LEARNING TO FIND PROOFS AND THEOREMS
BY LEARNING TO REFINE SEARCH STRATEGIES

THE CASE OF LOOP INVARIANT SYNTHESIS

5] 0

‘ \{ Jonathan Laurent, André Platzer
NEU RAL

o ‘.' .. INFORMATION Carnegie Mellon University

’i * PROCESSING

s®SYSTEMS Karlsruhe Institute of Technology

Can theorem proving be learned without a single

example of a proof or theorem?

* Imitation learning is limited by the scarcity of human proofs
* Reinforcement learning presents challenges:
* Infinite action spaces are hardly amenable to exploration

* Theorems are still needed as training tasks

PROPOSED APPROACH

Teacher Solver

: theorems
random :

> :
seeds : : § :
: rewards Tl guidance . rewards Tl guidance
= o @ 1=
- Strategy | €3+ O > | J strategy
W expert 1
writes l

LOOP INVARIANT SYNTHESIS

* Training data unavailable and hard to generate!

* No pre-existing deep-learning agent capable of generalizing
across instances.

To prove the final assertion, one must find

a loop invariant that:

assume x >= 1

y=0 1. 1is true before the loop

while y < 1000 {
X=X+Yy

; y=y+1 loop guard holds)

assert x >= y 3. implies the final assertion (when the

2. is preserved by the loop body (when the

loop guard does not hold)

Invariant: x>y A x>1 Ay>0

A LANGUAGE FOR EXPRESSING STRATEGIES

We define a strategy language based on choose and event operators.

ﬁ

JStrategy

H

Expert strategy
compiled
into

O O
\/.

O O O
Nt/
O

MDP amenable to RL and
neural-guided search

= def solver(
init: Formula, guard: Formula,
body: Program, post: Formula) -> Formula:
def prove_inv(inv: Formula) -> List[Formula]:
assert valid(Implies(init, inv))
ind = Implies(And(guard, inv), wip(body, inv))
event(PROVE_INV_EVENT)
match abduct(ind):
case Valid:
return [inv]
case ["suggestions]:

aux = choose(s '
: return [inv] + prgve_inv(aux)
= inv_cand = choose(abd res(Not(guard), post)))

= inv_conjuncts EPTove (inv_cand)
- returnAnd(*in)

A A solver strategy for invariant synthesis

GENERATING TRAINING PROBLEMS

* Generating interesting theorems is harder than proving those!

* Our approach: refining conditional generative strategies using RL.

def teacherna—RandGon——Pros p F refine_guard(p, cs)
od = camnle con p F refine_inv(p, cs)
p = generate_prog(cs) p = refine_body(p, cs)
p = transform(p, rng) agsert valid(inv_preserved(p))
p = hide_invariants(p) p F refine_post(p, cs)
return p agsert valid(inv_post(p))
p E refine_init(p, cs)
def generate_prog(cs: Constrs): agsert valid(inv_init(p))
p = Prog(" penalize_violations(p, cs)
Essume init; retuarmp
hile (guard) {
invariant inv_lin; def transform(p: Prog, rng: RandGen):
invariant inv_aux; p = shuffle_formulas(p, rng)
Invariant inv_main; p = add_useless_init(p, rng)
body; } N
assert post;") return p

A Outline of a teacher strategy for invariant synthesis

RESULTS ON INVARIANT SYNTHESIS

* Training curves for the teacher and the solver (respectively):

T 0.5 - T 0.7 4
: c
“ 2
o 0.0 1 o 0.6
& 80
5 5
> >
< N < -

1 1 1 1 1 1 1 1
0 5 10 15 0 5 10 15
Iteration number Iteration number

e Experimental results on Code2Inv (no backtracking search):

Policy % Problems solved
Random 18.4 £+ 0.0
Network (untrained teacher) 39.7 &+ 1.6

Network (trained teacher) 61.5 + 04

@ Shared oracle (Large Language Model)

Teacher Solver

Invariant synthests

Contributor 1

Teacher Solver

Inequality proving

Contributor 2

Teacher Solver

Euclidian geometry

Contributor N

