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Abstract

Formal verification provides a high degree of confidence in
safe system operation, but only if reality matches the verified
model. Although a good model will be accurate most of the
time, even the best models are incomplete. This is especially
true in Cyber-Physical Systems because high-fidelity physi-
cal models of systems are expensive to develop and often in-
tractable to verify. Conversely, reinforcement learning-based
controllers are lauded for their flexibility in unmodeled envi-
ronments, but do not provide guarantees of safe operation.
This paper presents an approach for provably safe learning
that provides the best of both worlds: the exploration and op-
timization capabilities of learning along with the safety guar-
antees of formal verification. Our main insight is that formal
verification combined with verified runtime monitoring can
ensure the safety of a learning agent. Verification results are
preserved whenever learning agents limit exploration within
the confounds of verified control choices as long as observed
reality comports with the model used for off-line verification.
When a model violation is detected, the agent abandons ef-
ficiency and instead attempts to learn a control strategy that
guides the agent to a modeled portion of the state space.
We prove that our approach toward incorporating knowl-
edge about safe control into learning systems preserves safety
guarantees, and demonstrate that we retain the empirical per-
formance benefits provided by reinforcement learning. We
also explore various points in the design space for these jus-
tified speculative controllers in a simple model of adaptive
cruise control model for autonomous cars.

Introduction
Cyber-physical systems (CPSs) are difficult to get right,
which is why formal verification provides rigorous ways of
establishing the safety of controllers with respect to a physi-
cal model of the system under control. However, difficulties
with formally verified controllers arise whenever there are
discrepancies between the verified models and the real im-
plementation. Such discrepancies between model and reality
are inevitable in physical systems operating in open environ-
ments (Mitsch and Platzer 2016).

Reinforcement learning (RL) (Sutton and Barto 1998)
provides ways of learning controllers that tend to perform
well without the need for a perfect model – or even any
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model at all. Most approaches toward reinforcement learn-
ing provide no guarantee about the safety of the learned
controller or about the safety of actions taken during learn-
ing. Absence of safety guarantees become a crippling prob-
lem when reinforcement learning is applied to safety-critical
CPSs where industry best practices demand evidence of
safety, such as cars or planes (ISO 2011; RTCA 2012). In-
corporating verified models into safety cases for reinforce-
ment learning-based controllers is important because testing
alone is an intractable approach toward system verification
and validation for systems operating in open environments,
such as self-driving cars (Kalra and Paddock 2016).

This paper contributes a technique, called Justified Specu-
lative Control (JSC), for transferring formal verification re-
sults to controllers obtained via reinforcement learning. This
approach combines the safety assurance provided by verifi-
cation with the optimality and robustness to model incom-
pleteness provided by reinforcement learning. Our primary
contribution is a set of proofs that transfer computer-checked
safety proofs for hybrid dynamical systems to the policy ob-
tained by a generic reinforcement learning algorithm. We
also present a case study and experiment that demonstrates
leveraging verification results speeds up learning.

Justified Speculative Control combines verified runtime
monitoring – backed by formally verified models – with re-
inforcement learning. When no modeling inaccuracy is de-
tected, the system’s actions are constrained to a set of veri-
fied control actions. When modeling inaccuracy is detected,
the system is justified in taking actions that are unverified
and possibly unsafe with respect to the (inaccurate) model.

Reinforcement learning is useful even when the model
is accurate because models used for verification are often
nondeterministic. The verified controller is not a single de-
terministic policy, but rather a nondeterministic policy with
multiple safe actions. Verification results establish the safety
of a set of actions, but do not solve the optimization problem
without significant extra effort. A verification result usually
will not tell the system how to best choose the most efficient
control action from among as set of safe control actions.

For accurate models, Justified Speculative Control ex-
plains how to sandbox the learning process by a formally
verified nondeterministic model. The JSC sandbox monitors
the environment and checks that observed state transitions
comport with the system of differential equations used to



model the environment during verification. The sandbox al-
lows the learning agent to safely optimize over the set of safe
control actions. Unlike other sandboxing techniques such as
Simplex, Justified Speculative Control transfers not just the
existing controller but also the verification result about that
controller, which is crucial in safety-critical settings.

For inaccurate models, we present experimental evidence
that sandboxing constraints provide a useful signal for
safe reinforcement learning even when verified models are
not available. We translate boolean-valued sandboxing con-
straints into a real-valued metric and then use this metric as a
reward signal, effectively prioritizing policies that drive the
system back into well-modeled portions of the state space.

Our approach is compositional with other approaches to
safe learning. We leverage the formal verification capabili-
ties of the theorem prover KeYmaera X (Fulton et al. 2015)
for differential dynamic logic (Platzer 2008; 2012b; 2012a;
2017) to verify the CPS controller for its model. We ex-
ploit the capabilities of the ModelPlex approach (Mitsch and
Platzer 2016) to generate monitor conditions that provably
correctly check the compliance of observed controller and
model actions with the models. Finally, we rely on reinforce-
ment learning algorithms with guarantees of convergence to-
ward an optimal control policy.

Summarily, this paper contributes:

• The first approach toward provably safe Reinforcement
Learning: Justified Speculative Control (JSC). JSC com-
bines off-line formal verification, runtime monitoring,
and reinforcement learning to transfer proofs of safety to
learned policies.

• A proof that JSC controllers preserve the safety properties
of verified controllers, both during learning and once a
policy is extracted. The ability to transfer proofs of safety
to reinforcement learning algorithms lowers the barriers
to using these algorithms in safety-critical settings where
best engineering practice demands verification.

• An empirical evaluation of a Reinforcement Learning al-
gorithm that incorporates real-valued sandboxing con-
straints into its objective function. Our experiments are
preliminary but promising. We observe two trends that
deserve further investigation. Within modeled portions of
the state space, we experimentally observe that JSC finds
safe policies more quickly than the original learning algo-
rithm. Within unmodeled portions of the state space, our
experiments demonstrate that metricizing the sandboxing
constraints decreases the number of unsafe states.

This paper begins an exploration of the interaction be-
tween formal verification and safe reinforcement learning
by introducing a general scheme for transferring formal ver-
ification results to reinforcement learning algorithms. This
general scheme lays the foundation for exploring many new
questions in verified safe learning. It is amenable to exten-
sion to other learning algorithms, approaches toward safe
learning after model deviation, and approaches toward for-
mal verification.

Background
We recall Differential Dynamic Logic, a logic for verifying
properties about safety-critical control software. We then re-
call the approach, ModelPlex, that allows us to determine
when a model built in differential dynamic logic is violated.
Finally, we present a generic but formal definition of rein-
forcement learning.

Differential Dynamic Logic
This section reviews hybrid programs, a programming lan-
guage for hybrid systems and differential dynamic logic
(dL) for specifying and verifying their properties.

Hybrid (dynamical) systems (Alur et al. 1992; Platzer
2012b) are mathematical models for analyzing the interac-
tion between discrete and continuous dynamics. Hybrid pro-
grams (Platzer 2008; 2012b; 2012a; 2017) are a program-
ming language for hybrid systems. Their syntax and infor-
mal semantics is given in Table 1.

The following hybrid program is a simple one-
dimensional model of a car with straight-line dynamics and
two control choices.
Example 1 (Model of a car following a straight line).(
(a :=A ∪ a := 0)︸ ︷︷ ︸

ctrl

; {p′ = v, v′ = a}︸ ︷︷ ︸
plant

)∗
Example 1 describes a car that chooses nondeterministi-

cally to accelerate with a maximum acceleration A or to
not accelerate, and then follows a differential equation. This
process may repeat arbitrarily many times (indicated by the
repetition operator ∗). Because there is no evolution domain
constraint on plant, each continuous evolution has any ar-
bitrary non-negative duration r ∈ R.

Hybrid Program Semantics. Hybrid Programs have a de-
notational semantics (Platzer 2008; 2012a; 2012b; 2017)
formalizing the intuitions in Table 1. The semantics are
given in terms of states, which assign a real number to each
variable. Each program’s semantics JαK is a set of pairs
(s1, s2) where s2 is a state that is reachable by executing
the program from state s1. For example,

Jx := tK = {(s1, s2) | s1 = s2 except s2(x) = s1JtK}.
The semantics of programs are set-valued, allowing expres-
sion of nondeterminism. For example, Jα∪βK = JαK∪ JβK.

Differential Dynamic Logic. Differential dynamic logic
(dL) (Platzer 2008; 2012b; 2017) is a first-order multimodal
logic for specifying and proving properties of hybrid pro-
grams. Each hybrid program α is associated with modal op-
erators [α] and 〈α〉, which express state reachability proper-
ties of the parametrizing program. The formula [α]φ states
that the formula φ is true in any state reachable by the hy-
brid program α. Similarly, 〈α〉φ expresses that the formula
φ is true after some execution of α. The dL formulas are
generated by the grammar

φ ::= θ1 v θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ
| [α]φ | 〈α〉φ

where θi are arithmetic expressions over the reals, φ and
ψ are formulas, α ranges over hybrid programs, and v



Table 1: Hybrid Programs
Program Statement Meaning
α;β Sequentially composes β after α.
α ∪ β Executes either α or β nondeterministically.
α∗ Repeats α zero or more times nondeterministically.
x := θ Evaluates term θ and assigns result to x.
x := ∗ Assigns an arbitrary real value to x.
{x′1 = θ1, ..., x

′
n = θn&F} Continuous evolution1.

?F Aborts if formula F is not true.

is a comparison operator =, 6=,≥, >,≤, <. The quantifiers
quantify over the reals. We denote by s |= P the fact that P
is true in state s; e.g., we denote by s |= [α]P the fact that
(s, t) ∈ JαK implies t |= P for all states t. When P is true
in every state (i.e., valid) we simply write |= P .

Example 2 (Safety specification for straight-line car model).

v≥0 ∧A>0︸ ︷︷ ︸
initial condition

→ [
(
(a:=A ∪ a:=0)︸ ︷︷ ︸

ctrl

; {p′=v, v′=a}︸ ︷︷ ︸
plant

)∗
]v≥0︸︷︷︸
post cond.

This formula states that if the car begins with a non-
negative velocity, then it will also have a non-negative veloc-
ity after choosing new acceleration or coasting and moving
for a nondeterministic period of time.

ModelPlex: Verified Runtime Validation
Central to our approach is the ability to check, at runtime,
whether or not the current state of the system can be ex-
plained by a dL formula. The KeYmaera X theorem prover
provides a mechanism for translating a dL formula of the
form P → [α∗]Q into a formula of real arithmetic, which
checks whether the present behavior of a system fits to this
model. The resulting arithmetic is checked at runtime and is
accompanied by a correctness proof. This algorithm, called
ModelPlex (Mitsch and Platzer 2016), can be used to ex-
tract provably correct monitors that check compliance with
the model as well as with the controller. If non-equivalence
transformations have been used in the ModelPlex monitor
synthesis proofs, the resulting monitor may be conservative,
i.e. give false alarms. But if the monitor formula evaluates
to true at runtime, the execution is guaranteed to be safe.

Controller Monitors ModelPlex controller monitors are
boolean functions that monitor whether or not the controller
portion of a hybrid systems model has been violated. The
monitor takes two inputs – a “pre” state and a “post” state.
The controller monitor returns true if and only if there is an
execution of the ctrl fragment of the program that, when
executed on the “pre” state, produces the “post” state. For
example, the controller monitor for Model 2 is:

(vpost = v ∧ ppost = p ∧ apost = A)∨

(vpost = v ∧ ppost = p ∧ apost = 0)

1A continuous evolution along the differential equation system
x′i = θi for an arbitrary duration within the region described by
formula F .

where apost is the value of a chosen by the controller.
Similarly, vpost and ppost are the values v and a chosen by
the controller. Therefore, this controller monitor states that
the controller may choose a := A or a := 0, but may not
change the values of p or v.

We write the controller monitor as a function

CM : S ×A→ Bool

mapping a current state s ∈ S and an action act ∈ A to a
boolean value. This formulation is equivalent to the pre/post
state formulation (e.g., vpost = act(vpre)) where

act(s)

is the state reached by performing the action act in state s.

Model Monitors ModelPlex can also produce full model
monitors, which check that the entire system model is ac-
curate – including the model of the system’s physics – for
a single control loop. The full model monitor returns true
only if the controller for the system chooses a control action
that is allowed by the model of the system and also the ob-
served physics of the system correspond to the differential
equations describing the system’s physical dynamics. The
full model monitor for Model 2 is:

(tpost ≥ 0 ∧ apost = A ∧ vpost = Atpost + vpre ∧

ppost =
At2post

2
+ vpretpost + ppre) ∨

(tpost≥0∧vpost=vpre∧ppost=vposttpost+ppre∧apost=0)

Each side of the disjunction corresponds to a control deci-
sion, and the constraints on v and p come from solving the
differential equation p′ = v, v′ = a.

We write the ModelPlex monitor as a function

MM : S ×A× S → Bool

where S is a set of states andA is a set of actions allowed by
the controller; the first argument is the state before the con-
trol action, the second argument specifies the control action,
and the third argument specifies the state after following the
plant with the chosen control action.

The ability to perform verified runtime monitoring is es-
sential to our approach – these arithmetic expressions are the
conditions that allow us to determine when to use a specu-
lative controller, and when to avoid deviating from the vari-
ous options available in the verified nondeterministic control
policy. We define model monitors semantically.



Reinforcement Learning Models
Reinforcement Learning problems are definable in terms of
a Reinforcement Learning Model.
Definition 1 (Reinforcement Learning Model). Fix a finite
set of state variables V . A state S is a mapping from each
variable in V to a value in R. A Reinforcement Learning
Model consists of: a set of states S; a set of actions A; a
transition mapping E : S × A → S mapping a state/ac-
tion pair to a new state; i.e., E(s1, a) = s2 if the environ-
ment transitions the state a(s1) to a state s2; and a reward
function R mapping each state and action to a real-valued
reward signal.

We assume that the agent can directly observe the entire
state. Crucially, we make very few assumptions about the
transition mapping – basically only fixing its I/O type and
assuming that the learner can act to follow a transition.

A reinforcement learning task consists of computing a
policy π that (at least approximately) optimizes the reward.
There are many approaches toward finding an optimal pol-
icy π of a reinforcement learning model. The safety results
in this paper consider a completely generic approach.

Policies are computed via a learning process, which con-
sists of a strategy for choosing actions based upon the cur-
rent state (choose(a, s)) and determining if the current state
is a terminal state (done(s)).

Connecting Verification to Learning via Monitors
Given a verified model init → [{ctrl; plant}∗]safe, if con-
troller monitor CM(s, act) = True then

(s, act(s)) ∈ JctrlK
and if model monitor MM(spre, act, spost) = True then

(act(spre), spost) ∈ JplantK.
In this paper, we use model monitors to transfer a safety
proof of the above form into guarantees about a reinforce-
ment learning process acting in domains where the environ-
ment never results in a model monitor returning false.

Q-learning One approach toward computing an optimal
policy π is via Q-learning. At its simplest, Q-learning dis-
covers an optimal policy by computing the discounted future
reward of taking a particular action in a particular state; i.e.,
the reward associated with each state/action pair is a sum of
the observed reward and the expected future reward under
optimal action, multiplied by a discount factor. A Q-table
records this reward for each state/action pair, and is updated
during the learning phase. Q-learning is attractive because it
does not require an accurate model of the environment. Our
transition function E may, for example, be implemented by
reading off sampled data from a simulator or real system.

Provably Safe Learning
Justified Speculative Control extends model-based safety
theorems to policies obtained through reinforcement learn-
ing. All reinforcement learning algorithms, from Q-learning
to A3C (Mnih et al. 2016), share common features. Justified
Speculative Control respects a generalized safety theorem
that applies to any generic reinforcement learning algorithm.

Generic Justified Speculative Control Algorithm
The listing below presents a generic reinforcement learning
algorithm with justified speculation. This algorithm corre-
sponds to the approach described in the introduction – the
system chooses among a set of verified safe actions when-
ever the environment is accurately modeled, and otherwise
selects any action in the action space.

The inputs are a reinforcement learning model
(S,A,R,E), a strategy choose for selecting actions, a
function update that records state transitions, and a predi-
cate done over states indicating which states are terminal.
Each of these functions has access to the learning model
(S,A,R,E) and, typically, some additional state (e.g., a Q
table, policy/value function approximator, etc.).

The Justified Speculative Control algorithm leverages the
ModelPlex runtime monitors to ensure that, whenever the
system is accurately modeled, only safe actions are taken.
The model monitor is used to determine if the previously
observed state, previous control action, and current state are
accurately described within the system model. Whenever the
model monitor is true, the controller monitor is then used to
prune the action space to only known-safe actions.

JSC also takes as input both CM : A× S → Bool as a
controller monitor and MM : S ×A× S → Bool as model
monitor where S is the set of states and A the set of actions.

Justified Speculative Learning
1 JSCGeneric(init, (S,A,R,E), choose, update,

done, CM, MM) {
2 prev := curr := init;
3 a0 := NOP;
4 while (!done(curr)) {
5 if (MM(prev, a0, curr))
6 u := choose({a ∈ A | CM(a,curr)});
7 else
8 u := choose(A);
9 prev := curr;

10 curr := E(u, prev);
11 update(prev, u, curr);
12 }
13 }

Lines 2 – 3 begin the process in an initial state; the model
monitor will always return true for inputs s1,NOP, s2 where
s1 = s2. Lines 4 – 12 choose the next action and execute the
chosen action until reaching a terminal state. If the model
describes the transition from the previous state to the current
state via the chosen control action, then a safe action that
comports with the controller action is chosen (Lines 5 – 6).
Otherwise, the system is allowed to speculate because the
model that lead to MM does not accurately characterize the
system E (lines 7 – 8). This code assumes that the model’s
control policy exhibits a liveness property; i.e., the set

{a ∈ A | CM(a, curr)}

is always non-empty; we allow non-liveness in the theoret-
ical treatment following this section.2. Finally, on lines 9 –

2The theoretical treatment following this section handles model
monitors for non-live models, but such models are often broken.



11, the state is updated according to the environment and the
learning model (e.g., a Q-table or NN) is updated.

Safety Results
The JSC algorithm explores safely whenever the environ-
ment E is accurately modeled by the dL theorem from
which CM and MM are defined. This section presents a
precise statement of this assertion, effectively demonstrat-
ing how to transfer hybrid systems formal verification re-
sults to reinforcement learning. Proofs of these theorems are
provided in tech report (Fulton and Platzer 2017).

We begin with the definition of a learning process, which
is essentially a dynamical systems encoding of the pseudo-
code for the JSCGeneric algorithm. Re-stating this algo-
rithm as a dynamical system allows us to give a precise argu-
ment without defining a formal semantics for pseudo-code.

Definition 2 (Learning Process). A tuple of sequences
(si, ui, Li) is a learning process for

(init, (S,A,R,E), choose, update, done,CM,MM)

if it satisfies the recurrence relations

ui = chooseLi
({ui ∈ A | specOK(u, s, i)}) (1a)

si+1 = E(ui, si) (1b)
Li+1 = update(Li, si, ui) (1c)

where s0 |= init, Li is a sequence of learned models, and

specOK(u, s, i) ≡ CM(ui, si) ∨ ¬MM(si−1, ui−1, si)

The three sequences Li, ui, si all terminate whenever
there is no choice for ui (i.e., an empty set is passed into
the choose function), or else when done(si). Indices i are
non-negative and the predicate MM(si−1, ui−1, si) evalu-
ates to true whenever i < 1.

The sequences u, s, L are the selected control action,
state, and learned model (e.g., Q table or NN) at each step
of the JSCGeneric algorithm. The recurrence relations are
equivalent to the computations performed in the JSCGeneric
pseudo-code, except the liveness caveat discussed in the pre-
vious section.

Corollary 1 (Meaning of Controller Monitor). Suppose CM
is a controller monitor for P → [{ctrl; plant}∗]Q and s ∈ S
and u : S → S. Then CM(u, s) implies (s, u(s)) ∈ JctrlK.

Corollary 2 (Meaning of Model Monitor). Suppose MM
is a model monitor for init → [{ctrl; plant}∗]Q, and that
(u, s, L) is a learning process. If MM(si−1, ui−1, si) for
all i then si |= Q, and also (si, ui(si)) ∈ JctrlK implies
(ui(si), si+1) ∈ JplantK.

We are now ready to state the first major safety property
– that JSCGeneric does not violate the system’s safety prop-
erties during reinforcement learning if the environment is
accurately modeled.

Definition 3. An environment E is accurately modeled by
a system {ctrl; plant}∗ for a set of actions A and states S if
for all s ∈ S and u ∈ A,

(s, u(s)) ∈ JctrlK implies (u(s), E(s, u)) ∈ JplantK (2)

Theorem 1 (JSCGeneric Explores Safely in Modeled Envi-
ronments). Assume a valid safety specification

|= init→ [{ctrl; plant}∗]safe (3)

i.e., any repetition of {ctrl; plant} starting from a state in init
will end in a state described by safe. Then ui(si) |= safe for
all ui, si satisfying the learning process for

(init, (S,A,R,E), choose, update, done,CM,MM)

where CM and MM are the controller and model monitor for
init→ [{ctrl; plant}∗]safe.

Theorem 1 states that whenever the environmental model
is accurate, every state we reach via JSC satisfies the safety
property safe. The proof of this property exploits the fact
that any proof of init → [{ctrl; plant}∗]safe will proceed by
identifying a loop invariant (Platzer 2012a).

Policy Extraction The ultimate output of the learning al-
gorithm is a control policy π. Many reinforcement algo-
rithms allow this policy to be extracted after some learning
period. If a known-safe fallback policy is provided, Theo-
rem 1 also extends verification results to extracted policies.
Formal definitions and proofs for safe policy extraction are
presented in the accompanying technical report (Fulton and
Platzer 2017).

Experimental Validation
The theoretical results presented in the Provably Safe Learn-
ing section apply to generic reinforcement learning algo-
rithms. This section presents two sets of simulations that ex-
pore JSC in the concrete setting of classical Q-learning on a
simple model of adaptive cruise control. The first set of ex-
periments validate the theoretical results within this concrete
setting. The second set of experiments consider a case where
the environment deviates from modeling assumptions, vio-
lating the key assumption made in Theorem 1. The second
set of experiments demonstrate that verification can help im-
prove the learning process itself.

The JSC algorithm is parametric in the approach toward
reinforcement learning. We choose Q-learning because it is
a simple algorithm, and our setting is simple enough that
discretized Q-learning is possible. We leave exploration of
JSC-style control in more complex environments, and with
more effective reinforcement learning algorithms, as future
work.

The setting of this experiment is a simple model of adap-
tive cruise control. These experiments are implemented in a
new linear Adaptive Cruise Control3 OpenAI Gym environ-
ment (Brockman et al. 2016) based on (Loos, Platzer, and
Nistor 2011).

Adaptive Cruise Control
Adaptive Cruise Control (ACC) is an increasingly common
feature in passenger vehicles. Unlike traditional cruise con-
trol, ACC adjusts the speed of a car relative to the speed of
a leader car. The safety property for adaptive cruise control

3This implementation is available at github.com/nrfulton/JSC



Table 2: Experiment 1: JSC vs. Classical Q Learning in a Modeled Environment
JSC Normal

Training steps Crash Fall Behind Steady Crash Fall Behind Steady
1,000 0 12559 289 10644 2162 42

10,000 0 12538 310 10462 2291 95
100,000 0 12375 473 10492 2284 72

is simple: an actuated follower car must avoid crashing into
a leader car.

Our experiment considers Adaptive Cruise Control for
two cars. We use relative coordinates to reduce the state
space, so instead of two positions posfollower and posleader
we have a single relative position

rpos = |posleader − posfollower|

A relative coordinate system allows us to exploit symmetries
in the state and action space during learning and increases
the likelihood that the system will return to a modeled state
after an environmental perturbation.

The relative position of the two cars rpos, is non-negative
whenever the cars do not collide. The relative velocity be-
tween the cars is zero whenever the cars are stationary rel-
ative to one another, positive whenever the cars are moving
apart, and negative whenever the cars are moving closer to-
gether. We consider a discrete action space – the actuated
car may brake with constant force B, accelerate with con-
stant force A, or maintain its current relative velocity.

Model 1 (Relative Acceleration Along a Straight Line).
rpos ≥ 0 ∧A > 0 ∧B > 0 ∧ T > 0 ∧ rpos ≥ r2vel

2A →
[
{
{racc := A

∪ ?rpos − (−BT+rvel)
2

2A + rvelT − BT 2

2 ≥ 0;
racc := −B

∪ ?rvel = 0; racc := 0
}; {r′pos = rvel, r

′
vel = racc, c

′ = 1&c ≤ T}}∗
] rpos ≥ 0

Model 1 presents a dL formula that corresponds to this
system. On every iteration of the control loop, the follower
actuates the relative acceleration. From this model, we ex-
tract controller and model monitors for JSC Q-learning us-
ing ModelPlex. Notice that this controller can be rather in-
efficient. In particular, one safe but inefficient determinis-
tic implementation of this model could choose to always
increase the distance between the two cars by choosing
racc := A.

Experimental Setup and Results

This section presents two experiments. In the first experi-
ment, we validate the safe learning theorem presented in the
previous section. In the second experiment, we go beyond
provably safe sandboxing to determine whether verification
results might be useful even when models are inaccurate;
i.e., even when the accurately modeled assumption (as stated
in Definition 3) is violated.

JSC in an Accurately Modeled Environment Our first
experiment validates our theoretical results by the perfor-
mance of JSC and Q-learning in an accurately modeled en-
vironment. The results of this experiment are recorded in
Table 2. We ran training for a specified number of steps
(n = 1, 000; 10, 0000; and 100, 0000). We then iterated
across each of the initial states and determined how the pol-
icy behaved in each case, omitting in which no safe policy
was available (i.e., states where even braking with maximum
braking force would result in crashes within the chosen dis-
cretized space).

The Crash columns indicate, for the policy extracted by
each approach, the number of initial states that resulted in a
crashing state. The Fall Behind columns indicate the num-
ber of initial states that resulted in a policy that brakes too
often; i.e., where the follower car loses track of the lead car.
The Steady columns indicate the number of initial states that
resulted in an ideal policy – one that does not lose the lead
car, but also does not result in a collision.

We observe that the JSC controller never enters unsafe
states during training. But we also observe that JSC encoun-
ters significantly fewer fall-behind states and more steady
states. This result indicates that learning with JSC is more
efficient than normal learning. The experimental observa-
tion that JSC is more efficient at learning effective policies
deserves further exploration.

JSC in an Environment that Admits Speculation The
results presented above demonstrate, via proof and experi-
ment, that Justified Speculative Control effectively transfers
proofs of correctness from verified models to reinforcement
learning algorithms.

In our second experiment (Table 3), we force speculation
by simulating an environment that behaves differently from
the modeled system. We introduce a slight perturbation to
the relative position of the cars (−2 units) with 5% proba-
bility. The policy extracted after running our JSC algorithm
for any period of time results in relatively few crashes (< 10
out of 20, 000 possible initial states result in a crash). All of
these crashing states are attributable to actuator faults.

During each experiment, we extracted the learned policy
for JSC and for classical Q-learning afterN simulations. We
then evaluated the resulting policy from every possible ini-
tial position. These results demonstrate that JSC can control
reasonably well even when there are small perturbations be-
tween the model and the simulated environment.

JSC with a Quantitative Model Monitor In our final ex-
periment, we compared the algorithm presented in this paper



Table 3: JSC vs. Q-learning with Error Injection (.05 error rate)
JSC Normal

Training steps Crash Fall behind Steady Crash Fall behind Steady
1,000 3 12539 306 10950 1745 153

10,000 7 12502 339 10546 2215 87
100,000 5 12359 484 10561 2242 45

with a slightly modified algorithm. The modified algorithm
uses the distance between the current state and the mod-
eled environment as an objective function during specula-
tion; when the system leaves the modeled state space, the
reinforcement learning agent optimizes for returning to the
modeled portion of the state space. We call this approach
JSCQ.

Table 4: Crashing states for JSC and JSCQ control
Perturbation JSC JSCQ

5% 3 2
25% 18 16
50% 41 34

For small positional perturbations, JSCQ and JSC per-
form equally well. However, we found that as the positional
perturbation increases, the modified algorithm begins to out-
perform the original algorithm. Table 4 presents these re-
sults.

Related Work
Safe Artificial Intelligence is an emerging area of interest,
but there is a rich history of research on safe control in the
absence of perfect models.

There are a myriad of approaches toward safe reinforce-
ment learning that do not take advantage of formal verifica-
tion. Many of these approaches are summarized in (Garcı́a
and Fernández 2015), who decompose these approaches into
two broad categories: modification of the optimality crite-
rion, and modification of the exploration process. In this sec-
tion, we compare our approach to these approaches, follow-
ing Garcı́a and Fernández’s taxonomy.

The primary novel contribution of our work, compared to
this body of literature, is two-fold. First, we leverage hybrid
systems verification results and runtime monitor synthesis
to appropriately sandbox the exploration process, instead of
relying on more ad-hoc sources of knowledge about how to
act safely. The chain of evidence transfers from a high-level
model to runtime monitors and ultimately to the reinforce-
ment learning process via the theorems presented in this
paper. Second, we distinguish between optimizing among
known safe policy options and speculating about portions of
the state space that are not a priori modeled. This distinc-
tion is crucial to determine what level of speculation should
be allowed, and when.

When compared to existing approaches to reinforcement
learning, our approach either 1) suggests a way to strengthen
the existing approach by incorporating not just a known-safe
policy but a formally verified safe policy; or 2) is possibly

compositional with the existing approach (by further modi-
fying our exploration process to perform more robust deci-
sion making when the model monitor is already violated).

Many approaches to safe reinforcement learning work by
constraining the optimality criterion used in reinforcement
learning. The idea is simple – instead of selecting from the
entire policy space, the agent may only choose from a set of
control actions that are a priori known to be safe (Garcı́a and
Fernández 2015). There are several approaches with this ba-
sic flavor (Kadota, Kurano, and Yasuda 2006; Geibel 2006;
Moldovan and Abbeel 2012). Our primary contribution, rel-
ative to this work, is that we retain formal verification re-
sults for the restricted policy space through the use of prov-
ably correct runtime monitors, and allow speculation when
policy space restriction becomes unjustified due to deviation
from modeling assumptions. Other approaches do not pro-
vide such strong results and do not relax constraints when
modeling assumptions are violated, but do perform more so-
phisticated approaches toward learning (we simply perform
naive Q-learning on a discretized state space). Incorporating
these more sophisticated approaches in a way that retains the
safety theorems presented in this paper is left as promising
future work.

Another approach toward safe reinforcement learning
adopts worst case criterion (Heger 1994) or risk-sensitive
criterion (Tamar, Xu, and Mannor 2013; Nilim and Ghaoui
2005), in which the optimization criterion is modified to re-
flect safety concerns.

Another set of approaches initialize the learner with some
initial knowledge, with the goal of directing policy explo-
ration away from unsafe states (Driessens and Dzeroski
2004). Our approach is analogous – for example, in the con-
text of teacher/learner reinforcement learning, our nondeter-
ministic controls could be thought of as an infinite set of
demonstrations. The problem in both cases is how to safely
control in cases where no demonstration is provided. The
primary strength of our approach is that we leverage formal
verification, and preserve these results during exploration.
We also believe it is important to distinguish between opti-
mization within a known safe policy space, and exploration
of inherently speculative control options.

Another approach toward safe reinforcement learning in-
volves analysis of the policy constructed from a learning
process (Katz et al. 2017). These approaches are appropri-
ate when the learning phase is not safety-critical, but not ap-
propriate when the system must behave safely while learn-
ing. We do both and also work with verified models, in-
stead of depending upon conjectures or assumptions about
the model. Our approach is also computationally attractive
when compared to these approaches, because we enforce



safety during reinforcement learning. Therefore, we directly
benefit from improvements to the data efficiency of rein-
forcement learning algorithms without any additional con-
sideration.

Conclusions
This paper proposes a way of incorporating formal verifi-
cation results into safe reinforcement learning systems. The
theorems and examples explored in this paper validate the
feasibility of this idea.
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