
Pegasus: a framework for sound
continuous invariant generation

Andrew Sogokon2,1, Stefan Mitsch1, Yong Kiam Tan1, Katherine Cordwell1,
and André Platzer1

1Carnegie Mellon University, USA
2University of Southampton, UK

FM 2019, 3rd World Congress on Formal Methods, Porto

October 20, 2019



Introduction
What this talk is about

Theorem proving in cyber-physical systems (CPS).

Why? Fully rigorous proofs of correctness.

Important for safety-critical embedded systems.

Problem: Theorem proving in CPS is not fully automatic.

Safety verification relies on finding the right invariants.

,
Pegasus: a framework for sound continuous invariant generation 1/24



Introduction
What this talk is about

Theorem proving in cyber-physical systems (CPS).

Why? Fully rigorous proofs of correctness.

Important for safety-critical embedded systems.

Problem: Theorem proving in CPS is not fully automatic.

Safety verification relies on finding the right invariants.

,
Pegasus: a framework for sound continuous invariant generation 1/24



Invariants in verification

invariant

,
Pegasus: a framework for sound continuous invariant generation 2/24



Invariants in verification

invariant

inductive
invariant

,
Pegasus: a framework for sound continuous invariant generation 3/24



Continuous invariants

ODEs:

~x′ = f (~x)

~x ∈ Rn

Init ⊆ Rn

,
Pegasus: a framework for sound continuous invariant generation 4/24



Continuous invariants

ODEs:

~x′ = f (~x)

~x ∈ Rn

Init ⊆ Rn

,
Pegasus: a framework for sound continuous invariant generation 5/24



Checking continuous invariants

Checking whether a formula defines a continuous (inductive) invariant is
decidable (Liu, Zhan & Zhao, EMSOFT 2011).

LZZ procedureformula, ODE yes/no

A complete axiomatization of continuous invariants in differential
dynamic logic dL (Platzer & Tan, LICS 2018).

proverformula, ODE
formal proof
of invariance(KeYmaera X)

dL prover

,
Pegasus: a framework for sound continuous invariant generation 6/24



Checking continuous invariants

Checking whether a formula defines a continuous (inductive) invariant is
decidable (Liu, Zhan & Zhao, EMSOFT 2011).

LZZ procedureformula, ODE yes/no

A complete axiomatization of continuous invariants in differential
dynamic logic dL (Platzer & Tan, LICS 2018).

proverformula, ODE
formal proof
of invariance(KeYmaera X)

dL prover

,
Pegasus: a framework for sound continuous invariant generation 6/24



Checking continuous invariants

Checking whether a formula defines a continuous (inductive) invariant is
decidable (Liu, Zhan & Zhao, EMSOFT 2011).

LZZ procedureformula, ODE yes/no

A complete axiomatization of continuous invariants in differential
dynamic logic dL (Platzer & Tan, LICS 2018).

proverformula, ODE
formal proof
of invariance(KeYmaera X)

dL prover

,
Pegasus: a framework for sound continuous invariant generation 6/24



Checking continuous invariants

Checking whether a formula defines a continuous (inductive) invariant is
decidable (Liu, Zhan & Zhao, EMSOFT 2011).

LZZ procedureformula, ODE yes/no

A complete axiomatization of continuous invariants in differential
dynamic logic dL (Platzer & Tan, LICS 2018).

proverformula, ODE
formal proof
of invariance(KeYmaera X)

dL prover

,
Pegasus: a framework for sound continuous invariant generation 6/24



Handling decidable problems
Design choices in proof assistants

prover
assistant

decision
procedure

yes/no
goal

Using external oracles

prover
assistant

tactics

axioms ` goal

goal

Formal proof using tactics

,
Pegasus: a framework for sound continuous invariant generation 7/24



Handling invariants
Design choices in proof assistants

prover
assistant

LZZ
procedure

yes/no
goal

“PVS-style”

KeYmaera Xassistant

dL tactics

dL axioms ` goal

goal

LCF-style

,
Pegasus: a framework for sound continuous invariant generation 8/24



Handling invariants
Design choices in proof assistants

prover
assistant

LZZ
procedure

yes/no
goal

“PVS-style”

Less soundness-critical code

KeYmaera Xassistant

dL tactics

dL axioms ` goal

goal

LCF-style

,
Pegasus: a framework for sound continuous invariant generation 9/24



Generating continuous invariants
Excellent progress made this decade on the invariant checking problem.

{inv} ODE {inv} (in dL inv→ [ODE] inv)

The invariant generation problem is much more difficult.

{pre} ODE {post} (in dL pre→ [ODE] post)

pre→ inv inv→ [ODE] inv inv→ post
pre→ [ODE] post

Practical bottleneck for proof automation.

,
Pegasus: a framework for sound continuous invariant generation 10/24



Generating continuous invariants
Excellent progress made this decade on the invariant checking problem.

{inv} ODE {inv} (in dL inv→ [ODE] inv)

The invariant generation problem is much more difficult.

{pre} ODE {post} (in dL pre→ [ODE] post)

pre→ inv inv→ [ODE] inv inv→ post
pre→ [ODE] post

Practical bottleneck for proof automation.

,
Pegasus: a framework for sound continuous invariant generation 10/24



Generating continuous invariants
Excellent progress made this decade on the invariant checking problem.

{inv} ODE {inv} (in dL inv→ [ODE] inv)

The invariant generation problem is much more difficult.

{pre} ODE {post} (in dL pre→ [ODE] post)

pre→ inv inv→ [ODE] inv inv→ post
pre→ [ODE] post

Practical bottleneck for proof automation.

,
Pegasus: a framework for sound continuous invariant generation 10/24



Generating continuous invariants
Excellent progress made this decade on the invariant checking problem.

{inv} ODE {inv} (in dL inv→ [ODE] inv)

The invariant generation problem is much more difficult.

{pre} ODE {post} (in dL pre→ [ODE] post)

pre→ inv inv→ [ODE] inv inv→ post
pre→ [ODE] post

Practical bottleneck for proof automation.

,
Pegasus: a framework for sound continuous invariant generation 10/24



Generating continuous invariants
In theory, we can search for invariants using template formulas:

a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 < 0 ∧ b0 + b1x+ b2y ≥ 0

Searching for the coefficients using algorithms from real algebraic
geometry (e.g. CAD). ∗(However, this is hardly practical)

Doubly-exponential time complexity in the number of variables
(here the number of coefficients).

More practical alternatives are needed.

,
Pegasus: a framework for sound continuous invariant generation 11/24



Generating continuous invariants
In theory, we can search for invariants using template formulas:

a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 < 0 ∧ b0 + b1x+ b2y ≥ 0

Searching for the coefficients using algorithms from real algebraic
geometry (e.g. CAD).

∗(However, this is hardly practical)

Doubly-exponential time complexity in the number of variables
(here the number of coefficients).

More practical alternatives are needed.

,
Pegasus: a framework for sound continuous invariant generation 11/24



Generating continuous invariants
In theory, we can search for invariants using template formulas:

a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 < 0 ∧ b0 + b1x+ b2y ≥ 0

Searching for the coefficients using algorithms from real algebraic
geometry (e.g. CAD). ∗(However, this is hardly practical)

Doubly-exponential time complexity in the number of variables
(here the number of coefficients).

More practical alternatives are needed.

,
Pegasus: a framework for sound continuous invariant generation 11/24



Generating continuous invariants
In theory, we can search for invariants using template formulas:

a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 < 0 ∧ b0 + b1x+ b2y ≥ 0

Searching for the coefficients using algorithms from real algebraic
geometry (e.g. CAD). ∗(However, this is hardly practical)

Doubly-exponential time complexity in the number of variables
(here the number of coefficients).

More practical alternatives are needed.

,
Pegasus: a framework for sound continuous invariant generation 11/24



Generating continuous invariants
More practical methods for invariant generation exist.

These are
I more specialized,
I incomplete,
I have different strengths and limitations,
I create a wide spectrum for what can be tried.

Challenge:
I build a system for navigating this spectrum,
I use it to improve proof automation in KeYmaera X.

,
Pegasus: a framework for sound continuous invariant generation 12/24



Generating continuous invariants
More practical methods for invariant generation exist.

These are
I more specialized,
I incomplete,
I have different strengths and limitations,
I create a wide spectrum for what can be tried.

Challenge:
I build a system for navigating this spectrum,
I use it to improve proof automation in KeYmaera X.

,
Pegasus: a framework for sound continuous invariant generation 12/24



Continuous invariant generator
Pegasus is an automatic continuous invariant generator.

Pegasus{pre} ODE {post} continuous invariant
(hopefully)

http://pegasus.keymaeraX.org

As of version 1.0, Pegasus (implemented in Wolfram Language) has

I a simple continuous safety verification problem classifier,
I implementation of invariant generation methods,
I a strategy for combining invariant generation methods,
I proof hints for KeYmaera X.

,
Pegasus: a framework for sound continuous invariant generation 13/24



Sound integration architecture

,
Pegasus: a framework for sound continuous invariant generation 14/24



Discrete abstraction
Partition Rn into discrete states S1, . . . , Sk defined by some predicates.

Compute the discrete transition relation.

,
Pegasus: a framework for sound continuous invariant generation 15/24



Qualitative analysis
In essence: discrete abstraction using information in the problem.

Some sources of predicates:
I right-hand sides of ODEs, their factors, etc.
I functions defining the pre/postcondition
I physically meaningful quantities (e.g. divergence of the vector field)

,
Pegasus: a framework for sound continuous invariant generation 16/24



First integrals
and Darboux polynomials

Conserved quantities in the continuous system.

Functions p such that p′ = 0 (i.e. the rate of change of p w.r.t. f is 0).

Searching for polynomial first integrals (of bounded degree) can be done
using linear algebra.

Darboux polynomials: p′ = αp, where α is a polynomial.

,
Pegasus: a framework for sound continuous invariant generation 17/24



First integrals
and Darboux polynomials

Conserved quantities in the continuous system.

Functions p such that p′ = 0 (i.e. the rate of change of p w.r.t. f is 0).

Searching for polynomial first integrals (of bounded degree) can be done
using linear algebra.

Darboux polynomials: p′ = αp, where α is a polynomial.
,

Pegasus: a framework for sound continuous invariant generation 17/24



Barrier certificates
Main idea: find a continuous invariant p ≤ 0 using

I differential inequalities, e.g. p′ ≤ 0, p′ ≤ λp (λ ∈ R), and
I sum-of-squares decomposition (via semidefinite programming).

First described by Prajna and Jadbabaie (HSCC 2004).
Generalizes to vector barrier certificates (our work, FM 2018).

,
Pegasus: a framework for sound continuous invariant generation 18/24



Differential saturation
A strategy for combining invariant generation methods.

Iteratively refine the invariant using available methods.

,
Pegasus: a framework for sound continuous invariant generation 19/24



Differential saturation
A strategy for combining invariant generation methods.

Iteratively refine the invariant using available methods.

I Refinement 1 (using a Darboux polynomial)

,
Pegasus: a framework for sound continuous invariant generation 20/24



Differential saturation
A strategy for combining invariant generation methods.

Iteratively refine the invariant using available methods.

I Refinement 1 (using a Darboux polynomial)
I Refinement 2 (using Qualitative analysis)

,
Pegasus: a framework for sound continuous invariant generation 21/24



Differential saturation
A strategy for combining invariant generation methods.

Iteratively refine the invariant using available methods.

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

I Refinement 1 (using a Darboux polynomial)
I Refinement 2 (using Qualitative analysis)
I Refinement 3 (using a barrier certificate)

,
Pegasus: a framework for sound continuous invariant generation 22/24



Some results
Non-linear systems

I 90 benchmark safety verification problems from the literature.
I 71 problem could be solved by the combined strategy.

BC (T)
BC (G)
BC (C)
DP (T)
DP (G)
DP (C)
FI (T)
FI (G)
FI (C)

QA (T)
QA (G)
QA (C)
DS (T)
DS (G)
DS (C)

2D 3D 4D 7 8D 9 P4D P5D

Non-linear problems (dimension: 2D-9D, followed by 4D and 5D product systems)

0

10

100

Duration (sec)

I A few problems were only solved by the combined strategy
(no individual method succeeded by itself).

,
Pegasus: a framework for sound continuous invariant generation 23/24



Conclusion & future outlook

The results we observe are thus far very encouraging.

I Many more invariant generation methods to implement.
I Generation strategies that work solely in tractable theories.
I Larger corpus of continuous verification problems needed.

Goal: to make hybrid systems theorem proving more or less automatic.

The next��ZZ30 10 years?

http://pegasus.keymaeraX.org

,
Pegasus: a framework for sound continuous invariant generation 24/24



Conclusion & future outlook

The results we observe are thus far very encouraging.

I Many more invariant generation methods to implement.
I Generation strategies that work solely in tractable theories.
I Larger corpus of continuous verification problems needed.

Goal: to make hybrid systems theorem proving more or less automatic.

The next��ZZ30 10 years?

http://pegasus.keymaeraX.org

,
Pegasus: a framework for sound continuous invariant generation 24/24



Conclusion & future outlook

The results we observe are thus far very encouraging.

I Many more invariant generation methods to implement.
I Generation strategies that work solely in tractable theories.
I Larger corpus of continuous verification problems needed.

Goal: to make hybrid systems theorem proving more or less automatic.

The next��ZZ30 10 years?

http://pegasus.keymaeraX.org
,

Pegasus: a framework for sound continuous invariant generation 24/24


	Introduction
	Problem overview
	Methods
	Strategy
	Benchmarks
	Conclusions

