LEARNING TO FIND PROOFS AND THEOREMS
BY LEARNING TO REFINE SEARCH STRATEGIES

THE CASE OF LOOP INVARIANT SYNTHESIS
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Can theorem proving be learned without a single

example of a proof or theorem?

* Imitation learning is limited by the scarcity of human proofs
* Reinforcement learning presents challenges:
* Infinite action spaces are hardly amenable to exploration

* Theorems are still needed as training tasks




PROPOSED APPROACH
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LOOP INVARIANT SYNTHESIS

* Training data unavailable and hard to generate!

* No pre-existing deep-learning agent capable of generalizing
across instances.

To prove the final assertion, one must find

a loop invariant that:

assume x >= 1

y=0 1. 1is true before the loop

while y < 1000 {
X=X+Yy

; y=y+1 loop guard holds)

assert x >= y 3. implies the final assertion (when the

2. is preserved by the loop body (when the

loop guard does not hold)

Invariant: x>y A x>1 Ay>0



A LANGUAGE FOR EXPRESSING STRATEGIES

We define a strategy language based on choose and event operators.
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= def solver(
init: Formula, guard: Formula,
body: Program, post: Formula) -> Formula:
def prove_inv(inv: Formula) -> List[Formula]:
assert valid(Implies(init, inv))
ind = Implies(And(guard, inv), wip(body, inv))
event(PROVE_INV_EVENT)
match abduct(ind):
case Valid:
return [inv]
case ["suggestions]:

aux = choose(s '
: return [inv] + prgve_inv(aux)
= inv_cand = choose(abd res(Not(guard), post)))

= inv_conjuncts EPTove (inv_cand)
- returnAnd(*in)

A A solver strategy for invariant synthesis



GENERATING TRAINING PROBLEMS

* Generating interesting theorems is harder than proving those!

* Our approach: refining conditional generative strategies using RL.

def teacherna—RandGon——Pros p F refine_guard(p, cs)
od = camnle con p F refine_inv(p, cs)
p = generate_prog(cs) p = refine_body(p, cs)
p = transform(p, rng) agsert valid(inv_preserved(p))
p = hide_invariants(p) p F refine_post(p, cs)
return p agsert valid(inv_post(p))
p E refine_init(p, cs)
def generate_prog(cs: Constrs): agsert valid(inv_init(p))
p = Prog(" penalize_violations(p, cs)
Essume init; retuarmp
hile (guard) {
invariant inv_lin; def transform(p: Prog, rng: RandGen):
invariant inv_aux; p = shuffle_formulas(p, rng)
Invariant inv_main; p = add_useless_init(p, rng)
body; } N
assert post;") return p

A Outline of a teacher strategy for invariant synthesis



RESULTS ON INVARIANT SYNTHESIS

* Training curves for the teacher and the solver (respectively):
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e Experimental results on Code2Inv (no backtracking search):

Policy % Problems solved
Random 18.4 £+ 0.0
Network (untrained teacher) 39.7 &+ 1.6

Network (trained teacher) 61.5 + 04
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