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Can theorem proving be learned without a single

example of a proof or theorem?

• Imitation learning is limited by the scarcity of human proofs


• Reinforcement learning presents challenges:


• Infinite action spaces are hardly amenable to exploration 


• Theorems are still needed as training tasks
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LOOP INVARIANT SYNTHESIS
• Training data unavailable and hard to generate!


• No pre-existing deep-learning agent capable of generalizing 
across instances.

assume x >= 1
y = 0
while y < 1000 {
   x = x + y
   y = y + 1
}
assert x >= y

To prove the final assertion, one must find 
a loop invariant that:


1. is true before the loop

2. is preserved by the loop body (when the 

loop guard holds)

3. implies the final assertion (when the 

loop guard does not hold)

Invariant:  x ≥ y ∧ x ≥ 1 ∧ y ≥ 0



def solver( 
    init: Formula, guard: Formula, 
    body: Program, post: Formula) -> Formula: 
    def prove_inv(inv: Formula) -> List[Formula]: 
        assert valid(Implies(init, inv)) 
        ind = Implies(And(guard, inv), wlp(body, inv))
        event(PROVE_INV_EVENT)
        match abduct(ind): 
        case Valid:
            return [inv] 
        case [*suggestions]: 
            aux = choose(suggestions)
            return [inv] + prove_inv(aux) 
inv_cand = choose(abduct(Implies(Not(guard), post)))
inv_conjuncts = prove_inv(inv_cand) 
return And(*inv_conjuncts) 

▲ A solver strategy for invariant synthesis

A LANGUAGE FOR EXPRESSING STRATEGIES
We define a strategy language based on choose and event operators.
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GENERATING TRAINING PROBLEMS

▲ Outline of a teacher strategy for invariant synthesis

def teacher(rng: RandGen) -> Prog:
    cs = sample_constrs(rng) 
    p = generate_prog(cs)
    p = transform(p, rng) 
    p = hide_invariants(p)
    return p

def generate_prog(cs: Constrs):
    p = Prog("
        assume init;
        while (guard) {
          invariant inv_lin;
          invariant inv_aux;
          invariant inv_main;
          body; }
        assert post;")

    p = refine_guard(p, cs)    
    p = refine_inv(p, cs)
    p = refine_body(p, cs)
    assert valid(inv_preserved(p))   
    p = refine_post(p, cs)
    assert valid(inv_post(p))
    p = refine_init(p, cs)
    assert valid(inv_init(p))
    penalize_violations(p, cs)
    return p

def transform(p: Prog, rng: RandGen):
    p = shuffle_formulas(p, rng)
    p = add_useless_init(p, rng)
   ...
    return p

• Generating interesting theorems is harder than proving those!


• Our approach: refining conditional generative strategies using RL.



• Training curves for the teacher and the solver (respectively):

• Experimental results on Code2Inv (no backtracking search):

RESULTS ON INVARIANT SYNTHESIS
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