
LEARNING TO FIND PROOFS AND THEOREMS

BY LEARNING TO REFINE SEARCH STRATEGIES

THE CASE OF LOOP INVARIANT SYNTHESIS

Carnegie Mellon University

Karlsruhe Institute of Technology

Jonathan Laurent, André Platzer

Can theorem proving be learned without a single

example of a proof or theorem?

• Imitation learning is limited by the scarcity of human proofs

• Reinforcement learning presents challenges:

• Infinite action spaces are hardly amenable to exploration

• Theorems are still needed as training tasks

Teacher Solver

proofs

theoremsrandom

seeds

AlphaZero agent

Strategy

rewards guidance

Strategy

rewards guidance

expert

writes

PROPOSED APPROACH

LOOP INVARIANT SYNTHESIS
• Training data unavailable and hard to generate!

• No pre-existing deep-learning agent capable of generalizing
across instances.

assume x >= 1
y = 0
while y < 1000 {
 x = x + y
 y = y + 1
}
assert x >= y

To prove the final assertion, one must find
a loop invariant that:

1. is true before the loop

2. is preserved by the loop body (when the

loop guard holds)

3. implies the final assertion (when the

loop guard does not hold)

Invariant: x ≥ y ∧ x ≥ 1 ∧ y ≥ 0

def solver( 
 init: Formula, guard: Formula, 
 body: Program, post: Formula) -> Formula:
 def prove_inv(inv: Formula) -> List[Formula]: 
 assert valid(Implies(init, inv)) 
 ind = Implies(And(guard, inv), wlp(body, inv))
 event(PROVE_INV_EVENT)
 match abduct(ind):
 case Valid:
 return [inv]
 case [*suggestions]: 
 aux = choose(suggestions)
 return [inv] + prove_inv(aux)
inv_cand = choose(abduct(Implies(Not(guard), post)))
inv_conjuncts = prove_inv(inv_cand) 
return And(*inv_conjuncts)

▲ A solver strategy for invariant synthesis

A LANGUAGE FOR EXPRESSING STRATEGIES
We define a strategy language based on choose and event operators.

Strategy

Expert strategy

……

… …

MDP amenable to RL and

neural-guided search

compiled

into

GENERATING TRAINING PROBLEMS

▲ Outline of a teacher strategy for invariant synthesis

def teacher(rng: RandGen) -> Prog:
 cs = sample_constrs(rng) 
 p = generate_prog(cs)
 p = transform(p, rng)
 p = hide_invariants(p)
 return p

def generate_prog(cs: Constrs):
 p = Prog("
 assume init;
 while (guard) {
 invariant inv_lin;
 invariant inv_aux;
 invariant inv_main;
 body; }
 assert post;")

 p = refine_guard(p, cs)
 p = refine_inv(p, cs)
 p = refine_body(p, cs)
 assert valid(inv_preserved(p))
 p = refine_post(p, cs)
 assert valid(inv_post(p))
 p = refine_init(p, cs)
 assert valid(inv_init(p))
 penalize_violations(p, cs)
 return p

def transform(p: Prog, rng: RandGen):
 p = shuffle_formulas(p, rng)
 p = add_useless_init(p, rng)
 ...
 return p

• Generating interesting theorems is harder than proving those!

• Our approach: refining conditional generative strategies using RL.

• Training curves for the teacher and the solver (respectively):

• Experimental results on Code2Inv (no backtracking search):

RESULTS ON INVARIANT SYNTHESIS

Strategy Strategy

Teacher Solver

Invariant synthesis

Contributor 1

Strategy Strategy

Teacher Solver

Inequality proving

Contributor 2Contributor 2

Strategy Strategy

Teacher Solver

Euclidian geometry

Contributor N…

…

Shared oracle (Large Language Model)

