our proof of refinement is completed in two steps:
1) A proof that the value of the out-of-date, dynamic, sensor
data is always within specific bounds, and 2) A proof that

Fig. 4. Diagram of the CICAS-SLTA scenario

for all values within those bounds, the new safety boundary
implies the original Safeε.

This refinement differs from the refinement to a PID
controller, since it maintains the non-determinism and overall
structure of Model 1 and the resulting model is still written
in dL. This means that it represents a general class of
controllers, and could itself be refined further, for example,
into a PID controller, using a similar process as described
in Sect. IV-B. By piling one refinement onto another in this
way, we can model increasingly complex systems and more
importantly, we can verify safety properties which were
previously only tractable for simple models.

V. Example 2: A Cooperative Intersection Collision
Avoidance System

The Signalized Left Turn Assist (SLTA) is a Cooperative
Intersection Collision Avoidance System for intersections
with permissive left turns. A permissive left turn is one
without a specific left-turn traffic light phase. Left-turn
accidents account for 27.3 % [10] of intersection related
crashes in the US. An SLTA system allows a traffic engineer
to address safety issues at an intersection without adding a
separate turning phase, which would restrict traffic flow.

A diagram of the SLTA scenario is shown in Fig.4. The
subject vehicle (SV) is stopped in front of an intersection on
leg a and intends to turn left onto leg b, while the primary
other vehicle (POV) is approaching from leg c, possibly
putting the two automobiles on a collision path.

Both vehicles are equipped with sensors to measure their
position and velocity, as well as communication capabilities
to relay their measurements to a computer that is monitoring
activity at the intersection.

The researchers from the California PATH Project [10]
have built a prototype SLTA system that estimates the arrival
time of the SV at the intersection assuming it maintains a
roughly constant velocity, but they did not formally verify
their system. In this example, we create a model of the SLTA
scenario in dL and use the theorem prover KeYmaera to
derive static constraints for the design of a provably safe
controller.

A. dL Model

Model 2 shows a general class of controllers modeled in
dL.

Model 2 Signalized Left Turn Assist (SLTA) in dL

S LT A ≡ (ctrl; dyn)∗ (18)
ctrl ≡ povctrl || svctrl (19)

povctrl ≡ (apov B ∗; ?(−A < apov < B); Tpov B
k − ppov

−vmax
(20)

svctrl ≡ (?(psv = 0 ∧ vsv = 0); (21)
asv B ∗; ?(asv ≥ a); ?(asv ≤ A); (22)

Tsv B
(
−vsv +

√
v2
sv − 2asv(psv − q)

)
/asv;

(23)
?(Tpov > Tsv)) (24)
∪ (?(vsv = 0); ?(psv = 0); asv B 0) (25)
∪ (?(psv ≥ 0); ?(psv ≤ q); asv B ∗; (26)
?(asv > a); ?(asv < A)) (27)
∪ (?(psv ≥ q); asv := ∗; ?(−A < asv < B)) (28)

dyn ≡
(
t B 0; t′ = 1,

p′sv = vsv, v′sv = asv, p′pov = vpov, v′pov = apov (29)
& vsv ≥ 0 ∧ vpov ≤ 0 ∧ vpov < −vmax ∧ t ≤ ε) (30)

Line (20) describes the controller of the POV. Since a
controller for the SV cannot control the POV, the POV as-
sumes an arbitrary acceleration within a range that represents
physical limits of the car. A and B are the maximum possible
acceleration and braking, respectively. The acceleration of
the POV must be larger than −A and greater than B because
it is traveling in a negative direction. Lines (21) through (28)
describe the behavior envelope for the SV controller. When
the SV is stopped in front of the intersection, the SV may
always remain stopped, or it may choose to attempt a turn.
If it chooses to attempt a turn, it computes the time Tpov at
which the POV would enter the intersection and computes
the time the SV would require to execute a turn along a
trajectory of length q using a minimal acceleration a. If
these computations show that it is safe to turn, the controller
may choose an acceleration between the lower and upper
bounds a and A, respectively. If the SV is already inside the
intersection, it is required to continue turning so that it does
not obstruct the intersection.

When the SV controller computes its estimate of the time
of arrival of the POV, it assumes that the POV instanta-
neously changes its velocity to some upper bound vmax and
rushes to the intersection. The POV enters the intersection
when its position is less than k, and the SV will enter the
intersection when its position is greater than 0. The SV leaves
the intersection when its position is greater than or equal to
q. The domain of evolution (30) enforces that neither of the
two cars may drive in reverse, and that the POV must drive
at a velocity lower than the upper bound vmax.

The model assumes that sensors are perfectly accurate
and that information about the POV is received by the SV
instantaneously.

To prove that this class of controllers is safe, we use
KeYmaera to prove that Model 2 satisfies the property

(ppov < k)→ (pS V < 0 ∨ pS V ≥ q),

that is, whenever the POV enters the intersection, the SV
has either not yet entered it or has already left it, given that
the cars begin in a state where the SV is stopped outside of
the intersection. We use SVstopped to represent the condition
that the SV is initially stopped outside of the intersection.
The safety of Model 2 is expressed in dL as shown in the
equation below.

SVstopped → [S LT A]((ppov < k)→ (pS V ≤ 0 ∨ pS V ≥ q))

This safety property has been proved using KeYmaera.
As a result of this analysis, we have derived that a

controller will be safe if it receives instantaneous information
about the POV and requires the SV to remain stopped
unless the safety requirement in line (24) holds, i.e. (k −
ppov)/ − vmax >

√
2q/a, in which case, SV may accelerate

with a minimum acceleration of a. Additionally, the SV
must continue to accelerate if it has already entered the
intersection. Then we can say that a controller is safe if it
respects

h(xS (t))

0 if (k − ppov)/ − vmax ≤

√
2q/a

u ∈ (a, A) ifpsv > 0
u ∈ (a, A) ∪ {0} otherwise

(31)
where a and A are system parameters.

Note that this is a static condition on the input-output
relation of the controller.

B. Controller Design

We can now use the static input-output derived from
Model 2 to design a safe controller. To ensure that our design
is safe, it is sufficient to show that its behaviors are a
refinement of the behaviors exhibited by the general class
of controllers of the model above. Particularly, we want to
design a controller that does not allow the vehicle to enter
the intersection and mandates an acceleration of zero when
(31) does, and forces a vehicle that has already entered the
intersection to continue at a minimum acceleration.

To design this controller, we assume the vehicles have
onboard equipment to measure their positions and velocities,
and transmit this data to a central station at the infrastructure.
When the SV arrives at the intersection, it establishes a
communication link with the infrastructure to find out if there
is a POV coming, and if so to obtain position and velocity
readings for it.

Model 2 assumes instantaneous information, but in order
to build a more realistic controller, we would like to allow the
information about the POV to arrive with a known, bounded
delay. We still assume that the SV knows its own state
immediately. To extend our safety result to a situation with
a maximum delay of d, we need to show that the controller
remains safe even when it is acting on stale information,
provided it knows an upper bound on just how stale that

information is. Let hC(xS (t − d)) represent the action of the
controller we are trying to design, and ppov(t0) and ppov(t0−d)
be the position of the POV at time t0 and the reading the
controller receives at t0, which is actually the position of the
car at t0 − d. Then our controller will remain safe if:

k − ppov

−vmax
≤

√
2q/a→ hC(xS (t − d)) = 0 (32)

This reduces to the following constraint, which we will need
to ensure that our controller respects (31)

k − ppov(t0)
−vmax

− d → hC(xS (t − d)) = 0 (33)

Now suppose we want to use a different approach for
deciding the safety of the intersection. Instead of assuming
that the POV instantaneously switches to the speed limit,
assume that it engages some maximal acceleration until it
reaches the speed limit and then remains at that constant
velocity. Additionally, suppose the controller allows some
margin of time between the arrival of the POV at the
intersection and the departure of the SV. Then the expression
for the decision rule of our controller is

hC(xS (t)) =

a if TPOV (xS (t)) > TS V (xS (t)) + tPE

a if psv > 0
0 otherwise

where
TPOV (xS (t)) =

k − ppov

−vmax
+

vmax

2A

TS V (xS (t)) =

√
2q
a
.

The remaining task is to select tPE such that (33) is satisfied.
It is clear that the smallest value that accomplishes this is
vmax/(2A) + d.

As a result, we show that the use of a theorem prover
to analyze the behavioral envelope of a general class of
controllers produces a static constraint that is sufficient for
safety. This static constraint can be easily used to check the
safety of a more specific controller design.

VI. Conclusions

This paper presents an approach for guaranteeing proper-
ties of closed-loop control systems using a theorem prover
applied to a representation of a general class of controllers.
The result from the theorem prover provides a static condi-
tion that must be satisfied by the control design. This static
condition characterizes a set of allowed control values as a
function of the state of the plant at the instants when the
control input value is updated. The theorem prover KeY-
maera is presented as a tool for proving properties of closed-
loop systems with continuous dynamic plants and general
sampled-data controllers. We illustrate with two automotive
control examples how the static conditions established by
KeYmaera can be applied to controllers with internal states
and network delays. While the examples in this paper are
relatively simple, more complex systems which may include
disturbance or uncertainty can also be modeled in dL [11].

Directions for further work include developing general
methods for mapping the details of controller designs in
to the types of static state-dependent mappings used in the
theorem proving model, as well as extending this work to
liveness constraints. We are also investigating parameteriza-
tions in the abstraction of the controller used in the theorem
prover to facilitate the process of evaluating control design
alternatives. A long-term objective of this work is to create
tools that will make it possible for practicing engineers to
apply theorem proving to problems of practical interest.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1035800,
NSF CAREER Award CNS-1054246, and NSF EXPEDI-
TION CNS-0926181. The second author is supported by a
DOE Computational Science Graduate Fellowship.

References
[1] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge

University Press, 1996.
[2] J.-R. Abrial, E. Börger, and H. Langmaack, editors. Formal Methods

for Industrial Applications, Specifying and Programming the Steam
Boiler Control, volume 1165 of LNCS. Springer, 1996.

[3] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional refinement
for hierarchical hybrid systems. In M. D. D. Benedetto and A. L.
Sangiovanni-Vincentelli, editors, HSCC, volume 2034 of LNCS, pages
33–48. Springer, 2001.

[4] E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, J. Ouaknine,
O. Stursberg, and M. Theobald. Abstraction and counterexample-
guided refinement in model checking of hybrid systems. Int. J. Found.
Comput. Sci., 14(4):583–604, 2003.

[5] G. Frehse. PHAVer: algorithmic verification of hybrid systems past
HyTech. STTT, 10(3):263–279, 2008.

[6] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable
verification of hybrid systems. In G. Gopalakrishnan and S. Qadeer,
editors, CAV, volume 6806 of Lecture Notes in Computer Science,
pages 379–395. Springer, 2011.

[7] T. A. Henzinger. The theory of hybrid automata. In LICS, pages
278–292, Los Alamitos, 1996. IEEE Computer Society.

[8] C. Kern and M. R. Greenstreet. Formal verification in hardware design:
a survey. ACM Trans. Design Autom. Electr. Syst., 4(2):123–193, 1999.

[9] S. M. Loos, A. Platzer, and L. Nistor. Adaptive cruise control: Hybrid,
distributed, and now formally verified. In M. Butler and W. Schulte,
editors, FM, LNCS. Springer, 2011.

[10] J. Misener and et al. Cooperative intersection collision avoidance sys-
tem (CICAS): Signalized left turn assist and traffic signal adaptation.
Technical report, University of California, Berkeley, 2010.

[11] A. Platzer. Differential dynamic logic for hybrid systems. J. Autom.
Reas., 41(2):143–189, 2008.

[12] A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg, 2010.

[13] A. Platzer and J.-D. Quesel. KeYmaera: A hybrid theorem prover
for hybrid systems. In A. Armando, P. Baumgartner, and G. Dowek,
editors, IJCAR, volume 5195 of LNCS, pages 171–178. Springer, 2008.

[14] S. Ratschan and Z. She. Safety verification of hybrid systems
by constraint propagation-based abstraction refinement. Trans. on
Embedded Computing Sys., 6(1):8, 2007.

[15] J. Romberg and C. Grimm. Refinement of hybrid systems. In
Languages for System Specifications, pages 315–330, 2004.

[16] F. Wang. Formal verification of timed systems: a survey and perspec-
tive. Proc. IEEE, 92(8):1283 – 1305, aug. 2004.

[17] M. H. Zaki, S. Tahar, and G. Bois. Formal verification of analog
and mixed signal designs: A survey. Microelectronics Journal,
39(12):1395–1404, 2008.

	Introduction
	General Approach
	Theorem Proving Using Differential Dynamic Logic
	Example 1: Intelligent Cruise Control
	Model and Proof of Safety
	PID Controller Design
	Design for Delay Tolerance

	Example 2: A Cooperative Intersection Collision Avoidance System
	Model
	Controller Design

	Conclusions
	References

