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Abstract. We generalise dynamic logic to a logic for differential-algebraic
programs, i.e., discrete programs augmented with first-order differential-
algebraic formulas as continuous evolution constraints in addition to
first-order discrete jump formulas. These programs characterise inter-
acting discrete and continuous dynamics of hybrid systems elegantly
and uniformly. For our logic, we introduce a calculus over real arith-
metic with discrete induction and a new differential induction with which
differential-algebraic programs can be verified by exploiting their differ-
ential constraints algebraically without having to solve them. We develop
the theory of differential induction and differential refinement and anal-
yse their deductive power. As a case study, we present parametric tan-
gential roundabout maneuvers in air traffic control and prove collision
avoidance in our calculus.

Keywords: dynamic logic, differential constraints, sequent calculus, ver-
ification of hybrid systems, differential induction, theorem proving

1 Introduction

Verification of Hybrid Systems. As a model for complex control systems,
hybrid systems [23, 6, 12] are dynamical systems [45] that are governed by in-
teracting discrete and continuous dynamics. For discrete transitions, the hybrid
system changes state instantaneously and possibly discontinuously. During con-
tinuous transitions, the system state is a continuous function of continuous time
and varies according to a differential equation, which is possibly subject to do-
main restrictions or algebraic relations resulting from physical circumstances or
the interaction of continuous dynamics with discrete control.

For example, flight maneuvers in air traffic control [47, 28, 29, 14, 11, 34, 18,
25] give hybrid systems with challenging dynamics. There the continuous dy-
namics results from continuous movement of aircraft in space, and the discrete
dynamics is caused by the instantaneous switching of maneuvering modes or by
discrete aircraft controllers that decide when and how to initiate flight maneu-
vers. Proper functioning of these systems is highly safety-critical with respect
to spatial separation of aircraft during all flight maneuvers, especially collision
avoidance maneuvers. Their analysis, however, is challenging due to the super-
position of involved continuous flight dynamics with nontrivial discrete control,
causing hybrid systems like these to be neither amenable to mere continuous rea-
soning nor to verification techniques for purely discrete systems. Since, especially
in the presence of parameters, hybrid systems cannot be verified numerically [34,
9], we present a purely symbolic approach using combined deductive and alge-
braic verification techniques.
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In practice, correctness of hybrid systems further depends on the choice of
parameters that naturally arise from the degrees of freedom of how a part of
the system can be instantiated or how a controller can respond to input [47, 12,
10, 34, 37, 25]. For instance, correct angular velocities, proper timing, and com-
patible maneuver points are equally required for safe air traffic control [47, 34].
Additionally, relevant correctness properties for hybrid systems include safety,
liveness, and mixed properties like reactivity [37], all of which can possibly in-
volve (alternating) quantifiers or free variables for parameters [31, 10, 32, 37]. As
a uniform approach for specifying and verifying these heterogeneous properties
of hybrid systems with symbolic parameters, we introduce an extension of first-
order logic and dynamic logic [22] for handling correctness statements about
hybrid systems in the presence of (quantified) parameters, thereby extending
our previous results [31, 32]. These combinations can even be used to discover
constraints on the free parameters that are required for system correctness.

Logic for Hybrid Systems. The aim of this paper is to present logic-based
techniques with which hybrid systems with interacting discrete and continuous
dynamics can be specified and verified in a coherent logical framework. To this
end, we introduce the differential-algebraic dynamic logic (DA-logic or DAL for
short) as the logic of general hybrid change. As an elegant and uniform oper-
ational model for hybrid systems in DAL, we introduce differential-algebraic
programs (DA-programs). These programs combine first-order discrete jump
constraints (DJ-constraints) to characterise discrete transitions with support
for first-order differential-algebraic constraints (DA-constraints) to characterise
continuous transitions. DA-constraints provide a convenient way for expressing
continuous system evolution constraints and give a uniform semantics to differ-
ential evolutions, systems of differential equations [48], switched systems [6], in-
variant constraints [23, 12], triggers [6], and differential-algebraic equations [19].
In DJ-constraints and DA-constraints, first-order quantifiers further give a natu-
ral and semantically well-founded way of expressing unbounded discrete or con-
tinuous nondeterminism in the dynamics, including nondeterminism resulting
from internal choices or external disturbances. In interaction with appropriate
control structure, DJ-constraints and DA-constraints can be combined to form
DA-programs as uniform operational models for hybrid systems. With this, DA-
programs are a generalised program notation for the standard notation of hybrid
systems as hybrid automata [23].

As a specification and verification logic for hybrid systems given as DA-
programs, we design the first-order dynamic logic DAL. In particular, we gen-
eralise discrete dynamic logic [22] to hybrid control and support DA-programs
as actions of a first-order multi-modal logic [16], such that its modalities can be
used to specify and verify correctness properties of hybrid systems. For instance,
the DAL formula [α]φ expresses that all traces of DA-program α lead to states
satisfying the DAL formula φ. Likewise, 〈α〉φ says that there is at least one state
reachable by α which satisfies φ. Similarly, ∃p [α]〈β〉φ says that there is a choice
of parameter p such that for all possible behaviour of DA-program α there is a
reaction of DA-program β that ensures φ.

Deductive Verification and Differential Induction. As a means for ver-
ifying hybrid systems by proving corresponding DAL formulas, we introduce a
sequent calculus. It uses side deductions [31] as a simple and concise, yet con-
structive, modular technique to integrate real quantifier elimination with calculus
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rules for modalities. For handling discrete transitions, we present a first-order
generalisation of standard calculus rules [22, 5]. Interacting continuous transi-
tions are more involved. Formulas with very simple differential equations can
be verified by using their solutions [17, 30, 3, 31, 32]: Linear differential equations
with nilpotent constant coefficients (i.e., x′ = Ax for a matrix A with An = 0
for some n) have polynomial solutions so that arithmetic formulas about these
solutions can be verified by quantifier elimination [8]. This approach, however,
does not scale to hybrid systems with more sophisticated differential constraints
because their solutions do not support quantifier elimination (e.g., when they
involve transcendental functions), cannot be given in closed form [48], are not
computable [38], or do not even exist [48, 27]. Solutions of differential equa-
tions are much more complicated than the original equations and can become
transcendental even for simple linear differential equations like x′ = −y, y′ = x,
where the solutions will be trigonometric functions.

Instead, as a logic-based technique for verifying DA-programs with more gen-
eral differential-algebraic constraints, we introduce first-order differential induc-
tion as a fully algebraic form of proving logical statements about DA-constraints
using their differential-algebraic constraints in a differential induction step in-
stead of using their solutions in a reachability computation. Unlike in discrete
induction, the invariant is a differential invariant, i.e., a property that is closed
under total differentiation with respect to the differential constraints. There, the
basic idea for showing invariance of a property F is to show that F holds initially
and its total derivative F ′ holds always along the dynamics (with generalisa-
tions of total differentials to logical formulas and corresponding generalisations
for quantified DA-constraints). This analysis considers all non-Zeno executions,
i.e., where the system cannot switch its mode infinitely often in finite time. In
addition, we introduce differential strengthening as a technique for refining the
system dynamics by differential invariants until the property becomes provable
for the refined dynamics, which we show to be crucial in practical applications.

Comparison. In our previous work [31, 32] we have introduced logics and cal-
culi for verifying hybrid programs, which is the quantifier-free subclass of DA-
programs without propositional connectives (see Table 1 for examples). In a
companion paper [33], we have extended our base calculus for the logic dL [31]
to a free variable calculus with skolemisation, where we have focused on inte-
grating arithmetic reasoning into the modal calculus. Further, we have proven
this calculus to be complete relative to the handling of differential equations [31].
Complementary, in this paper, we address the question how sophisticated dif-
ferential constraints themselves can be specified and verified in a way that lifts
to hybrid systems, and how these techniques can be integrated seamlessly into
a logic.

To this end, we design differential-algebraic programs as the first-order com-
pletion of hybrid programs [31–33], and we augment both the logic and the
calculus with means for handling DA-constraints. In particular, we extend our
logic dL [31, 33] to the logic DAL with general first-order differential constraints
plus first-order jump formulas and introduce differential induction for verify-
ing differential-algebraic programs. Specifically, the continuous evolutions which
can be handled by differential induction are strictly more expressive than those
that previous calculi [49, 42, 12, 31–33] are able to handle. DAL even supports
differential-algebraic equations [19]. Consequently, the DAL calculus can ver-
ify much more general scenarios, including the dynamics of aircraft maneuvers,
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Table 1: Comparison of DAL with DA-programs versus dL with hybrid programs
dL/hybrid programs DAL/DA-programs

expressive
power

single assignments propositional and quantified DJ-constraints
x := 1 x > 0→ ∃a (a < 5 ∧ x := a2 + 1)

differential equations propositional and quantified DA-constraints
x′1 = d1, x

′
2 = d2 ∃ω≤1 (d′1 = −ωd2 ∧ d′2 = ωd1) ∨ (d′1 ≤ d′2 ≤ 2d1)

verification
technology

substitutions quantifier elimination and substitutions
polynomial solutions first-order differential induction

quantifier
integration

free variables, skolem-
isation

side deductions

scope of ap-
plications

nilpotent dynamics,
e.g., trains in R1

algebraic dynamics and polynomial differential
constraints, e.g., curved aircraft flight

which were out of scope for approaches that require polynomial solutions [17, 30–
33]. Table 1 summarises the differences in syntactic expressiveness, discrete and
continuous verification technology, arithmetic quantifier integration approach,
and overall scope of applicability. The DAL extensions presented in this paper
are both complementary to and compatible with our dL calculus extensions for
integrating arithmetic as presented in a companion paper [33].

Contributions. The first contribution of this paper is the generalised differential-
algebraic dynamic logic DAL for differential-algebraic programs. DAL provides
a uniform semantics and a concise language for specifying and verifying correct-
ness properties of general hybrid systems with sophisticated (possibly quanti-
fied) first-order dynamics. The main contribution is a verification calculus for
DAL including uniform proof rules for differential induction along first-order
differential-algebraic constraints with differential invariants, differential variants,
and differential strengthening. Our main theoretical contribution is our analysis
of the deductive power of differential induction for classes of differential invari-
ants. As an applied contribution, we introduce a generalised tangential round-
about maneuver in air traffic control and we demonstrate the capabilities of our
approach by verifying collision avoidance in the DAL calculus. To the best of
our knowledge, this is the first formal proof for (unbounded) safety of the hy-
brid dynamics of an aircraft maneuver with curved flight dynamics and the first
sound verification result for collision avoidance with curved aircraft dynamics.

Related Work. Hybrid automata [23] are the predominant graphical notation
for hybrid systems. In much the same way as finite automata can be repre-
sented as while-programs, or timed automata [1] have a notation as real-time
programs [24], hybrid automata can be represented as hybrid programs [31–33].
Since hybrid programs are a subclass of DA-programs, hybrid automata can also
be represented as DA-programs. Essentially, each continuous evolution state of
a hybrid automaton is represented as a DA-constraint and each transition edge
corresponds to a DJ-constraint. Yet, DA-programs are more expressive so that
a single DA-constraint can even represent multiple continuous evolutions, for
instance. For verification, the uniform compositional semantics of DA-programs
can be exploited to devise a compositional calculus that reduces verification of
statements about DA-programs to properties of their parts, which is an impor-
tant aspect for integrating differential induction into the verification of hybrid
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systems. In addition, DA-programs provide first-order dynamics with proposi-
tional connectives and quantifiers to express finite or infinite nondeterminism in
discrete and continuous transitions, which gives a more expressive model than
hybrid automata [23].

Most verification approaches for hybrid systems follow the model checking
paradigm for hybrid automata and use approximations or abstraction refinement,
e.g., [23, 7, 4], because reachability is undecidable for hybrid automata [23]. We
have shown in previous work [34] that even reachability problems for fairly re-
stricted classes of single continuous transitions are not decidable using numerical
computations. Thus, we follow a purely symbolic approach in this paper. More-
over, we introduce the logic DAL, which gives a more expressive specification
and verification language than reachability in model checking. In addition, using
quantifiers, DAL is capable of handling quantified parametric properties.

There are other logics for hybrid systems. Zhou et al. [49] presented a duration
calculus with mathematical expressions in derivatives of state variables. They use
a multitude of rules and an oracle that requires separate mathematical reasoning
about derivatives and continuity, which is not suitable for practical verification.

Rönkkö et al. [42] presented a guarded command language with differential
relations and gave a semantics in higher-order logic with built-in derivatives.
Without providing a means for verification of this higher-order logic, the ap-
proach is still limited to providing a notational variant of classical mathematics.

Davoren and Nerode [12] extended the propositional modal µ-calculus with
a semantics in hybrid systems and examine topological aspects. They provided
Hilbert-style calculi to prove formulas that are valid for all hybrid systems si-
multaneously. Thus, only limited information can be obtained about a particular
system: In propositional modal logics, system behaviour needs to be axiomatised
in terms of abstract actions a, b, c of unknown effect, which is not always possible.

The strength of our logic primarily is that it is a first-order dynamic logic:
It handles actual operational models of hybrid systems like x := x+ 1;x′ = 2x
instead of abstract propositional actions of unknown effect. Further, we provide a
calculus for actually verifying hybrid systems consisting of general DA-programs
including quantified state change and differential induction techniques.

Logics for real-time systems, e.g., [24, 44], are not expressive enough to cap-
ture the dynamics of hybrid systems, particularly their differential equations,
which are the main focus of this paper. For instance, Schobbens et al. [44] give
complete axiomatisations of two decidable dense time propositional linear tem-
poral logics. Unfortunately, in these propositional logics one cannot even express
that relevant separation properties like (x1 − y1)2 + (x2 − y2)2 ≥ p2 hold always
during the flight of aircraft guided by specific flight controllers.

Several authors [43, 41, 39, 40] argue that invariant techniques scale to more
general dynamics than explicit reach-set computations or techniques that require
solutions of the differential equations [17, 30–32]. Among them, there are model
checking approaches [43, 41] that use equational polynomial invariants based
on Gröbner basis computations. Still, the approach of Rodŕıguez-Carbonell and
Tiwari [41] requires closed-form solutions and is restricted to linear dynamics.
The major limitation of these approaches [43, 41], however, is that they only work
for equational invariants of fully equation-definable hybrid systems, including
equational initial sets and switching surfaces. Yet, this assumes highly regular
systems without tolerances and only works for null sets. In practice, the set of
initial states usually does not have measure zero, though. A thorough analysis
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of collision avoidance maneuvers, for instance, should consider all initial flight
paths in free flight instead of just a single restricted position corridor.

Prajna et al. [39, 40] have generalised Lyapunov functions to barrier certifi-
cates, i.e., a function B decreasing along the dynamics whose zero set separates
initial from unsafe states. Further, they focus on stochastic extensions. DAL pro-
vides barrier certificates as a special case using B ≤ 0 as a differential invariant.
In a similar vein, criticality functions [10] generalise Lyapunov-functions from
stability to safety, which DAL provides as a special case of differential invariants.

We generalise purely equational invariants [43, 41] and single polynomial ex-
pressions [43, 39, 40, 10] to general differential induction with real arithmetic
formulas. In practice, such more general differential invariants are needed for
verifying sophisticated hybrid systems including aircraft maneuvers. Further,
unlike other approaches [43, 41, 39, 40], DAL leverages the full deductive power
of logic, combining differential induction with discrete induction to lift these
proof techniques uniformly to hybrid systems. In addition, dynamic logic can
be used to prove sophisticated statements involving quantifier and modality al-
ternations for parametric verification [31]. Finally, the DAL calculus supports
combinations with differential variants for liveness properties or combinations
with differential strengthening, which we show to be crucial in verifying realistic
aircraft maneuvers.

In air traffic control, Tomlin et al. [47] analyse competitive aircraft maneuvers
game-theoretically using Hamilton-Jacobi-Isaacs partial differential equations.
They derive saddle solutions for purely angular or purely linear control actions.
They propose roundabout maneuvers and give bounded-time verification results
for trapezoidal straight-line approximations. Our symbolic techniques avoid ex-
ponential state space discretisations that are required for complicated PDEs and
are thus more scalable for automation. Further, we handle fully parametric cases,
even for more complicated curved flight dynamics.

Hwang et al. [25] have presented a straight-line aircraft conflict avoidance ma-
neuver that involves optimisation over complicated trigonometric computations,
and validate it on random numerical simulation. They show examples where the
decisions of the maneuver change only slightly for small perturbations. Hwang
et al. do not, however, prove that their proposed maneuver is safe with respect
to actual hybrid flight dynamics.

Dowek et al. [14] and Galdino et al. [18] consider straight-line maneuvers and
formalise geometrical proofs in PVS. Like in the work of Hwang et al. [25], they
do not, however, consider curved flight paths nor verify actual hybrid dynamics
but work with geometrical meta-level reasoning, instead.

In all these approaches [14, 18, 25], it remains to be proven separately that
the geometrical meta-level considerations actually fit to the hybrid dynamics and
flight equations. In contrast, our approach directly works for the hybrid flight
dynamics and we verify roundabout maneuvers with curves instead of straight-
line maneuvers with non-flyable instant turns only. A few approaches [11, 29]
have been undertaken to modelcheck discretisations of roundabout maneuvers,
which indicate avoidance of orthogonal collisions. However, the counterexamples
found by our model checker in previous work [34] show for these maneuvers that
collision avoidance does not extend to other initial flight paths.

Structure of this Paper. In Section 2, we introduce syntax and semantics
of the differential-algebraic logic DAL. In Section 3, we introduce tangential
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roundabout maneuvers in air traffic control as a case study and running example.
Further, we introduce a sequent calculus with differential induction for DAL
in Section 4, prove soundness and analyse the deductive power of differential
induction. Using the DAL calculus, we prove, in Section 5, safety of the tangential
roundabout maneuver in air traffic control. Finally, we draw conclusions and
discuss future work in Section 6.

2 Syntax and Semantics of Differential-Algebraic Logic

In this section, we introduce the differential-algebraic logic (DAL) as a specifi-
cation and verification logic for differential-algebraic programs (DA-programs).
DA-programs constitute an elegant and uniform model for hybrid systems. We
start with an informal introduction that motivates the definitions to come. DA-
programs have three basic characteristics:

Discrete jump constraints. Discrete transitions, which can possibly lead to
discontinuous change, are represented as discrete jump constraints (DJ-constraints),
i.e., first-order formulas with instantaneous assignments of values to state vari-
ables as additional atomic formulas. DJ-constraints specify what new values the
respective state variables assume by an instant change. For instance, d1 :=−d2
specifies that the value of variable d1 is changed to the value of −d2. Multi-
ple discrete changes can be combined conjunctively with simultaneous effect,
e.g. d1 :=−d2 ∧ d2 := d1, which assigns the previous value of −d2 to d1 and, si-
multaneously, the previous value of d1 to d2. This operation instantly rotates the
vector d = (d1, d2) by π/2 to the left. Using d := d⊥ as a short vectorial nota-
tion for this jump, the DJ-constraint (d1 > 0→ d := d⊥) ∧ (d1 ≤ 0→ d :=−d⊥)
specifies that the direction of the rotation depends on the initial value of d1. Fi-
nally, the DJ-constraint ∃a (ω := a2 ∧ a < 5) assigns the square of some number
less than 5 to ω.

Differential-algebraic constraints. Continuous dynamics is represented with
differential-algebraic constraints (DA-constraints) as evolution constraints, i.e.,
first-order formulas with differential symbols x′, e.g., in differential equations or
inequalities. DA-constraints specify how state variables change continuously over
time. For instance, x′1 = d1 ∧ x′2 = d2 says that the system continuously evolves
by moving the vector x = (x1, x2) into direction d = (d1, d2) along the differential
equation system (x′1 = d1, x

′
2 = d2). Likewise, d′1 = −ωd2 ∧ d′2 = ωd1 ∧ d1 ≥ 0 spec-

ifies that the vector d is continuously rotating with angular velocity ω, so that (in
conjunction with x′1 = d1 ∧ x′2 = d2), the direction where point x is heading to
changes over time. By adding d1 ≥ 0 conjunctively to the DA-constraint, we ex-
press that the curving will only be able to continue while d1 ≥ 0. This evolution
will have to stop before d1 < 0. The evolution is impossible if d1 ≥ 0 already fails
to hold initially. The DA-constraint ∃ω (d′1 = −ωd2 ∧ d′2 = ωd1 ∧ −1 ≤ ω ≤ 1)
characterises rotation with some angular velocity −1 ≤ ω ≤ 1, which may even
change over time, in contrast to d′1 = −ωd2 ∧ d′2 = ωd1 ∧ −1 ≤ ω ≤ 1 ∧ ω′ = 0
or DA-constraint d′1 = −ωd2 ∧ d′2 = ω where ω is not allowed to change.

Differential-algebraic programs. As an operational model for hybrid sys-
tems, DJ-constraints and DA-constraints, which represent general discrete and
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continuous transitions, respectively, can be combined to form a DA-program us-
ing regular expression operators (∪, ∗, ;) of regular discrete dynamic logic [22] as
control structure. For example, ω := 1 ∪ ω :=−1 describes a controller that can
either choose to set angular velocity ω to a left or right curve, by a nondeterminis-
tic choice (∪). Similarly, sequential composition ω := ω + 1; d′1 = −ωd2 ∧ d′2 = ωd1
says that the system first increases its angular velocity by a discrete transition
and then switches to a mode in which it follows a continuous rotation with this
angular velocity.

Discussion. Not all constraints involving x := θ or x′ qualify as reasonable ways
of characterising elementary system transitions. Unlike positive occurrences, neg-
ative occurrences of assignments like in ¬(x := 5) are pointless, because they im-
pose no meaningful transition constraints on which new value x actually assumes
(but only on which value it is not assigned to). Likewise, negative occurrences
of differential constraints as in ¬(x′ = 5) would be pointless as they do not con-
strain the overall evolution but allow arbitrary transitions.

Further, we disallow duplicate constraints that constrain the same variable in
incompatible ways at the same time as, e.g., in x := 2 ∧ x := 3 or x′ = 2 ∧ x′ = 3.
At any state during a system evolution, variable x can only assume one value
at a time, not both 2 and 3 at once. Similarly, variables cannot evolve with
contradictory slopes at the same time for any positive duration.

Finally, ∀a x := a would be equivalent to false, because it is impossible to
assign all possible choices for a (hence all reals) simultaneously to x, which can
only assume one value at a time. Likewise ∀a x′ = a would be equivalent to false,
because x′ can only equal one real value at a time. Dually, ∃a a := θ is equivalent
to true, because the DJ-constraint imposes no constraints nor has any visible
effects (the scope of the quantified a ends with the DJ-constraint). The situation
with ∃a a′ = θ is similar.

Even though a semantics and proof rules for these cases can be defined, the
respective transitions are degenerate and their technical handling is not very
illuminating. Hence, in the sequel, we define DJ-constraints and DA-constraints
to avoid these insignificant cases altogether. Note that the syntactical restrictions
are non-essential but simplify the presentation by allowing us to focus on the
interesting cases.

2.1 Syntax of Differential-Algebraic Logic

The formulas of DAL are built over a signature Σ of real-valued function and
predicate symbols. The signature Σ contains the usual function and predicate
symbols for real arithmetic: +,−, ·, /,=,≤, <,≥, > and number symbols such
as 0, 1. State variables are represented as real-valued function symbols of arity
zero (constants) in Σ. These state variables are flexible [5], i.e., their inter-
pretation can change from state to state while following the transitions of a
DA-program. Observe that there is no need to distinguish between discrete and
continuous variables in DAL. The set Term(Σ) of terms is defined as in classical
first-order logic, yielding rational expressions over the reals. The set of formulas
of first-order logic is defined as common, giving first-order real arithmetic.

Although we are primarily interested in polynomial cases, our techniques
generalise to the presence of division. Yet to avoid partiality in the semantics,
we only allow to use p/q when q 6= 0 is present or ensured. Any formula or
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constraint φ containing a term of the form p/q is taken to mean φ ∧ ¬(q = 0).
Note that, in a certain sense, divisions cause less difficulties for the calculus than
for the semantics. Particularly, our calculus uses indirect means of differential
induction to conclude properties of solutions of DA-constraints, thereby avoiding
the need to handle singularities in these solutions explicitly as caused by divisions
by zero.

Differential-Algebraic Programs. DA-programs consist of first-order dis-
crete jump formulas and first-order differential-algebraic formulas as primitive
operations, which interact using regular control structure.

Reflecting the discussion before Section 2.1, we characterise reasonable occur-
rences for changes like x := θ or x′ as follows. We call a formula G an affirmative
subformula of a first-order formula F iff:

1. G is a positive subformula of F , i.e., it occurs with an even number of
negations, and

2. no variable y that occurs in G is in the scope of a universal quantifier ∀y of
a positive subformula of F (or ∃y of a negative subformula of F ).

Definition 1 (Discrete jump constraint). A discrete jump constraint (DJ-
constraint) is a formula J of first-order real arithmetic over Σ with additional
atomic formulas of the form x := θ where x ∈ Σ, θ ∈ Term(Σ). The latter
are called assignments and are only allowed in affirmative subformulas of DJ-
constraints that are not in the scope of a quantifier for x of J . A DJ-constraint
without assignments is called jump-free. A variable x is (possibly) changed in J
iff an assignment of the form x := θ occurs in J .

The effect of (x1 := θ1 ∧ . . ∧ xn := θn ∧ x1 > 0) ∨ (x1 := ϑ1 ∧ . . ∧ xn := ϑn ∧ x1 < 0)
is to simultaneously change the interpretations of the variables xi to the respec-
tive θi if x1 > 0, and to change the xi to ϑi if, instead, x1 < 0. If neither case
applies (x1 = 0), the DJ-constraint evaluates to false as no disjunct applies so
that no jump is possible at all, which will prevent the system from continuing
any further. In particular, a jump-free DJ-constraint like x ≥ y corresponds to a
test. It completes without changing the state if, in fact, x ≥ y holds true in the
current state, and it aborts system evolution otherwise (deadlock). Especially,
unlike the assignment x := θ, which changes the value of x to that of θ, the
test x = θ fails by aborting the system evolution if x does not already happen
to have the value θ. If cases overlap, as in (x := x− 1 ∧ x ≥ 0) ∨ x := 0, either
disjunct can be chosen to take effect by a nondeterministic choice.

Quantifiers within DJ-constraints express unbounded discrete nondetermin-
istic choices. For instance, the following quantified DJ-constraint assigns some
vector u ∈ R2 to e such that the rays spanned by d = (d1, d2) and u = (u1, u2)
intersect:

∃u1∃u2 (e1 := u1 ∧ e2 := u2 ∧ ∃λ>0∃µ>0 (λd1 = µu1 ∧ λd2 = µu2)) .

We informally use vectorial notation when no confusion arises. Using vectorial
quantifiers, equations, arithmetic, and assignments, the latter DJ-constraint sim-
plifies to:

∃u (e := u ∧ ∃λ>0∃µ>0λd = µu) .
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Definition 2 (Differential-algebraic constraints). A differential-algebraic
constraint (DA-constraint) is a formula D of first-order real arithmetic over Σ∪
Σ′, in which symbols of Σ′ only occur in affirmative subformulas that are not in
the scope of a quantifier of D for that symbol. Here Σ′ is the set of all differential
symbols x(n) with n ∈ N for state variables x ∈ Σ. A DA-constraint without
differential symbols is called non-differential. A variable x is (possibly) changed
in D iff x(n) occurs in D for an n ≥ 1.

Syntactically, x(n) is like an ordinary function symbol of arity 0 but only allowed
to occur within DA-constraints not in any other formula. The intended semantics
of a differential symbol x(n) is to denote the n-th time-derivative of x, which
is used to form differential equations (or differential inequalities). We write x′

for x(1) and x′′ for x(2) and, sometimes, x(0) for the non-differential symbol x.
The (partial) order ordxD of a DA-constraint D in x is the highest order n ∈ N
of a differential symbol x(n) occurring in D, or is not defined if no such x(n)

occurs. The notion of order is accordingly for terms instead of DA-constraint.
The effect of a DA-constraint D is an ongoing continuous evolution respecting

the differential and non-differential constraints of D during the whole evolution.
For instance, the effect of (x′ = θ ∧ x > 0) ∨ (x′ = −x2 ∧ x < 0) is that the sys-
tem evolves along x′ = θ while x > 0, and evolves along x′ = −x2 when x < 0.
This evolution can stop at any time but is never allowed to enter the region
where neither case applies anymore (x = 0).

More generally, the differential constraints of D describe how the valuations
of the respective state variables change continuously over time while follow-
ing D. The non-differential constraints of D can be understood to express do-
main restrictions or invariant regions of these evolutions for which the differential
equations apply or within which the evolution resides. For instance, in the DA-
constraint d′1 = −ωd2 ∧ d′2 = ωd1 ∧ d1 ≥ 0, the differential equations d′1 = −ωd2
and d′2 = ωd1 describe the change and d1 ≥ 0 the invariance region or maxi-
mal domain of evolution. Overlapping cases are resolved like in DJ-constraints,
i.e., by nondeterministic choice. Likewise, a DA-constraint where no case applies
abort the system evolution as it does not satisfy the DA-constraint. Hence, non-
differential DA-constraints and jump-free DJ-constraints are both equivalent to
pure tests [22]. Except for such tests, we need to distinguish DA-constraints from
DJ-constraints: Only DA-constraints can have evolutions of non-zero duration
and only DJ-constraints can lead to discontinuous changes.

Quantifiers within DA-constraints express continuous nondeterministic choices.
For instance, ∃u (d′1 = −(ω + u)d2 ∧ d′2 = (ω + u)d1 ∧ −0.1 ≤ u ≤ 0.1) expresses
that the system follows a continuous evolution in which, at each time, the differ-
ential equations are respected for some choice of u in −0.1 ≤ u ≤ 0.1. In particu-
lar, the choice of u can be different at each time so that u amounts to a bounded
nondeterministic disturbance during the rotation in the above DA-constraint.

When using constraint formulas to characterise system transitions, we face
the usual frame problem: Typically, one does not expect variables to change their
values unless the respective constraint explicitly specifies how. In this paper, we
indicate constant variables explicitly so that no confusion arises. In practical
applications, however, it can be quite cumbersome to have to specify z := z
or z′ = 0 explicitly for all variables z that are not supposed to change. To account
for that, we will define the DAL semantics so that variables that are not changed
by a DJ-constraint or DA-constraint keep their value. Since free nondeterministic
change of variable y is expressible using ∃a y := a or ∃a z′ = a, respectively, we



Differential-Algebraic Dynamic Logic for Differential-Algebraic Programs 11

expect the changes of all changed variables to be specified explicitly in all cases
of the constraints to improve readability:

Definition 3 (Homogeneous constraints). A DA-constraint or DJ-constraint
C is called homogeneous iff, in each of the disjuncts of a disjunctive normal form
of C, every changed variable of C is changed exactly once.

Note that Lemma 3 from Section 4.1 will show that DA-constraints are equivalent
to their disjunctive normal forms. Throughout the paper, we assume that all
DA-constraints and DJ-constraints are homogeneous, thereby ensuring that all
changed variables receive a new value in all cases of the respective constraint (or
stay constant because they are changed nowhere in the constraint) and that no
change conflicts occur.

Hence, variable y does not change during the DA-constraint x′ = −x ∧ x ≥ y
but works as a constant lower bound for the evolution of x, because no differential
symbol y(n) with n ≥ 1 occurs so that y′ = 0 is assumed. If, instead, y is intended
to vary, yet its variation is not specified by a differential equation but y varies
according to some algebraic relation with x, then quantified DA-constraints can
be used to represent such differential-algebraic equations [19]. For instance, the
differential-algebraic equation x′ = −x, y2 = x, in which y2 = x is an algebraic
variational constraint specifying how y changes over time, is expressible as the
DA-constraint x′ = −x ∧ ∃u (y′ = u ∧ y2 = x). There, the quantified differential
constraint on y essentially says that y can change arbitrarily (with arbitrary
disturbance u) but only so that it always respects the relation y2 = x.

Now we can define DA-programs as regular combinations of DJ-constraints
and DA-constraints.

Definition 4 (Differential-algebraic programs). The set DA-program(Σ)
of differential-algebraic programs, with typical elements α, β, is inductively de-
fined as the smallest set such that:

– If J is a DJ-constraint over Σ, then J ∈ DA-program(Σ).
– If D is a DA-constraint over Σ ∪Σ′, then D ∈ DA-program(Σ).
– If α, β ∈ DA-program(Σ) then (α ∪ β) ∈ DA-program(Σ).
– If α, β ∈ DA-program(Σ) then (α;β) ∈ DA-program(Σ).
– If α ∈ DA-program(Σ) then (α∗) ∈ DA-program(Σ).

Choices α ∪ β are used to express behavioural alternatives between α and β,
i.e., the system either follows α or it follows β. In particular, the difference
between the DA-constraint D ∨ E and the DA-program D ∪ E is that the sys-
tem has to commit to one choice of D or E in D ∪ E , but it can switch back
and forth multiple times between D and E in D ∨ E . The sequential compo-
sition α;β says that DA-program β starts executing after α has finished (β
never starts if α does not terminate, e.g., due to a failed test in α). Observe
that, like repetitions, continuous evolutions within α can take longer or shorter.
This nondeterminism is inherent in hybrid systems and as such reflected in DA-
programs. Additional restrictions on the permitted duration of evolutions can
simply be specified using auxiliary clocks, i.e., variables of derivative τ ′ = 1. For
instance, τ := 0; x′ = −x2 ∧ τ ′ = 1 ∧ τ ≤ 5; τ ≥ 2 specifies that the system only
follows those evolutions along x′ = −x2 that take at most 5 but at least 2 time
units. Repetition α∗ is used to express that the hybrid process α repeats any
number of times, including zero. With this, the repetition of hybrid automata
transitions [23] can be represented, see [33] for details.
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Purely conjunctive DA-constraints correspond to continuous dynamical sys-
tems [45]. DA-constraints with disjunctions correspond to switched continuous
dynamical systems [6]. DA-programs without DA-constraints correspond to dis-
crete dynamical systems or, when restricted to domain N (which is definable in
DAL), to discrete while programs [22]. Regular combinations of DJ-constraints
form a complete basis of discrete programs [22]. Finally, general DA-programs
correspond to (first-order generalisations of) hybrid dynamical systems [6, 23,
12].

Formulas of Differential-Algebraic Logic. The set of formulas of DAL
is defined as common in first-order dynamic logic [22]. They are built using
propositional connectives and, in addition, if α is a DA-program and φ is a DAL
formula, then [α]φ, 〈α〉φ are DAL formulas. The intuitive reading of [α]φ is that
every run of DA-program α leads to states satisfying φ. Dually, 〈α〉φ expresses
that there is at least one run of α leading to such a state.

Definition 5 (DAL formulas). The set Fml(Σ) of DAL formulas, with typ-
ical elements φ, ψ, is inductively defined as the smallest set with:

– If θ1, θ2 ∈ Term(Σ) are terms, then (θ1 ≥ θ2) ∈ Fml(Σ), and accordingly
for =,≤, <,>.

– If φ, ψ ∈ Fml(Σ), then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) ∈ Fml(Σ).
– If φ ∈ Fml(Σ) and α ∈ DA-program(Σ), then [α]φ, 〈α〉φ ∈ Fml(Σ).

Quantifiers in DAL formulas are definable in terms of DA-constraints or quan-
tified DJ-constraints. We consider quantifiers as abbreviations:

∀xφ ≡ [∃a x := a]φ ≡ [x′ = 1 ∨ x′ = −1]φ

∃xφ ≡ 〈∃a x := a〉φ≡〈x′ = 1 ∨ x′ = −1〉φ .

The DAL formula [∃a x := a]φ considers all possibilities of assigning some value a
to x, which amounts to universal quantification. Likewise, 〈∃a x := a〉φ considers
some such choice, which is existential quantification. Similarly, the indeterminate
continuous evolution x′ = 1 ∨ x′ = −1 reaches all values, which amounts to the
respective quantifier when combined with the appropriate modality.

One common pattern for representing safety statements about hybrid control
loops is to use DAL formulas of the form φ→ [(controller ; plant)

∗
]ψ for speci-

fying that the system satisfies property ψ whenever the initial state satisfies φ.
There, the system repeats a controller-plant feedback loop, with a DA-constraint
plant describing the continuous plant dynamics and a discrete DA-program con-
troller describing the control decisions. The controller plant interaction repeats
as indicated by the repetition star. Still, more general forms of systems and
properties can be formulated and verified in DAL as well.

2.2 Semantics of Differential-Algebraic Logic

The semantics of DAL is a Kripke semantics with possible states of a hybrid
system as possible worlds, where the accessibility relation between worlds is
generated by the discrete or continuous transitions of DA-programs. A potential
behaviour of a hybrid system corresponds to a succession of states that contain
the observable values of system variables during its hybrid evolution.
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Transition Semantics. A state is a map ν : Σ → R; the set of all states is
denoted by State(Σ). The function and predicate symbols of real arithmetic are
interpreted as usual.

Definition 6 (Valuation of terms). The valuation val(ν, ·) of terms with
respect to state ν is defined by

1. val(ν, x) = ν(x) if x ∈ Σ is a variable.
2. val(ν, θ1 + θ2) = val(ν, θ1) + val(ν, θ2) and accordingly for −, ·.
3. val(ν, θ1/θ2) = val(ν, θ1)/val(ν, θ2) if val(ν, θ2) 6= 0.

Note that we do not need the semantics of θ1/θ2 for val(ν, θ2) = 0, because we
have assumed the presence of constraints ensuring ¬(θ2 = 0) for divisions.

The interpretation of discrete jump constraints is defined as in first-order
real arithmetic with the addition of an interpretation for assignment formulas.

Definition 7 (Interpretation of discrete jump constraints). The inter-
pretation of DJ-constraint J for the pair of states (ν, ω), denoted as (ν, ω) |= J ,
is defined as follows, where val(ω, z) = val(ν, z) for all variables z that are not
changed in J :

1. (ν, ω) |= x := θ iff val(ω, x) = val(ν, θ).
2. (ν, ω) |= θ1 ≥ θ2 iff val(ν, θ1) ≥ val(ν, θ2), and accordingly for =,≤, <,>.
3. (ν, ω) |= φ ∧ ψ iff (ν, ω) |= φ and (ν, ω) |= ψ. Accordingly for ¬,∨,→.
4. (ν, ω) |= ∀xφ iff (νx, ω) |= φ for all states νx that agree with ν except for the

value of x.
5. (ν, ω) |= ∃xφ iff (νx, ω) |= φ for some state νx that agrees with ν except for

the value of x.

To give a semantics to DA-constraints, differential symbols x′ ∈ Σ′ must get
a meaning. However, a DA-constraint like d′1 = −ωd2 ∧ d′2 = ωd1 cannot be in-
terpreted in a single state ν, because derivatives are not defined in isolated
points. Instead, DA-constraints are constraints that have to hold for an evolu-
tion of states over time. Along such a flow function ϕ : [0, r]→ State(Σ), DA-
constraints can again be interpreted locally by assigning to the formal differ-
ential symbol d′1 the analytic time-derivative of the value of d1 along ϕ at the
respective points in time. As we assumed DA-constraints to avoid zero divi-
sions, analytic derivatives are well-defined for r > 0 as State(Σ) is isomorphic
to a finite-dimensional real space with respect to the finitely many differential
symbols occurring in the DA-constraint. We give a uniform definition for all
durations r ≥ 0 and defer the discussion of the understanding for r = 0 until
the DA-constraint semantics has been presented in full. The philosophy behind
hybrid systems is to isolate discontinuities in discrete transitions. Thus we as-
sume that state variables (and their differential symbols, if present) always vary
continuously along continuous evolutions over time.

Definition 8 (Differential state flow). A function ϕ : [0, r]→ State(Σ) is
called state flow of duration r ≥ 0, if ϕ is componentwise continuous on [0, r],
i.e., for all x ∈ Σ, ϕ(ζ)(x) is continuous in ζ. Then, the differentially augmented
state ϕ̄(ζ) of ϕ at ζ ∈ [0, r] agrees with ϕ(ζ) except that it further assigns values
to some of the differential symbols x(n) ∈ Σ′: If ϕ(t)(x) is n-times continuously

differentiable in t at ζ, then ϕ̄(ζ) assigns the n-th time-derivative dnϕ(t)(x)
dtn (ζ)

of x at ζ to differential symbol x(n) ∈ Σ′, otherwise the value of x(n) ∈ Σ′ is not
defined.



14 André Platzer

For a DA-constraint D, a state flow ϕ of duration r is called state flow of the order
of D, iff the value of each differential symbol occurring in D is defined on [0, r],
i.e., ϕ(ζ)(x) is n-times continuously differentiable in ζ on [0, r] for n = ordxD.

Definition 9 (Interpretation of differential-algebraic constraints). The
interpretation of DA-constraint D with respect to a state flow ϕ of the order of D
and duration r ≥ 0 is defined by: ϕ |= D iff, for all ζ ∈ [0, r],

1. ϕ̄(ζ) |=R D using the standard semantics |=R of first-order real arithmetic,
and

2. val(ϕ̄(ζ), z) = val(ϕ̄(0), z) for all variables z that are not changed by D.

Observe that, along the state flows for a DA-constraint D, only those variables
whose differential symbols occur in D have to be continuously differentiable of
the appropriate order. Quantified variables can change more arbitrarily (even
discontinuously) during the evolution, because the semantics does not directly
relate the value of a quantified variable like u in ∃ux′ = u2 at time ζ with the
values that u assumes at later times. Quantified variables may be constrained
indirectly by their relations, though: In ∃ux′ = u2, the value of u2 (but not that
of u) also varies continuously over time, because x′ varies continuously.

As a consequence of Picard-Lindelöf’s theorem a.k.a. Cauchy-Lipschitz the-
orem [48, Theorem 10.VI], and using that DAL terms are continuously differ-
entiable on the open domain where divisors are non-zero, the flows of explicit
quantifier-free DA-constraints of the form x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ with non-
differential χ are unique (as long as they exist): For each duration and initial
value, there is at most one state flow ϕ. Yet, this is not the case for disjunc-
tive DA-constraints, differential inequalities, quantified DA-constraints, or DA-
constraints in implicit form like x′

2 − 1 = 0, which has solutions x(t) = x(0) + t
and x(t) = x(0)− t. Finally, a non-differential χ imposes no change but only
tests whether χ holds. Hence, without differential constraints, a non-differential
DA-constraint χ only has constant flows (if any), i.e., ϕ(ζ) = ϕ(0) for all ζ.

Restrictions of differential state flows to a prefix are again state flows. In
particular, for all differential equations, the restriction to the point interval [0, 0]
yields a trivial flow of no effect. For such point duration r = 0, however, deriva-
tives and differentiability are not defined. To admit trivial flows nevertheless,
the understanding of a DA-constraint is that its differential terms take no effect
for flows of zero duration. That is, for trivial flows, atomic formulas with dif-
ferential symbols are defined to evaluate to true as they occur only positively
in DA-constraints. Thus, only the non-differential constraints of D impose con-
straints for trivial flows. A state flow of duration zero satisfying D and starting
in some state ν exists iff ν satisfies the non-differential part of D, which acts as
a test condition.

Now we can define the transition semantics, ρ(α), of a DA-program α. The
semantics of a DA-program is captured by the discrete or continuous transi-
tions that are possible by following this DA-program. For DJ-constraints this
transition relation holds for pairs of states that satisfy the jump constraints.
For DA-constraints, the transition relation holds for pairs of states that can be
interconnected by a (continuous) state flow respecting the DA-constraint.

Definition 10 (Transition semantics of differential-algebraic programs).
The valuation, ρ(α), of a DA-program α, is a transition relation on states. It
specifies which state ω is reachable from a state ν by operations of the hybrid
system α and is defined as:
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1. (ν, ω) ∈ ρ(J ) iff (ν, ω) |= J according to Def. 7, when J is a DJ-constraint.
2. ρ(D) = {(ϕ(0), ϕ(r)) : ϕ is a state flow of the order of D and some

duration r ≥ 0 such that ϕ |= D}, when D is a DA-constraint, see Def. 9.
3. ρ(α ∪ β) = ρ(α) ∪ ρ(β)
4. ρ(α;β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for some state z}
5. (ν, ω) ∈ ρ(α∗) iff there are an n ∈ N and ν = ν0, . . . , νn = ω such that

(νi, νi+1) ∈ ρ(α) for all 0 ≤ i < n.

Now, the interpretation of formulas is defined as usual for first-order modal
logic [16, 22], with the transition semantics, ρ(α), of DA-programs for modalities.

Definition 11 (Interpretation of DAL formulas). The interpretation |= of
DAL formulas with respect to state ν is defined as

1. ν |= θ1 ≥ θ2 iff val(ν, θ1) ≥ val(ν, θ2), and accordingly for =,≤, <,>.
2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ. For ¬,∨,→, the definition is accordingly.
3. ν |= [α]φ iff ω |= φ for all states ω with (ν, ω) ∈ ρ(α).
4. ν |= 〈α〉φ iff ω |= φ for some state ω with (ν, ω) ∈ ρ(α).

Time Anomalies. Hybrid systems evolve along piecewise continuous trajecto-
ries, which consist of a sequence of continuous flows interrupted by discontinuous
discrete jumps. A common phenomenon in hybrid system models is that their
semantics and analysis is more controversial when discrete and continuous be-
haviour are allowed to interact without certain regularity assumptions [26, 42, 12,
23]. Zeno-anomalies occur when the hybrid system is allowed to take infinitely
many discrete transitions in finite time.

Consider the DA-program (a′ = −1 ∧ d ≤ a; d := d/2)
∗

starting in a state
where c > d > 0 and c and d progress towards goal 0. The (inverse) clock vari-
able a decreases continuously, yet d bounds the maximum duration of each con-
tinuous evolution phase. At the latest when a = d, variable d decreases by a
discrete transition. This Zeno system generates infinitely many transitions in
finite time and it is impossible for clock a to finally reach 0, because a ≥ d > 0
will always remain true. Yet this behaviour is, in a certain sense, counterfactual,
because it fails to obey divergence of time: Real time diverges, whereas clock a
converges to 0. Further, systems with Zeno-anomalies cannot be realised [26, 42,
12, 23] so that corresponding regularity assumptions can be justified for practical
purposes.

To avoid pitfalls of time anomalies, we define the DAL semantics so that
it only refers to well-defined system behaviour with finitely many transitions
in finite time: We restrict the semantics of DA-constraints and disallow infinite
numbers of switches between differential equations in bounded time. With DA-
constraintD defined as (x ≥ 0→ x′′ = −1) ∧ (x < 0→ x′′ = 1) ∧ y′ = 1, the DAL
formula ∃e 〈D〉[D](y > e→ x ≤ d) expresses that, after some time, the system
can stabilise such that it always remains within the region x ≤ d when y > e for
some choice of e. For such a stability property, we do not analyse what happens
after there have been infinitely many switches from x′′ = 1 to x′′ = −1 within
the first second. Instead, our semantics is such that our calculus reveals what
happens for any finite number of switches. Accordingly, we restrict the semantics
of DA-constraints to only accept non-Zeno evolutions:

Definition 12. A state flow ϕ for a DA-constraint D is called non-Zeno, if
there only is a finite number of points in time where some variable needs to
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obey another differential constraint of D than before the respective point in time:
Let D1 ∨ · · · ∨ Dn be a disjunctive normal form of D, then flow ϕ : [0, r]→ State(Σ)
is non-Zeno iff there are an m ∈ N and 0 = ζ0 < ζ1 < · · · < ζm = r and in-
dices i1, . . . , im ∈ {1, . . . , n} such that ϕ respects Dik on the interval [ζk−1, ζk],
i.e., ϕ|[ζk−1,ζk] |= Dik for all k ∈ {1, . . . ,m}.
The semantics of DA-programs entails that runs with non-Zeno state flows are
non-Zeno, because α∗ does not accept infinitely many switches.

3 Collision Avoidance in Air Traffic Control

As a case study, which will serve as a running example, we show how succinctly
collision avoidance maneuvers in air traffic control can be described in DAL. In
Section 5, we will verify such maneuvers in the DAL calculus.

Flight Dynamics. Assuming, for simplicity, aircraft remain at the same alti-
tude, an aircraft is described by its planar position x = (x1, x2) ∈ R2 and an-
gular orientation ϑ. The dynamics of an aircraft is determined by its linear
velocity v ∈ R and angular velocity ω, see Fig. 1a (with ϑ = 0). When neglect-
ing wind or gravitation, which is appropriate for analysing cooperation in air
traffic control [47, 28, 29, 11, 34], the in-flight dynamics of an aircraft at x can be
described by the following differential equation system, see, e.g., [47] for details:

x′1 = v cosϑ x′2 = v sinϑ ϑ′ = ω . (1)

Differential Axiomatisation. Unlike for straight-line flight (ω = 0), such non-
linear dynamics is difficult to analyse [47, 28, 29, 11, 34] for ω 6= 0, especially due
to the trigonometric expressions which are generally undecidable. Solving (1)
already requires the Floquet-theory of differential equations with periodic coeffi-
cients [48, Theorem 18.X] and yields mixed polynomial expressions with multiple
trigonometric functions. A true challenge, however, is verifying properties of the
states that the aircraft reach by following these solutions, which requires proving
that complicated formulas with mixed polynomial arithmetic and trigonometric
functions hold true for all values of state variables and all possible evolution du-
rations. By Gödel’s incompleteness theorem, however, the resulting first-order
real arithmetic with trigonometric functions is not semidecidable, because the
roots of sin characterise an isomorphic copy of natural numbers.

x1

x2

y1

y2

d

ω e

ϑ̄

̟

1a: Aircraft dynamics 1b: Roundabout1c: Counterexample

x

y

c

1d: Tangential Round-
about

Fig. 1: Roundabout maneuvers for collision avoidance in air traffic control
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To obtain polynomial dynamics, we axiomatise the trigonometric functions
in the dynamics differentially and reparametrise the state correspondingly. In-
stead of angular orientation ϑ and linear velocity v, we use the linear speed vec-
tor d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R2, which describes both the linear speed
‖d‖ :=

√
d21 + d22 = v and orientation of the aircraft in space, see Fig. 1a. Substi-

tuting this coordinate change into (1), we immediately have x′1 = d1 and x′2 = d2.
With the coordinate change, we further obtain differential equations for d1, d2
from differential equation system (1) by simple symbolic differentiation:

d′1 = v′ cosϑ+ v(− sinϑ)ϑ′ = −(v sinϑ)ω = −ωd2
d′2 = v′ sinϑ+ v(cosϑ)ϑ′ = (v cosϑ)ω = ωd1

The middle equality holds for constant linear velocity (v′ = 0), which we assume,
because only limited variations in linear speed are possible and cost-effective
during the flight [47, 28] so that ω is the primary control parameter in air traffic
control. Hence, equations (1) can be restated as the DA-constraint F(ω):

x′1 = d1 ∧x′2 = d2 ∧ d′1 = −ωd2 ∧ d′2 = ωd1 (F(ω))

y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −$e2 ∧ e′2 = $e1 (G($))

DA-constraint F(ω) expresses that position x changes according to the linear
speed vector d, which in turn rotates according to ω. Simultaneous movement
together with a second aircraft at y ∈ R2 having linear speed e ∈ R2 (also
indicated with angle ϑ̄ in Fig. 1a) and angular velocity $ corresponds to the
DA-constraint F(ω) ∧ G($). Such DA-constraints capture simultaneous dynam-
ics of multiple traffic agents succinctly using conjunction. By this differential ax-
iomatisation, we thus obtain polynomial differential equations, even though their
solutions still involve the same complicated nonlinear trigonometric expressions.
Since the solutions involve trigonometric functions, previous approaches [49, 23,
17, 42, 12, 30–33] were not able to handle such dynamics.

Aircraft Collision Avoidance Maneuvers. Due to possible turbulence or
collisions, a flight configuration is unsafe if another aircraft is within a pro-
tected zone of radius p, i.e., ‖x− y‖2 < p2. Guiding aircraft by collision avoid-
ance maneuvers to automatically resolve conflicting flight paths that would lead
to possible loss of separation, is a major challenge both for air traffic control
and verification [47, 28, 29, 14, 11, 34, 18, 25]. Several different classes of collision
avoidance maneuvers for air traffic control have been suggested [47, 28, 29, 14,
18, 25]. The classical traffic alert and collision avoidance system (TCAS) [28]
directs one aircraft on climbing routes the other on descending routes to resolve
conflicts at different altitudes but keeps otherwise unmodified straight-line flight
paths. While the simplistic TCAS maneuver has several benefits, it does not
scale up easily to multiple aircraft or dense traffic situations nearby airports. As
a more scalable alternative, Tomlin et al. [47] suggested roundabout maneuvers
on circular paths, see Fig. 1b, where, even at the same altitude, several aircraft
can participate in collision avoidance maneuvers. Because the continuous dy-
namics of curved flights with ω 6= 0 is quite intricate, Tomlin et al. [47] and
Massink and De Francesco [29] have analysed trapezoidal straight-line (ω = 0)
approximations of roundabouts, instead, which consist only of a series of two
to five straight-line segments connected by several instant turns. Unfortunately,
the discontinuities in instant turns are not flyable by aircraft.



18 André Platzer

As a more realistic model, we investigate curved roundabout maneuvers pro-
posed by Tomlin et al. [47]. Roundabouts have proper flight curves with nonzero
angular velocities ω (Fig. 1b). We have shown previously [34] that roundabout
maneuvers with fixed turns [47, 28, 29, 11] are unsafe for non-orthogonal initial
flight paths (see Fig. 1c for a counterexample) and we have proposed a tangential
roundabout maneuver [34] with position-dependent evasive actions to overcome
these deficiencies. However, because of general limits of numerical approxima-
tion techniques [34, 9], we could not actually verify the tangential roundabout
maneuver numerically. In this paper, we introduce a generalised class of tan-
gential roundabout maneuvers with curved flight paths and formally verify this
maneuver in the purely symbolic DAL calculus. Our main motivation for study-
ing roundabouts are their curved flight paths, which constitute a substantial
challenge for verification of hybrid systems with nontrivial dynamics and an
important part of realistic flight maneuvers.

Tangential Roundabout Maneuver. In the tangential roundabout maneu-
ver, sketched in Fig. 1d, the idea is that the aircraft agree on some common
angular velocity ω and common centre c around which both can circle safely
without coming closer to each other (their linear velocities can differ, though, to
compensate for different cruise speeds). Note that neither, c nor ω need to be
discovered by complicated online trajectory predictions. Instead, we present in
Section 5 a simple characterisation of safe choices for the parameters of the tan-
gential roundabout maneuver and determine safety of the resulting flight paths
using formal proofs in the DAL calculus.

In Fig. 2, we introduce the DAL model for the tangential roundabout ma-
neuver, which is a simplified and more uniform generalisation of our previous
work [34]. Observe how concisely complicated aircraft maneuvers can be specified
in DAL. There, safety property ψ for aircraft maneuvers expresses that protected
zones are respected during the flight (specified by separation property φ). The
flight controller (trm∗) performs collision avoidance maneuvers by tangential
roundabouts and repeats these maneuvers any number of times as needed. Dur-
ing each trm phase, the aircraft first perform arbitrary free flight (free) by (re-
peatedly) independently adjusting their angular velocities ω and$ while they are
safely separated, which is expressed by conjunct φ of the DA-constraint. Observe
that, unlike in ∃u (ω := u); F(ω), angular velocities can be (re-)adjusted contin-
uously during free flight in ∃ωF(ω), rather than just once. In particular, free in-
cludes piecewise constant choices as in (∃u (ω := u) ∧ ∃u ($ := u); F(ω) ∧ G($))

∗
.

Due to invariant region φ of free, the tangential roundabout maneuver must be
initiated (by a tangential initiation controller entry) before the flight paths be-
come unsafe. Then, the tangential roundabout maneuver itself is carried out by
the DA-constraint F(ω) ∧ G(ω) according to some common angular velocity ω
determined by entry . Finally, the collision avoidance roundabouts can be left
again by repeating the loop trm∗ and entering arbitrary free flight at any time.
When further conflicts occur during free flight, the controller in Fig. 2 again
enters roundabout conflict resolution maneuvers.

In summary, property ψ of Fig. 2 expresses that the aircraft remain safe dur-
ing the flight, especially during evasive roundabout maneuvers. For the maneuver
in Fig. 2, it is easy to see that φ also holds during free, because φ is specified as
an invariant region of free. In this paper, we do not formally investigate tempo-
ral properties like “always φ”, but refer to [32] for appropriate extensions of our
logic. In Section 5, we will determine a constraint on the parameter adjustment
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ψ ≡ φ→ [trm∗]φ

φ ≡ ‖x− y‖2 ≥ p2 ≡ (x1 − y1)2 + (x2 − y2)2 ≥ p2

trm ≡ free; entry; F(ω) ∧ G(ω)

free ≡ ∃ωF(ω) ∧ ∃$ G($) ∧ φ
entry ≡ will be derived in Section 5

Fig. 2: Flight control with tangential roundabout collision avoidance maneuvers

by entry such that the roundabout maneuver is safe, and we give a simple choice
for entry respecting this parameter constraint.

4 Verification Calculus for Differential-Algebraic Logic

In this section, we introduce a sequent calculus for proving DAL formulas. The
basic idea is to symbolically compute the effects of DA-programs and succes-
sively transform them into simpler logical formulas describing their effects. The
calculus consists of standard propositional rules, dedicated rules for handling
DA-program-modalities, including differential induction rules for sophisticated
differential constraints, and side deduction rules for integrating real quantifier
elimination.

In our calculus, we use substitutions: The result of applying to φ the substi-
tution that replaces x by θ is defined as usual; it is denoted by φθx. Likewise, in
a simultaneous substitution φθ1x1

. . .θnxn
the xi are replaced simultaneously by the

respective θi, see [5] for details.

4.1 Derivations and Differentiation

As a purely algebraic device for proving properties about continuous evolutions
in our calculus, we define syntactic derivations of terms and show that their
valuation corresponds with analytic differentiation (the total differential). With
this, we can build proof rules for verifying DA-programs fully algebraically by a
differential form of induction without the need to carry out analytic reasoning
about analytic limits or similar concepts that would require higher-order logic.

Definition 13 (Derivation). The map D : Term(Σ∪Σ′)→ Term(Σ∪Σ′) that
is defined as follows is called syntactic (total) derivation

D(r) = 0 if r ∈ Q is a rational number (2a)

D(x(n)) = x(n+1) if x ∈ Σ is a state variable, n ≥ 0 (2b)

D(a+ b) = D(a) +D(b) (2c)

D(a− b) = D(a)−D(b) (2d)

D(a · b) = D(a) · b+ a ·D(b) (2e)

D(a/b) = (D(a) · b− a ·D(b))/b2 (2f)

For a first-order formula F , we define the following abbreviations:

D(F ) ≡
m∧
i=1

D(Fi) where {F1, . . . , Fm} is the set of all literals of F

D(a ≥ b) ≡ D(a) ≥ D(b) and accordingly for <,>,≤,= or negative literals.
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To illustrate the naturalness of this definition, we briefly align it in terms of
the structures from differential algebra and refer to [27] for details. Case (2a)
defines number symbols as differential constants, which do not change during
continuous evolution. Equation (2c) and the Leibniz rule (2e) are defining con-
ditions for derivation operators on rings. Equation (2d) is a derived rule for sub-
traction according to a− b = a+ (−1) · b. In addition, equation (2b) uniquely
defines D on the differential polynomial algebra spanned by the differential in-
determinates x ∈ Σ. Equation (2f) canonically extends D to the differential field
of quotients. As the base field R has no zero divisors, the right hand side of (2f)
is defined whenever the division a/b can be carried out, which, as we assumed,
is guarded by b 6= 0. The resulting structure Term(Σ∪Σ′), together with the
derivation D, corresponds to the differential field of rational fractions with state
variables as differential indeterminates over R and with rational numbers as
differential constants.

The conjunctive definition of the formula D(F ) in Def. 13 corresponds to the
joint total derivative of all atomic subformulas of F and will be an important
tool for differential induction rules of our calculus.

The following central lemma, which is the differential counterpart of the
substitution lemma, establishes the connection between syntactic derivation of
terms and semantic differentiation as an analytic operation to obtain analytic
derivatives of valuations along state flows. It will allow us to draw analytic
conclusions about the behaviour of a system along differential equations from
the truth of purely algebraic formulas obtained by syntactic derivation.

Lemma 1 (Derivation lemma). The valuation of DAL terms is a differential
homomorphism: Let θ ∈ Term(Σ) and let ϕ : [0, r]→ State(Σ) be any state flow
of the order of D(θ) and duration r > 0 along which the value of θ is defined (as
no divisions by zero occur). Then we have for all ζ ∈ [0, r] that

d val(ϕ(t), θ)

dt
(ζ) = val(ϕ̄(ζ), D(θ)) .

In particular, val(ϕ(t), θ) is continuously differentiable (where θ is defined) and
its derivative exists on [0, r].

Proof. The proof is an inductive consequence of the correspondence of the se-
mantics of differential symbols and analytic derivatives in state flows (Def. 8).
It uses the assumption that the flow ϕ remains within the domain of defini-
tion of θ and is continuously differentiable in all variables of θ. In particular, all
denominators are non-zero during ϕ.

– If θ is a variable x, the conjecture holds immediately by Def. 8:

d val(ϕ(t), x)

dt
(ζ) =

dϕ(t)(x)

dt
(ζ) = ϕ̄(ζ)(x′) = val(ϕ̄(ζ), D(x)) .

There, the derivative exists because the state flow is of order 1 in x and,
thus, (continuously) differentiable for x.
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– If θ is of the form a+ b, the desired result can be obtained by using the
properties of derivatives, derivations (Def. 13), and valuations (Def. 6):

d

dt
(val(ϕ(t), a+ b))(ζ)

=
d

dt
(val(ϕ(t), a) + val(ϕ(t), b))(ζ) val(ν, ·) homomorph for +

=
d

dt
(val(ϕ(t), a))(ζ) +

d

dt
(val(ϕ(t), b))(ζ)

d

dt
is a (linear) derivation

= val(ϕ̄(ζ), D(a)) + val(ϕ̄(ζ), D(b)) by induction hypothesis

= val(ϕ̄(ζ), D(a) +D(b)) val(ν, ·) homomorph for +

= val(ϕ̄(ζ), D(a+ b)) D(·) is a syntactic derivation

– The case where θ is of the form a · b or a− b is accordingly, using Leibniz
product rule (2e) or subtractiveness (2d) of Def. 13, respectively.

– The case where θ is of the form a/b uses (2f) of Def. 13 and further depends
on the assumption that b 6= 0 along ϕ. This holds as the value of θ is assumed
to be defined all along state flow ϕ.

– The values of numbers r ∈ Q do not change during a state flow (in fact, they
are not affected by the state at all), hence their derivative is D(r) = 0. ut
The principle of substitution [16] can be lifted to differential equations, i.e.,

differential equations can be used for equivalent substitutions along state flows
respecting the corresponding differential constraints.

Lemma 2 (Differential substitution principle). If ϕ is a state flow with
ϕ |= x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ, then ϕ |= D ↔ (χ→ Dθ1x′1 . . .

θn
x′n

) holds for all

DA-constraints D.

Proof. By using the substitution lemma for first-order logic on the basis of
val(ϕ̄(ζ), x′i) = val(ϕ̄(ζ), θi) and ϕ̄(ζ) |= χ at each time ζ in the domain of ϕ. ut

The following lemma captures that the semantics of DA-constraints is not
sensitive to how the DA-constraint is presented. It also plays its part in the
soundness proof of our calculus, because it immediately makes all implicational
and equivalence transformations of real-arithmetic available for DA-constraints.

Lemma 3 (Differential transformation principle). Let D and E be DA-
constraints (with the same changed variables). If D → E is a tautology of (non-
differential) first-order real arithmetic (that is, when considering x(n) as a new
variable independent from x), then ρ(D) ⊆ ρ(E).

Proof. Let the first-order formulas φ and ψ be obtained from D and E , respec-
tively, by replacing all x′ by new variable symbolsX (accordingly for higher-order
differential symbols x(n)). Using vectorial notation, we write φx

′

X for the formula

obtained from φ by substituting all variables X by x′. Thus, φx
′

X is D and ψx
′

X

is E . Let φ→ ψ be valid in (non-differential) real arithmetic. Let (ν, ω) ∈ ρ(D)
according to a state flow ϕ. Then ϕ also is a state flow for E that justifies
(ν, ω) ∈ ρ(E): For any ζ ∈ [0, r], we have ϕ̄(ζ) |= D hence ϕ̄(ζ) |= E , because
ϕ̄(ζ) |= φx

′

X immediately implies ϕ̄(ζ) |= ψx
′

X by validity of φ→ ψ. The assump-
tion on D and E having the same set of changed variables is only required for
compatibility with condition 2 of Def. 9, which enforces that unchanged vari-
ables z remain constant. It can be established easily by adding constraints of
the form z′ = 0 as required ut
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DA-constraints D and E are equivalent iff ρ(D) = ρ(E). In particular, the seman-
tics of DA-programs is preserved when replacing a DA-constraint by another
DA-constraint that is equivalent in non-differential first-order real arithmetic
(similarly for DJ-constraints).

4.2 Differential Reduction and Differential Elimination

Using the expressive power of DA-constraints, several reductions can be per-
formed to simplify the syntactic form of DA-constraints. With quantified DA-
constraints, we can reduce differential inequalities to quantified differential equa-
tions equivalently:

Lemma 4 (Differential inequality elimination). DA-constraints admit dif-
ferential inequality elimination, i.e., to each DA-constraint D, an equivalent DA-
constraint without differential inequalities can be effectively associated that has
no other free variables.

Proof. Let E be obtained from D by replacing all differential inequalities θ1 ≤ θ2
by a quantified differential equation ∃u (θ1 = θ2 − u ∧ u ≥ 0) with a new vari-
able u for the quantified disturbance (accordingly for ≥, >,<). By Lemma 3, the
equivalence of D and E is a simple consequence of the corresponding equivalences
in first-order real arithmetic. ut
In the sequel, we assume this transformation has been applied such that we
can focus on DA-constraints with differential equations, i.e., where differen-
tial symbols only occur in differential equations, and where inequalities do not
contain differential symbols. Yet, the DA-constraint resulting from Lemma 4
could become inhomogeneous when multiple differential equations are produced
for the same variable that result from multiple differential inequalities. For in-
stance, θ1 ≤ x′ ≤ θ2 produces ∃u∃v (x′ = θ1 + u ∧ x′ = θ2 − v ∧ u ≥ 0 ∧ v ≥ 0).
To rehomogenise this DA-constraint, we use the following:

Lemma 5 (Differential equation normalisation). DA-constraints admit dif-
ferential equation normalisation, i.e., to each DA-constraint D, an equivalent
DA-constraint with at most one differential equation for each differential symbol
can be effectively associated that has no other free variables. Furthermore, this
differential equation is explicit, i.e., of the form x(n) = θ where ordx θ < n.

Proof. For each differential symbol x(n) ∈ Σ′ occurring in D, we introduce a new
non-differential variable Xn ∈ Σ. Let DXn

x(n) denote the result of substituting Xn

for x(n) in D. By Lemma 3, the equivalence of D and ∃Xn (x(n) = Xn ∧ DXn

x(n))
is a simple consequence of the corresponding equivalence in first-order logic.
Proceeding inductively for all such x(n) ∈ Σ′ in D gives the desired result. ut

Similarly, higher-order differential constraints reduce to first-order constraints
by introducing new non-differential auxiliary variables Xn for each of the higher-
order differential symbols x(n). For 1 ≤ ordx θ < n, we can replace a higher-order
differential equation x(n) = θ by:

x′ = X1 ∧X ′1 = X2 ∧ . . .∧X ′n−2 = Xn−1 ∧X ′n−1 = θX1

x′ . . .
Xn−1

x(n−1)

X′n−1

x(n)
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4.3 Rules of the Calculus for Differential-Algebraic Logic

A sequent is of the form Γ ` ∆, where the antecedent Γ and succedent ∆ are
finite sets of formulas. Its semantics is that of the formula

∧
φ∈Γ φ →

∨
ψ∈∆ ψ,

and a sequent Γ ` ∆ will simply be treated as an abbreviation for that formula.
The DAL calculus uses simultaneous substitutions φθ1x1

. . .θnxn
that take effect

within formulas and programs [5]. In the DAL calculus, only admissible substi-
tutions are applicable, which is crucial for soundness. We assume α-conversion
for renaming as needed.

Definition 14 (Admissible substitution). An application of a substitution σ
is admissible if no replaced variable x occurs in the scope of a quantifier or
modality binding x or a variable of the replacement σx. A modality binds x if
its DA-program (possibly) changes x, i.e., if it contains a DJ-constraint contain-
ing x := θ or a DA-constraint containing x(n) ∈ Σ′ for an n ≥ 1.

As usual in sequent calculus—although the direction of entailment is from pre-
misses (above rule bar) to conclusion (below)—the order of reasoning and read-
ing is goal-directed in practice: Rules are applied in tableau-style, that is, starting
from the desired conclusion at the bottom (goal) to the resulting premisses (sub-
goals). To highlight the logical essence of the DAL calculus, Fig. 3 provides rule
schemata to which the following definition associates the calculus rules that are
applicable during a DAL proof. The calculus consists of propositional rules (P-
rules: P1–P10), first-order quantifier rules (F-rules: F1–F4), rules for dynamic
modalities (D-rules: D1–D15), and global rules (G-rules: G1–G6).

Definition 15 (Rules). The rule schemata in Fig. 3 induce calculus rules by:

1. If
Φ1 ` Ψ1 . . . Φn ` Ψn

Φ0 ` Ψ0

is an instance of one of the rule schemata in Fig. 3, then

Γ,Φ1 ` Ψ1, ∆ . . . Γ, Φn ` Ψn, ∆
Γ, Φ0 ` Ψ0, ∆

can be applied as a proof rule of the DAL calculus, where Γ,∆ are arbitrary
finite sets of context formulas (including empty sets).

2. Symmetric schemata can be applied on either side of the sequent: If

φ1

φ0

is an instance of one of the symmetric rule schemata D1–D12 in Fig. 3, then

Γ ` φ1, ∆
Γ ` φ0, ∆

and
Γ, φ1 ` ∆
Γ, φ0 ` ∆

can both be applied as proof rules of the DAL calculus, where Γ,∆ are arbi-
trary finite sets of context formulas (including empty sets).

P-Rules. For propositional logic, standard P-rules are listed in Fig. 3. Rule P10
is a cut rule that can be used for case distinctions for any additional formula φ.
We use cuts to derive simple rule dualities. Typically, they are not needed in
practical verification examples from traffic domains [31, 33].
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(P1)
φ `
` ¬φ

(P2)
` φ
¬φ `

(P3)
` φ, ψ
` φ ∨ ψ

(P4)
φ ` ψ `
φ ∨ ψ `

(P5)
` φ ` ψ
` φ ∧ ψ

(P6)
φ, ψ `
φ ∧ ψ `

(P7)
φ ` ψ
` φ→ ψ

(P8)
` φ ψ `
φ→ ψ `

(P9)
φ ` φ

(P10)
` φ φ `
`

(F1)
QE(∀x

∧
i(Γi ` ∆i))

Γ ` ∆,∀xφ

(F2)
QE(∃x

∧
i(Γi ` ∆i))

Γ,∀xφ ` ∆

(F3)
QE(∃x

∧
i(Γi ` ∆i))

Γ ` ∆,∃xφ

(F4)
QE(∀x

∧
i(Γi ` ∆i))

Γ,∃xφ ` ∆

(D1)
〈α〉〈β〉φ
〈α;β〉φ

(D2)
[α][β]φ

[α;β]φ

(D3)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

(D4)
[α]φ ∧ [β]φ

[α ∪ β]φ

(D5)
∃x 〈J 〉φ
〈∃xJ 〉φ

(D6)
∀x [J ]φ

[∃xJ ]φ

(D7)
〈J1 ∪ . . . ∪ Jn〉φ

〈J 〉φ

(D8)
[J1 ∪ . . . ∪ Jn]φ

[J ]φ

(D9)
χ ∧ φθ1x1 . . .

θn
xn

〈x1 := θ1 ∧ . . ∧ xn := θn ∧ χ〉φ

(D10)
χ→ φθ1x1 . . .

θn
xn

[x1 := θ1 ∧ . . ∧ xn := θn ∧ χ]φ

(D11)
〈(D1 ∪ . . . ∪ Dn)∗〉φ

〈D〉φ

(D12)
[(D1 ∪ . . . ∪ Dn)∗]φ

[D]φ

(D13)
` [E ]φ

` [D]φ
(D14)

` 〈D〉φ
` 〈E〉φ (D15)

` [D]χ ` [D ∧ χ]φ

` [D]φ

(G1)
` ∀α(φ→ ψ)

[α]φ ` [α]ψ
(G2)

` ∀α(φ→ ψ)

〈α〉φ ` 〈α〉ψ (G3)
` ∀α(φ→ [α]φ)

φ ` [α∗]φ
(G4)

` ∀α(ϕ(x)→ 〈α〉ϕ(x− 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

(G5)
` ∀α∀y1 . . ∀yk (χ→ F ′

θ1
x′1
. . .θnx′n

)

[∃y1 . . ∃yk χ]F ` [∃y1 . . ∃yk (x′1 = θ1 ∧ . . ∧ x′n = θn ∧ χ)]F

(G6)
` ∃ε>0 ∀α∀y1 . . yk (¬F ∧ χ→ (F ′ ≥ ε)θ1x′1 . . .

θn
x′n

)

[∃y1 . . yk (x′1 = θ1 ∧ . . ∧ x′n = θn ∧ ∼F )]χ ` 〈∃y1 . . yk (x′1 = θ1 ∧ . . ∧ x′n = θn ∧ χ)〉F

In all rule schemata, all substitutions need to be admissible. In D7–D8, J1 ∨ · · · ∨ Jn
is a disjunctive normal form of the DJ-constraint J . In D11–D12, D1 ∨ · · · ∨ Dn is a
disjunctive normal form of the DA-constraint D. The rules D9–D10 and G5–G6 can
be applied for any reordering of the conjuncts of the DA-constraint or DJ-constraint,
where χ is non-differential or jump-free, respectively. In D13 and D14, D implies E ,
i.e., satisfies the assumptions of Lemma 3. In G5–G6, F is first-order without negative
equations, and F ′ abbreviates D(F ), with z′ replaced by 0 for unchanged variables.
In G6, F does not contain equations and the differential equations are Lipschitz-
continuous. For F-rules, the Γi ` ∆i are obtained from the resulting sub-goals of a
side deduction, see (?) in Fig. 4. The side deduction is started from the goal Γ ` ∆,φ
at the bottom (or Γ, φ ` ∆ for F2 and F4), where x is assumed not to occur in Γ,∆
using renaming. In the resulting sub-goals Γi ` ∆i, variable x is assumed to occur in
first-order formulas only, as quantifier elimination (QE) is then applicable.

Fig. 3: Rule schemata of the DAL proof calculus

F3
QE(∃x

∧
i(Γi ` ∆i))

Γ ` ∆,∃xφ


Γ1 ` ∆1

. . . ` . . . . . .
Γn ` ∆n

. . . ` . . .
Γ ` ∆,φ

 (?)

start side

QE

Fig. 4: Side deduction for quantifier elimination rules

Journal of Logic and Computation, 20(1), pp. 309-352, 2010. 
(c) The Author, 2008. 

doi:10.1093/logcom/exn070 
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F-Rules. Unlike in uninterpreted first-order logic [15, 16], quantifier rules have to
respect the specific semantics of real arithmetic. Thus, our rules handle real quan-
tifiers using quantifier elimination (QE) over the reals [8]. Unfortunately, QE is
only defined in first-order real arithmetic and cannot handle DAL-modalities,
where variables evolve along hybrid trajectories over time. We establish compat-
ibility with dynamic modalities using side deductions for the F-rules, as illus-
trated in Section 4.4. Alternatively, the F-rules can be replaced by the quantifier
rules of our companion paper [33], which generalise free variables, Skolemisation,
and Deskolemisation to real arithmetic for integrating quantifier elimination with
modal rules. Instead, here, we use side deductions that we have introduced in
previous work [31] as a very intuitive and simple approach for handling real
quantifiers.

D-Rules. The D-rules transform a DA-program into simpler logical formulas.
Rules D1–D4 are as in discrete dynamic logic [22, 5]. D7 and D8 normalise DJ-
constraints to their disjunctive normal form such that the jump alternatives can
be read off easily. Similarly, D5 and D6 lift quantified choices in DJ-constraints
to DAL quantifiers, which are, in turn, handled by F-rules. Then, D9 and D10
use generalised simultaneous substitutions [5] for handling discrete change and
check the jump-free constraint χ.

Likewise, D11–D12 normalise DA-constraints to a form where their differen-
tial evolution alternatives are readily identifiable. Unlike for D7–D8, however,
continuous evolutions take time so that the system can switch back and forth
between the various cases of the DA-constraint, hence the repetition. Observe
that finitely many repetitions are sufficient for non-Zeno flows (Def. 12), which
can only switch finitely often in finite time.

Rules D13–D15 are weakening and strengthening rules for DA-constraints,
respectively. In D13–D14, D implies E in real arithmetic according to Lemma 3,
which is easy to decide by QE in practice. Note that D13–D14, are sound for any
such combination of D and E . Their primary practical purpose is to use D13 for
overapproximating individual variable evolutions and D14 for refining nondeter-
ministic variable evolutions to specific differential equations. In particular, we
use D13 to project conjunctive differential constraints D to their non-differential
constraints. As we illustrate in Section 5, this gives a powerful verification tech-
nique in combination with strengthening (D15), which allows to refine the system
dynamics by auxiliary constraints. We address the problem of automatically de-
termining the respective strengthenings χ in a follow-up paper [35], where we
derive automatic verification algorithms from the results presented in this paper.
Furthermore, D13–D14 make all equivalence transformations on DA-constraints
from Section 4.2 available as proof rules, including index reduction techniques
for differential-algebraic equations [19].

Note that DAL does not need rules for handling negation in DA-constraints or
DJ-constraints, as—possibly after applying D7–D8 or D11–D12, respectively—
negations only occur in jump-free or non-differential parts, because assignments
and differential symbols only occur positively by Def. 1 and 2. Similarly, no rules
for universal quantifiers within DA-constraints or DJ-constraints are needed.
Like other propositional operators or quantifiers, negation and universal quan-
tifiers are allowed without restriction in non-differential or jump-free χ and are
then handled by D9–D10 or G5–G6 as usual.
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G-Rules. The G-rules are global rules. They depend on the truth of their pre-
misses in all states, which is ensured by the universal closure with respect to
all free variables. If x1, . . . , xn are the free variables of Φ, then ∀x1 . . . ∀xn Φ is
its universal closure. Since it can be restricted to the variables bound in the
DA-program α of the respective rule (see Def. 14), we denote it by ∀αΦ. The
G-rules are given in a form that best displays their underlying logical principles.
The general pattern for applying G-rules to prove that the succedent of their
conclusion holds is to prove that both their premiss and the antecedent of their
conclusion hold.

G1–G2 are generalisation rules. G3 is a discrete induction schema for rep-
etitions with inductive invariant φ. Similarly, G4 is a generalisation of Harel’s
convergence rule [22] to the hybrid case with decreasing variant ϕ. G3 says that φ
holds after any number of repetitions of α, if it holds initially and remains true
after each execution of α. G4 expresses that ϕ holds for some real number ≤0
after repeating α sufficiently often, if ϕ(v) holds for some real number at all
and decreases after every execution of α by 1 (or at least any other positive real
constant).

G5 is a rule for differential induction, which is a continuous form of induction
along differential constraints. The induction rules G3 and G5 (or G4 and G6
respectively) differ in the way the invariant is sustained. G3 uses the inductive
nature of repetition. G5, instead, uses continuity of evolution and the differential
equation for a continuous induction step with the differential invariant F : If F
holds initially (antecedent of conclusion) and its total differential F ′ satisfies the
same relations when taking into account the differential constraints (premiss),
then F itself is sustained differentially (succedent of conclusion). Formula F ′

abbreviates D(F ) with z′ replaced by 0 for all variables z that are unchanged
by the DA-constraint, i.e., that are distinct from {x1, . . . , xn}, because these are
assumed constant in the semantics. By α-renaming, the yi do not occur in F .
Rule G6 is a differential variant rule where the variant F is attained differentially
(with some minimal progress ε), rather than sustained as in G5. Differential
induction, the requirement of the differential equations for G6 to be Lipschitz-
continuous, and the notations F ′ ≥ ε and ∼F will be illustrated in more detail
in Sections 4.5–4.6 after side deductions for quantifiers have been explained in
Section 4.4. Finally, G-rules can be combined with generalisation (G1–G2) to
strengthen postconditions as needed.

Definition 16 (Provability). A formula ψ is provable from a set Φ of formu-
las, denoted by Φ `DAL ψ iff there is a finite set Φ0 ⊆ Φ for which the sequent
Φ0 ` ψ is derivable. Derivability is inductively defined so that a sequent Φ ` Ψ
is derivable iff there is a proof rule of the DAL calculus (Def. 15) with conclu-
sion Φ ` Ψ such that all premisses of the rule are derivable.

4.4 Deduction Modulo by Side Deduction

The F-rules constitute a purely modular interface to mathematical reasoning.
They can use any theory that admits quantifier elimination and has a decidable
ground theory, e.g., the theory of first-order real arithmetic, which is equivalent
to the theory of real-closed fields [8]. Unlike in deduction modulo approaches
of Dowek et al. [13] and Tinelli [46], the information given to the background
prover is not restricted to ground formulas [46] or atomic formulas [13], and the
effect of modalities has to be taken into account.
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Definition 17 (Quantifier elimination). A first-order theory admits quan-
tifier elimination if to each formula φ, a quantifier-free formula QE(φ) can be
effectively associated that is equivalent (i.e., φ ↔ QE(φ) is valid) and has no
other free variables. The operation QE is further assumed to evaluate ground
formulas (i.e., without variables), yielding a decision procedure for this theory.

Integrating quantifier elimination to deal with statements about real quantities
is quite challenging in the presence of modalities that influence the value of
variables and terms. Real quantifier elimination cannot be applied to formulas
with mixed quantifiers and modalities like ∃x [x′ = −x;x := 2x]x ≤ 5. To find out
which first-order constraints are actually imposed on x by this DAL formula, we
have to take into account how x evolves from ∃x to x ≤ 5 along the hybrid
system dynamics. Hence, our calculus first unveils the first-order constraints
on x before applying QE. To achieve this in a concise and simple way, we use
side deductions that we have introduced in previous work [31].

The effect of a side deduction is as follows. First, the DAL calculus discovers
all relevant first-order constraints from modal formulas using a side deduction.
Secondly, these constraints are reimported into the main proof and equivalently
reduced using QE and the main proof continues. For instance, an application of
F3 to a sequent Γ ` ∆,∃xφ starts a side deduction (marked (?) in Fig. 4) with
the unquantified kernel Γ ` ∆,φ as a goal at the bottom. This side deduction is
carried out in the DAL calculus until x no longer occurs within modal formulas
of the remaining open branches Γi ` ∆i of (?). Once all occurrences of x are
in first-order formulas, the resulting sub-goals Γi ` ∆i of (?) are copied back to
the main proof and QE is applied to eliminate x altogether (which determines
the resulting sub-goal of rule F3 on the upper left side of Fig. 4). The remaining
modal formulas not containing x can be considered as atoms for this purpose, as
they do not impose constraints on x. Formally, this can be proven using a simple
extension of the classical coincidence lemma: The truth-value of a formula only
depends on the value of variables that actually occur in it, see [33] for details.
When several quantifiers are nested, side deductions will be nested in a cascade,
as they can again spawn further side deductions. According to the applicability
conditions of F-rules, inner nested side deductions need to be completed by QE
before outer deductions continue. For instance, further side deductions started
within (?) of Fig. 4 will be completed before (?) continues and the quantifier
elimination result of (?) is returned to the main F3 application.

Example 1 (Aircraft progress). To illustrate how our calculus combines arith-
metic with dynamic reasoning using side deductions, we look at an aircraft ex-
ample. Using the notation from Section 3, the following DAL formula expresses a
simple progress property about aircraft: The aircraft at x can finally fly beyond
any point p ∈ R2 by adjusting its speed vector d appropriately, using only speed
vectors d ∈ R2 of bounded speed ‖d‖ ≤ b, i.e., ‖d‖2 ≤ b2 ≡ d21 + d22 ≤ b2:

∀p∃d (‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2)) . (3)

There, point p is constant during the evolution, i.e., p′1 = p′2 = 0 and b′ = 0.
The DAL proof in Fig. 5 proves this property using nested side deductions for
nested quantifiers and differential variant induction G6. Applying F1 in the main
branch yields a side deduction for ∀p , which, in turn, yields another side deduc-
tion by applying F3 for the nested quantifier ∃d . These nested side deductions
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` b > 0

` QE(∃d ((‖d‖2 ≤ b2) ∧ (d1 > 0 ∧ d2 > 0)))

` ‖d‖2 ≤ b2

` d1 > 0 ∧ d2 > 0
F3 ` ∃ε>0 ∀x1, x2 (x1 < p1 ∨ x2 < p2 → d1 ≥ ε ∧ d2 ≥ ε)
G6 ` 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2)

P5 ` ‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2)
F3 ` ∃d (‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2))

F1 ` ∀p ∃d (‖d‖2 ≤ b2 ∧ 〈F(0)〉(x1 ≥ p1 ∧ x2 ≥ p2))

si
de

si
de

QE

QE
QE

QE

Fig. 5: Nested side deductions and differential variants for progress property

in Fig. 5 are inlined and indicated by indenting the side deductions, with ar-
rows pointing to the start of the respective inner side deduction and back to
the continuation of the outer deduction (marked with QE as in Fig. 4). The
two branches for the side deduction for F3 recombine conjunctively and, after
quantifiers are re-added, quantifier elimination yields b > 0, which reveals the
parameter constraint on the speed bound b. Consequently, property (3) holds
true and the proof closes for all non-zero speed bounds. The right branch of this
F3 side deduction uses differential variant induction G6, as will be illustrated
in Section 4.6. There, the quantifiers for x1, x2 result from the universal clo-
sure ∀α in G6. The subsequent innermost F3 side deduction can be abbreviated
by directly applying QE, because the affected formula already is first-order.

Like the other aircraft examples in this paper, formula (3) is provable in our
theorem prover [36] within a few seconds, despite the complicated underlying
aircraft dynamics.

4.5 Differential Induction with Differential Invariants

The purpose of G5 and G6 is to prove properties about continuous evolutions by
differential induction using differential invariants or differential variants, respec-
tively. They directly work with the differential constraints instead of complicated
(possibly undecidable) arithmetic of their solutions. Unlike approaches using
solutions [17, 30–33], differential induction can even be used to verify systems
with nondeterministic quantified input, which would otherwise cause quantified
higher-order functions for the time-dependent input of the solutions. Further,
unlike in discrete induction, these differential induction rules exploit continuity
of evolution and knowledge of the differential constraints for a continuous induc-
tion step. We demonstrate the capabilities and the necessity of the requirements
of differential induction rules in a series of examples and counterexamples.

F
¬F

Fig. 6: Differential
invariants

Rule G5 uses differential induction to prove that F is
a differential invariant, i.e., F is closed under total differ-
entiation (Def. 13) relative to the differential constraints.
For this, the premiss of G5 shows that the total differen-
tial F ′—i.e., D(F ) with z′ replaced by 0 for unchanged
variables z—holds within invariant region χ, when substi-
tuting the differential equations into F ′. Now, if F holds
initially (antecedent of conclusion), then F itself is sus-
tained (succedent of conclusion). Intuitively, the premiss
expresses that, within χ, the total derivative F ′ along the
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differential constraints is pointing inwards or transversal to F but never outwards
to ¬F , see Fig. 6. At this point, it is important to note that, even though meta-
proofs about DAL involve analytic reasoning, proofs within the DAL calculus are
fully algebraic, including the handling of differential constraints by G5. Further
observe that the premiss of G5 is a well-formed DAL formula, because all differ-
ential symbols are replaced by non-differential terms when forming F ′

θ1
x′1
. . .θnx′n .

Example 2 (Linear versus angular speed). Consider the following simple proof,
which shows that the speed v of an aircraft at x is maintained, even when it
changes its angular velocity ω nondeterministically during the flight (as in mode
free of Fig. 2).

∗
` QE(∀x1, x2 ∀d1, d2 ∀ω (2d1(−ωd2) + 2d2ωd1 = 0))

F1 ` ∀x1, x2 ∀d1, d2 ∀ω (2d1(−ωd2) + 2d2ωd1 = 0)
G5d21 + d22 = v2 ` [∃ωF(ω)] d21 + d22 = v2
P7 ` d21 + d22 = v2 → [∃ωF(ω)] d21 + d22 = v2

F1 ` ∀v (d21 + d22 = v2 → [∃ωF(ω)] d21 + d22 = v2)
sid

e

QE
QE

The total derivative is F ′ ≡ D(d21 + d22 = v2) ≡ 2d1d
′
1 + 2d2d

′
2 = 2vv′. Substi-

tuting the differential equations yields F ′
−ωd2
d′1

ωd1
d′2

0
v′ ≡ 2d1(−ωd2) + 2d2ωd1 = 0,

which is valid and closes by quantifier elimination. This example shows the differ-
ence of differential continuous evolution (of d1, d2) and nondeterministic contin-
uous evolution (of ω). The DA-constraint specifies how the di evolve along differ-
ential equations, hence d′i is substituted in F ′. For ω, instead, the DA-constraint
is nondeterministic (∃ω) and does not specify how ω changes precisely. In par-
ticular, there is no equation for ω′ that could be used for substition. Yet such
an equation is not even needed for forming the premiss of G5, because, after
α-renaming, ω cannot occur in F here, since the scope of ∃ω ends with the DA-
constraint and does not extend to postcondition F . In the proof, the quantifiers
for xi and di result from the universal closure ∀α in G5. The quantifier for ω is
introduced by G6 and ensures that all possible evolutions of ω are taken into
account as there is no specific equation for ω′. Finally note that in such cases
without existential variables, side deductions can be inlined, see [33] for formal
details.

Counterexample 3. For soundness of differential induction, it is crucial that
Def. 13 definesD(F ∨G) conjunctively asD(F ) ∧D(G) instead ofD(F ) ∨D(G).
From an initial state ν which satisfies ν |= F , hence ν |= F ∨G, the formula F ∨G
only is sustained differentially if F itself is a differential invariant, not if G is.
For instance, x1 ≥ 0 ∨ d21 + d22 = v2 is no differential invariant of ∃ωF(ω), be-
cause x1 ≥ 0 can be invalidated by appropriate curved flights, see formula (3). In
practice, splitting differential induction proofs over disjunctions can be useful.

Counterexample 4 (Restricting differential invariance). It may be tempting to
suspect that, in G5, the differential invariant F only needs to be differentially
inductive at the states where F actually holds true. The differential induction
needs to hold in a neighbourhood, though, such that adding F (or the border
of F ) to the assumptions in the premiss of G5 would be unsound! Consider the
following counterexample where region x2 ≤ 0 is actually left immediately when
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following x′ = 1, which also demonstrates unsoundness of other approaches [39],
including recent work by Gulwani and Tiwari [20]:

∗ (unsound)

` ∀x (x2 ≤ 0→ 2x ≤ 0)

x2 ≤ 0 ` [x′ = 1]x2 ≤ 0

If, however, F describes an open set (e.g., F only involves strict inequalities),
then G5 is sound even when adding F to the assumptions of the premiss; see
Appendix A for a proof. Likewise F can be added to the assumptions of the pre-
miss when strengthening F ′ to strict inequalities, see Appendix A. If polynomial
solutions exist, they can be used as differential invariants. Furthermore, differ-
ential strengthening (D15) can be an extraordinarily successful proof technique
for successively enriching invariant regions by derived invariants until F itself
becomes differentially inductive, as we illustrate in Section 5.

Counterexample 5 (Negative equations). It is crucial for soundness of differential
induction that F is not allowed to contain negative equations. In the following
counterexample, variable x can reach x = 0 without its derivative every being 0.

∗ (unsound)

` ∀x (1 6= 0)

x 6= 0 ` [x′ = 1]x 6= 0

If, instead, both x < 0 and x > 0 are differential invariants of a system (e.g.,
of x′ = x), then x 6= 0 can be proven indirectly by encoding it as x < 0 ∨ x > 0.

A useful special case of D13 is the following derived weakening rule:

Lemma 6 (Differential weakening). The following is a derived rule (where χ
is non-differential):

(D13’)
` ∀α∀y1 . .∀yk (χ→ φ)

` [∃y1 . .∃yk (x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ)]φ

Proof. D13’ clearly is sound, because χ is true along all state flows of the DA-
constraint and φ is a consequence of χ by premiss. It can be derived as follows:

` QE(∀y1 . .∀yk ∀d1 . .∀dn (χd1x1
. . .dnxn

→ φd1x1
. . .dnxn

))

` χd1x1
. . .dnxn

→ φd1x1
. . .dnxn

D10 ` [x1 := d1 ∧ · · · ∧ xn := dn ∧ χd1x1
. . .dnxn

]φ
F1 ` ∀y1 . .∀yk ∀d1 . .∀dn ([x1 := d1 ∧ · · · ∧ xn := dn ∧ χd1x1

. . .dnxn
]φ)

D6 ` [∃y1 . .∃yk ∃d1 . .∃dn (x1 := d1 ∧ · · · ∧ xn := dn ∧ χd1x1
. . .dnxn

)]φ
D13 ` [∃y1 . .∃yk ∃d1 . .∃dn (x′1 = d1 ∧ · · · ∧ x′n = dn ∧ χ)]φ
D13 ` [∃y1 . .∃yk (x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ)]φ

sid
e

QE

The second application of D13 uses that fully nondeterministic continuous state
change is equivalent to fully nondeterministic discrete state change, as they gen-
erate the same transitions. Finally, χ→ φ can be obtained by α-renaming. ut

Differential invariants enjoy structural closure properties. They are closed
under conjunction (because of the conjunctive definition in Def. 13) and closed
under differentiation.
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Lemma 7. Differential invariants are closed under differentiation: The total
derivative of a differential invariant is an invariant of the same DA-constraint.

Proof. Let F be a differential invariant, i.e., satisfy G5 for some DA-constraint of
the form ∃y (x′ = θ ∧ χ), using vectorial notation for x and y. Hence, the premiss

of G5 is provable: ∀x∀y (χ→ F ′
θ
x′) where the quantifier for x results from the

universal closure ∀α. We have to show that the derivative F ′
θ
x′ is invariant and

extend the proof to a proof of [∃y (x′ = θ ∧ χ)]F ′
θ
x′ by weakening (Lemma 6):

∗
F1 ` QE(∀x∀y (χ→ F ′

θ
x′))

D13’ ` [∃y (x′ = θ ∧ χ)]F ′
θ
x′

ut

4.6 Differential Induction with Differential Variants

F

c

Fig. 7: Differential
variants

Unlike the differential induction rule G5 for differential
invariants, rule G6 uses differential induction to prove
that F is a differential variant, which is attained differ-
entially as an attractor region, rather than sustained dif-
ferentially as in G5. The essential difference to G5 thus is
the progress condition F ′ ≥ ε in the premiss, saying that
the total differential of F along the DA-constraint is posi-
tive and at least some ε > 0. There, F ′ ≥ ε is a mnemonic
notation for replacing all occurrences of inequalities a ≥ b
in F ′ by a ≥ b+ ε and a > b by a > b+ ε (accordingly
for ≤, >,<). Intuitively, the premiss expresses that, whereever χ holds but F
does not yet hold, the total derivative is pointing towards F , see Fig. 7. Es-
pecially F ′ ≥ ε guarantees a minimum progress rate of ε towards F along the
dynamics. To further ensure that the continuous evolution towards F remains
within χ, the antedent of the conclusion shows that χ holds until F is at-
tained, which can again be proven using G5. In this context, ∼F is a short
hand notation for weak negation, i.e., the operation that behaves like ¬, except
that ∼(a ≥ b) ≡ b ≥ a and ∼(a > b) ≡ a ≤ b. Unlike negation, weak negation re-
tains the border of F , which is required in G6 as χ needs to continue to hold
(including the border of F ) until F is reached. Especially, for G6, invariant χ is
not required to hold after F has been reached successfully. The operations F ′ ≥ ε
and ∼F are defined accordingly for other inequalities (in G6, we do not permit F
to contain equalities, see Counterexample 7 below). Again we demonstrate dif-
ferential induction and the necessity of its prerequisites in a series of examples.

Example 6. As an example, we turn back to Fig. 5. In the rightmost side de-
duction, G6 is used to prove that F ≡ x1 ≥ p1 ∧ x2 ≥ p2 is finally reached.
There, the total derivative is F ′ ≡ x′1 ≥ 0 ∧ x′2 ≥ 0, which yields d1 ≥ 0 ∧ d2 ≥ 0
when substituting the equations of F(ω), because x′1 = d1, x

′
2 = d2, p

′
1 = p′2 = 0.

Thus (F ′ ≥ ε)d1x′1
d2
x′2

−ωd2
d′1

ωd1
d′2

0
p′1

0
p′2

is identical to (F ′ ≥ ε)d1x′1
d2
x′2

0
p′1

0
p′2

, which gives

d1 ≥ ε ∧ d2 ≥ ε. Similarly, the proof for formula (3) can be generalised to differ-
ential inequalities, again assuming d′1 = d′2 = p′1 = p′2 = 0 and b′ = 0:

∀p∃d (‖d‖2 ≤ b2 ∧ 〈x′1 ≥ d1 ∧ x′2 ≥ d2〉(x1 ≥ p1 ∧ x2 ≥ p2)) .
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Using Lemma 4, the differential inequalities, which express lower bounds on the
evolution of x1 and x2, can be reduced to differential equations with quantified
disturbance u ∈ R2:

∀p∃d . . 〈∃u (x′1 = d1 + u1 ∧ x′2 = d2 + u2 ∧ u1 ≥ 0 ∧ u2 ≥ 0)〉(x1 ≥ p1∧x2 ≥ p2).

The proof for this DAL formula is identical to Fig. 5, except that G6 yields
∀x ∀u ((x1 < p1 ∨ x2 < p2) ∧ u1 ≥ 0 ∧ u2 ≥ 0 → d1 + u1 ≥ ε ∧ d2 + u2 ≥ ε).
Counterexample 7 (Equational differential variants). Rule G6 is not applicable
for equations like x = y. Even though x = y can be encoded as F ≡ x ≤ y ∧ x ≥ y,
the corresponding F ′ ≥ ε ≡ x′ + ε ≤ y′ ∧ x′ ≥ y′ + ε is equivalent to false for ε > 0.
Indeed, assuming a′ = b′ = 0, the validity of a formula like 〈x′ = a ∧ y′ = b〉x = y
depends on the relationship of the initial values of x and y and the constants a
and b: It is true, iff (x− y)(a− b) < 0 or x = y holds initially.

More generally, differential variants cannot (directly) verify conjunctive equa-
tions like in 〈x′ = a ∧ y′ = b〉(x = 0 ∧ y = 0) because differential variants guaran-
tee that a target region F will be reached, not when precisely. In particular, x = 0
and y = 0 would not necessarily be reached simultaneously. In fact, for a, b 6= 0,
the above reachability property is only valid iff bx = ay ∧ ax < 0, initially.

Counterexample 8 (Minimal progress requirement). Unlike in discrete domains,
strictly monotonic sequences can converge in R. Thus, the premiss F ′ ≥ ε for
an ε > 0 of G6 cannot be weakened to F ′ > 0 as the counterexample in Fig. 8a
shows, in which x converges monotonically to 0 along the dynamics shown in
Fig. 8b. Moreover, this example demonstrates that, in the presence of conver-
gent dynamics, a property like x ≥ 0 can be invariant, even though it is not
differentially invariant, see Fig. 8c.

∗ (unsound)
` ∀x (x > 0→ −x < 0)
` 〈x′ = −x〉x ≤ 0

8a: Counterexample

0 t

x
x0

x0e
−t

x ′
= −x

8b: Convergent descent

false
F1 ` ∀x (−x ≥ 0)
G5x ≥ 0 ` [x′ = −x]x ≥ 0

8c: Non-inductive

Fig. 8: Monotonically decreasing convergent counterexample

Counterexample 9 (Lipschitz-continuity requirement). As the counterexample in
Fig. 9a shows, Lipschitz-continuity (or at least the existence of a solution of suffi-
cient duration) is, in fact, a necessary prerequisite for G6. For x = y = 0 initially,
the solution of the differential equations in Fig. 9a is x(t) = t and y(t) = tan t.
In explosive examples like the corresponding dynamics in Fig. 9b, where solu-
tion y grows unbounded in finite time, the duration of existence of solutions is
limited so that the target region x ≥ 6 is physically unreachable. More precisely,
the dynamics is not well-posed beyond the explosive point of unbounded growth
at the singularity π

2 and is non-physical beyond that singularity. Note that the
continuous dynamics of Fig. 9 is only locally Lipschitz-continuous and disobeys
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divergence of time (Section 2.2). The condition of Lipschitz-continuity is directly
expressible as a formula for G6:

∃L∀y1 . .∀yk∀x1 . .∀xn ∀ỹ1 . .∀ỹk∀x̃1 . .∀x̃n
(θ1 − θ̃1)2 + · · ·+ (θn − θ̃n)2 ≤ L2((x1 − x̃1)2 + · · ·+ (xn − x̃n)2)

where θ̃i denotes the result of substituting all xj in θi by the corresponding x̃j
and the yj by ỹj . Observe that, besides Lipschitz-continuity, any other condition
can be used that ensures the existence of a solution of sufficient duration for G6.

∗ (unsound)

` ∃ε>0 ∀x∀y (x < 6→ 1 ≥ ε)
` 〈x′ = 1 ∧ y′ = 1 + y2〉x ≥ 6

9a: Counterexample

y

x

���Π
2 Π ������3 Π

2 2 Π
t

-6

-4

-2

0

2

4

9b: Explosive dynamics

Fig. 9: Unbounded dynamics with limited duration of solutions

4.7 Soundness

In this section we prove that verification with the DAL calculus always produces
correct results about DA-programs, i.e., the DAL calculus is sound.

Theorem 1 (Soundness). The DAL calculus is sound, i.e., every DAL for-
mula that can be derived in the DAL calculus is valid (true in all states).

Proof. The calculus is sound if each rule instance is sound. The rules of the
DAL calculus are even locally sound, i.e., their conclusion is true at ν if all its
premisses are true in ν. Local soundness implies soundness. The local soundness
proofs of D1–D4 and the propositional rules are as usual. Similarly, G3 and G4
are local versions of induction schemes, and the proof is as usual [33, 22], likewise
for G1–G2. The local soundness of D9–D10 is a generalisation of the proofs for
update rules [5] to first-order DJ-constraints. The proofs for D5–D8 are simple.
Finally, our previous results [5, 33] can be lifted to show that locally sound rules
are closed under addition of Γ,∆ context and of conjunctive DJ-constraints in
Def. 16. For soundness, however, conjunctive DJ-constraints are crucial here [5,
33] as these are deterministic.

F3 Rule F3 is locally sound: Let ν be a state in which the premiss is true, i.e.,

ν |= QE(∃x
∧
i

(Γi ` ∆i)) .

We have to show that the conclusion is true in this state. Using that quantifier
elimination yields an equivalence, we see that ν also satisfies ∃x ∧i(Γi ` ∆i)
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prior to the quantifier elimination. Hence, for some state νx that agrees
with ν except for the value of x we obtain:

νx |=
∧
i

(Γi ` ∆i) .

As side deduction (?) in Fig. 4 is inductively shown to be locally sound, we
can conclude that νx |= (Γ ` ∆,φ). Therefore, ν |= ∃x (Γ ` ∆,φ). Now the
conjecture can be obtained using standard reasoning with quantifiers and
the absence of x in Γ,∆ by rewriting the conclusion with local equivalences:

∃x (Γ ` ∆,φ) ≡ ∃x (¬Γ ∨∆ ∨ φ) ≡ ¬Γ ∨∆ ∨ ∃xφ ≡ Γ ` ∆,∃xφ (4)

The soundness proof for F1 is similar since (4) holds for any quantifier. The
proofs of F4 and F2 can be derived using duality of quantifiers.

D12 By Lemma 3, there is an equivalent disjunctive normal form D1 ∨ · · · ∨ Dn
of D. Thus, it only remains to show that ρ(D) ⊆ ρ((D1 ∪ . . . ∪ Dn)

∗
) as

the converse inclusion is obvious. Let ϕ be a state flow for a transition
(ν, ω) ∈ ρ(D). We assume that ϕ is non-Zeno according to Def. 12. Thus,
there is a finite number, m, of switches between the Di, say Di1 ,Di2 , . . . ,Dim .
Then, the transition (ν, ω) belonging to ϕ can be simulated piecewise by m
repetitions of D1 ∪ . . . ∪ Dn, where each piece selects the respective part Dij .
The proof for D11 is accordingly.

D13 Local soundness of rules D13 and D14 are immediate consequences of Lemma 3
and the respective semantics of modalities.

D15 Rule D15 can be proven locally sound using that the left premiss implies that
every flow ϕ that satisfies D also satisfies χ all along the flow. Thus, ϕ |= D
implies ϕ |= D ∧ χ so that the right premiss entails the conclusion.

G5 Let ν satisfy the premiss and the antecedent of the conclusion as, otherwise,
there is nothing to show. By Lemma 3, we can assume F to be in disjunctive
normal form and consider any disjunct G of F that is true at ν. In order
to show that F is sustained during the continuous evolution, it is sufficient
to show that each conjunct of G is. We can assume these conjuncts to be
of the form c ≥ 0 (or c > 0 where the proof is accordingly). Finally, using
vectorial notation, we write x′ = θ for the differential equation system and ∃y
for the chain of quantifiers. Now let ϕ : [0, r]→ State(Σ) be any state flow
with ϕ |= ∃y (x′ = θ ∧ χ) beginning in ϕ(0) = ν. In particular, ϕ |= ∃y χ,
which, by antecedent, implies ν |= F , i.e., c ≥ 0 holds at ν. We assume
duration r > 0, because the other case is immediate (ν |= c ≥ 0 already
holds). We show that c ≥ 0 holds all along the flow ϕ, i.e., ϕ |= c ≥ 0.
Suppose there was a ζ ∈ [0, r] where ϕ(ζ) |= c < 0, which will lead to a con-
tradiction. Then the function h : [0, r] → R defined as h(t) = val(ϕ(t), c)
satisfies h(0) ≥ 0 > h(ζ), because ν |= c ≥ 0 by antecedent. Clearly, ϕ is of
the order of D(c), because: ϕ is of order 1 for all variables in vector x,
and trivially of order ∞ for variables that do not change during the DA-
constraint. Further, by α-renaming, D(c) cannot contain the quantified vari-
ables y, hence, ϕ is not required to be of any order in y. The value of c
is defined all along ϕ, because we have assumed χ to guard against ze-
ros of denominators. Thus, by Lemma 1, h is continuous on [0, r] and dif-
ferentiable at every ξ ∈ (0, r). The mean value theorem implies that there

is a ξ ∈ (0, ζ) such that dh(t)
dt (ξ) · (ζ − 0) = h(ζ)− h(0) < 0. In particular,
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since ζ ≥ 0, we can conclude that dh(t)
dt (ξ) < 0. Now Lemma 1 implies

that dh(t)
dt (ξ) = val(ϕ̄(ξ), D(c)) < 0. The latter equals1 val(ϕ̄(ξ)

u
y , D(c)

θ
x′)

by Lemma 2, because ϕ |= ∃y (x′ = θ ∧ χ) so that ϕ̄(ξ)
u
y |= x′ = θ ∧ χ for

some u ∈ R and because y′ does not occur and y 6∈ c. This, however, is
a contradiction, because the premiss implies that ϕ |= ∀y (χ→ D(c)

θ
x′ ≥ 0)

as ∀α comprises all variables that change during the flow ϕ along x′ = θ, i.e.,
the vector x. In particular, as ϕ̄(ξ)

u
y |= χ holds, we have ϕ̄(ξ)

u
y |= D(c)

θ
x′ ≥ 0.

G6 First, we consider the quantifier free case, again using vectorial notation.
Let ν be any state satisfying the premiss and the antecedent of the conclu-
sion. Since ν satisfies the premiss and, after α-renaming, ε is a fresh variable,
we can assume ν itself to satisfy ν |= ∀α(¬F ∧ χ→ (F ′ ≥ ε)θx′). For G6, we
required x′ = θ to be Lipschitz-continuous so that the global Picard-Lindelöf
theorem [48, Theorem 10.VII] ensures the existence of a global solution of
arbitrary duration r ≥ 0, which is all we need here. Let ϕ be a state flow
corresponding to a solution of the differential equation x′ = θ starting in ν
of some duration r ≥ 0. If there is a point in time ζ at which ϕ(ζ) |= F , then
by antecedent, until (and including, because ∼F contains the closure of ¬F )
the first such point, χ holds true during ϕ. Hence, the restriction of ϕ to [0, ζ]
is a state flow witnessing ν |= 〈x′ = θ ∧ χ〉F . If, otherwise, there is no such
point, then we show that extending ϕ by choosing a larger r will inevitably
make F true. We thus have ϕ |= ¬F ∧ χ and, by premiss, ϕ |= F ′

θ
x′ ≥ ε, be-

cause ∀α comprises the variables x that change during ϕ. By Def. 13, F ′
θ
x′ ≥ ε

is a conjunction. Consider one of its conjuncts, say c′
θ
x′ ≥ ε belonging to a

literal c ≥ 0 of F (the other cases are accordingly). Again, ϕ is of the or-
der of D(c) and the value of c is defined along ϕ, because ϕ |= χ and χ is
assumed to guard against zeros. Hence, by mean-value theorem, Lemma 1,
and Lemma 2, we conclude for each ζ ∈ [0, r] that

val(ϕ(ζ), c)− val(ϕ(0), c) = val(ϕ̄(ξ), c′
θ
x′)(ζ − 0) ≥ ζval(ϕ(0), ε)

for some ξ ∈ (0, ζ). Now as val(ϕ(0), ε) > 0 we have for all ζ > − val(ϕ(0),c)val(ϕ(0),ε)

that ϕ(ζ) |= c ≥ 0 and ϕ(r) |= c ≥ 0, even ϕ(r) |= c > 0. By extending r suf-
ficiently large, we have that all literals c ≥ 0 of one conjunct of F are true,
which concludes the proof, because, until F finally holds, ϕ |= χ is implied
by the antecedent as shown earlier.
In the presence of quantifiers (∃y with vectorial notation), rule G6 implies
a slightly stronger statement, because y is quantified universally in the pre-
miss (and antecedent): F can be reached for all choices of y that respect χ
(rather than just for one). By antecedent, there is a u ∈ R such that νuy |= χ.
Hence, νuy satisfies the assumptions of the above quantifier-free case. Thus,
νuy |= 〈x′ = θ ∧ χ〉F , which entails that ν |= 〈∃y (x′ = θ ∧ χ)〉F using u con-
stantly as the value for the quantified variable y during the evolution. ut

As a consequence of a corresponding result in [31], the DAL calculus is not
effectively axiomatisable (yet even pure reachability is already undecidable for
hybrid systems [23]). For relative completeness results for differential dynamic
logics, we refer to previous work [33], where the proof carries over to DAL.

1 For u ∈ R let ϕ̄(ξ)uy denote the (augmented) state that agrees with ϕ̄(ξ) except that
the value of y is u.
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4.8 Deductive Strength of Differential Induction

We analyse the deductive power of differential induction with respect to classes
of formulas that are allowed as differential invariants. For purely equational dif-
ferential invariants, the deductive power is not affected by allowing or disallowing
propositional operators in differential invariants:

Proposition 1. The deductive power of differential induction with atomic equa-
tions is identical to the deductive power of differential induction with proposi-
tional combinations of polynomial equations: Formulas are provable with propo-
sitional combinations of equations as differential invariants iff they are provable
with only atomic equations as differential invariants.

Proof. We show that every differential invariant that is a propositional combi-
nation φ of polynomial equations is expressible as a single atomic polynomial
equation (the converse inclusion is obvious). We assume φ to be in negation
normal form and reduce φ inductively using the following transformations:

– If φ is of the form p1 = p2 ∨ q1 = q2, then φ is equivalent to the single equa-
tion (p1 − p2)(q1 − q2) = 0. Further φ′ ≡ p′1 = p′2 ∧ q′1 = q′2 directly implies
((p1 − p2)(q1 − q2))′ = 0 ≡ (p′1 − p′2)(q1 − q2) + (p1 − p2)(q′1 − q′2) = 0.

– If φ is of the form p1 = p2 ∧ q1 = q2, then φ is equivalent to the single
equation (p1 − p2)2 + (q1 − q2)2 = 0. Further φ′ ≡ p′1 = p′2 ∧ q′1 = q′2 implies
2(p1 − p2)(p′1 − p′2) + 2(q1 − q2)(q′1 − q′2) = 0.

– If φ is of the form ¬(p1 = p2), then φ does not qualify as a differential
invariant, because it contains a negative equality, which are disallowed for
G5 according to Fig. 3. ut

Observe, however, that the required polynomial degree of atomic equations is
larger than for propositional combinations, which can have computational dis-
advantages for quantifier elimination.

For general differential invariants, where inequalities are allowed, the situa-
tion is different: We show that, in general, the deductive power of differential
induction depends on which class of formulas is allowed as differential invariants!
Some DAL formulas cannot by proven by a differential induction step with only
atomic formula but no propositional operators as differential invariant, while
they are provable immediately using unrestricted differential invariants.

Theorem 2. The deductive power of differential induction with arbitrary for-
mulas exceeds the deductive power of differential induction with atomic formulas:
All DAL formulas that are provable using atomic differential invariants are prov-
able using general differential invariants, but not vice versa!

Proof. The inclusion is obvious. Conversely, we have to show that there are
DAL formulas that are provable with general differential invariants but not with
atomic differential invariants. Consider the following example, which is provable
using rule G5’, i.e., the variant of G5 for open sets (Appendix A), with the
non-atomic formula x > 0 ∧ y > 0 as differential invariant:

∗
F1 ` ∀x∀y (x > 0 ∧ y > 0→ xy > 0 ∧ xy > 0)
G5’x > 0 ∧ y > 0 ` [x′ = xy ∧ y′ = xy](x > 0 ∧ y > 0)
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First, we show that this formula is not provable by a differential induction step
with only atomic formulas as differential invariants. Suppose there was a single
polynomial p(x, y) in variables x, y such that p(x, y) > 0 is a differential invariant
proving the above formula, which will lead to a contradiction. The conditions
for differential invariants (G5 or G5’) imply that the following formulas have to
be valid:

1. x > 0 ∧ y > 0→ p(x, y) > 0, as differential invariants have to hold in the
prestate according to the antecedent of G5 (or G5’).

2. p(x, y) > 0→ x > 0 ∧ y > 0, as the differential invariant has to imply the
postcondition (when using G1 to show that the differential invariant implies
the postcondition).

In particular, x > 0 ∧ y > 0↔ p(x, y) > 0 is valid. Thus, p enjoys the property:

p(x, y) ≥ 0 for x ≥ 0, y ≥ 0, and, otherwise, p(x, y) ≤ 0 . (5)

Assume p has minimal total degree with property (5). Now, p(x, 0) is a uni-
variate polynomial in x with zeros at all x > 0, thus p(x, 0) = 0 is the zero
polynomial, hence y divides p(x, y). Accordingly, p(0, y) = 0 for all y, hence x
divides p(x, y). Thus, xy divides p. But by comparing the signs, we see that poly-

nomial −p(−x,−y)xy also satisfies property (5) with a smaller total degree than p,
which is a contradiction.

Similarly, there is no polynomial p such that x > 0 ∧ y > 0↔ p(x, y) = 0,
because only the zero polynomial is zero on the full quadrant (0,∞)2. Fi-
nally, x > 0 ∧ y > 0↔ p(x, y) ≥ 0 is impossible for continuity reasons that imply
p(0, 0) = 0, which is a contradiction. More generally, the same argument holds
for any other sign condition that is supposed to characterise one quadrant of R2

uniquely.
Observe that, so far, the argument does not depend on the actual dynamics

and is, thus, still valid in the presence of arbitrary differential weakening (D13).
Next, to see that the above example cannot even be proven indirectly after

differential strengthening (D15), we use that, inductively, the strengthening χ
itself needs to be a differential invariant: Ultimately, the left sub-goal of D15
can only be shown using differential induction. The above example, however,
is built such that, as x′ = xy is the differential equation, xy > 0 is required
for x > 0 to be a differential invariant (which thus also requires y > 0). Vice
versa, due to y′ = xy, formula xy > 0 is a prerequisite for the differential in-
variance of y > 0 (which thus also needs x > 0). Yet, for differential invariance
of xy > 0, we have to prove xy > 0→ (y + x)xy > 0 for G5’, because (xy)′

xy
x′

xy
y′

gives (x′y + yx′)
xy
x′

xy
y′ , i.e., xyy + yxy. But xy > 0→ (y + x)xy > 0 is, again,

equivalent to x ≥ 0 ∨ y ≥ 0, and thus to ¬(−x > 0 ∧ −y > 0), which cannot be
proven by atomic differential induction (or differential weakening) according to
the first part of this proof. Thus, the required atomic differential invariants have
circular dependencies for differential strengthenings by x > 0, y > 0, and xy > 0,
respectively, which cannot be resolved in any proof tree without simultaneous
differential induction using non-atomic differential invariants, because differen-
tial strengthenings have to be ordered totally along each proof branch. ut
As a special case, this result implies that differential induction in DAL is de-
ductively stronger than approaches using barrier certificates [39, 40], criticality
functions [10], or polynomial invariant equations [43, 41]. On top of that, the



38 André Platzer

DAL calculus adds differential strengthening and weakening techniques, which
add further deductive power. The roundabout maneuver that we verify in the
next section is a practical example where differential induction with mixed non-
atomic formulas and successive differential strengthening turns out to be decisive.

5 Verifying Tangential Roundabout Maneuvers in Air
Traffic Control

In this section we verify that the tangential roundabout maneuver for collision
avoidance in air traffic control that we presented in Section 3 is collision-free,
i.e., directs aircraft on flight paths with global minimal distance p > 0, and
determine a corresponding parameter constraint on the entry procedure. Using
differential induction and differential strengthening, the flight maneuver can be
verified despite the complicated hybrid flight dynamics of aircraft.

Characterisation of Safe Roundabout Dynamics. Property φ in Fig. 2
defines safe states as those with separation ‖x− y‖ ≥ p. This does not, however,
characterise the states with safe dynamics: Several states that satisfy φ will
not remain safe when following curved roundabout flight maneuvers, see Fig. 1c
for a counterexample violating φ after some time. In particular, the angular
velocity ω and initial speed vectors d and e must fit to the relative positioning
of the aircraft x and y for the aircraft dynamics to remain safe. In order to find
out the required parametric constraints for safety of the roundabout maneuver,
we analyse the DAL formula ψ in the DAL calculus and identify a corresponding
parameter constraint T . For notational convenience, we inline side deductions
and slightly simplify universal closure notation ∀α by taking free variables as
universally quantified, because the following DAL proof needs no existential
variables.

∗
F1 φ ` ∀x, y, d, e (φ→ φ)

D13’φ ` [free]φ

. . .
φ ` [entry](φ ∧ T )

. . .
φ ∧ T ` [F(ω) ∧ G(ω)]φ

G1 φ ` [entry;F(ω) ∧ G(ω)]φ
G1 φ ` [free][entry;F(ω) ∧ G(ω)]φ
D2 φ ` [trm]φ

F1,P7 ` ∀α(φ→ [trm]φ)
G3 φ ` [trm∗]φ
P7 ` φ→ [trm∗]φ

The left branch closes, because postcondition φ is the invariant region in free
flight such that its DA-constraint can be weakened by Lemma 6. In the other
branches, T is the parameter constraint that entry needs to establish in addi-
tion to φ (middle branch) for the roundabout dynamics to be safe (right branch).
Hence condition T mediates among the middle and right branch. Using succes-
sive quantifier elimination, we derive the following constraint T as a prerequisite
for φ to be differentially inductive. It is the decisive constraint that characterises
configurations with safely controllable dynamics in curved roundabout maneu-
vers (using vectorial notation and orthogonal complements d⊥ from Section 2):

T ≡ d− e = ω(x− y)⊥
(
or, equivalently (d− e)⊥ = −ω(x− y)

)
(6)

≡ d1 − e1 = −ω(x2 − y2) ∧ d2 − e2 = ω(x1 − y1) .
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This formula expresses that the relative speed vector d− e is orthogonal to the
relative position x−y and compatible with the angular velocity ω and tangential
orientation of d and e. Figure 10a illustrates the symmetric case with identical
linear speed ‖d‖ = ‖e‖, Fig. 10b–10c show asymmetric cases with distinct linear
speeds ‖d‖ 6= ‖e‖, which is possible as well. Condition T gives the decisive handle

c
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e

x− y
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d−
e

10a: Symmetric case
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−
e
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e
x− y

e

d
−
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10c: Close flight

Fig. 10: Tangential construction for characteristics T of roundabout dynamics

for an inductive characterisation of safe tangential roundabout configurations:
For the right branch of the above proof, we need to show that the tangential
configuration T is sufficient for φ to be sustained during curved evasive actions.
In the following, we prove that the relative speed vector configuration T is
itself differentially inductive (left branch) and use differential strengthening with
D15 to augment the dynamics with T as a derived invariant for proving that
the actual safety property φ is sustained (right branch), again by differential
induction:

∗
F1 ` ∀α(T ′F(ω)∧G(ω))
G5φ, T ` [F(ω) ∧ G(ω)]T

∗
F1 ` ∀α(T → φ′F(ω)∧G(ω))
G5φ ` [F(ω) ∧ G(ω) ∧ T ]φ

D15 φ, T ` [F(ω) ∧ G(ω)]φ
P6 φ ∧ T ` [F(ω) ∧ G(ω)]φ

Observe that differential strengthening by D15 is crucial for the proof, because
neither φ nor T ∧ φ are differentially inductive for F(ω) ∧ G(ω)! Instead, the
tangential configuration T itself is differentially inductive relative to F(ω) ∧ G(ω)
(left branch) and strong enough to make φ differentially inductive relative to the
augmented DA-constraint F(ω) ∧ G(ω) ∧ T (right branch). For readability, we
use a slightly weaker rule for differential induction, with φ rather than [T ]φ
in the antecedent of the conclusion. This variant can be derived easily using a
cut and will again be called G5. The differential induction G5 on the left and
right branch close using quantifier elimination in F1 or the following algebraic
equational reasoning, respectively (T ′F(ω)∧G(ω) is a short notation for substituting

the differential equations from F(ω) ∧ G(ω) into D(T ), see Lemma 2):

T ′F(ω)∧G(ω) ≡ (d′1 − e′1 = −ω(x′2 − y′2) ∧ d′2 − e′2 = ω(x′1 − y′1))F(ω)∧G(ω)

≡ − ωd2 + ωe2 = −ω(d2 − e2) ∧ ωd1 − ωe1 = ω(d1 − e1) ≡ true

φ′F(ω)∧G(ω) ≡ (2(x1 − y1)(x′1 − y′1) + 2(x2 − y2)(x′2 − y′2) ≥ 0)F(ω)∧G(ω)

≡ 2(x1 − y1)(d1 − e1) + 2(x2 − y2)(d2 − e2) ≥ 0

(using T ) ≡ 2(x1 − y1)(−ω(x2 − y2)) + 2(x2 − y2)ω(x1 − y1) = 0 ≥ 0 ≡ true.



40 André Platzer

Altogether, we have shown that every tangential roundabout evasion maneuver
respecting T is safe. Further, the middle branch of the above proof reveals the
parameter constraint imposed on entry for safe roundabouts, which concludes
the proof of the following result.

Theorem 3 (Safety of tangential roundabout maneuver). For every choice
of the tangential entry procedure that satisfies φ→ [entry](φ ∧ T ), the tangen-
tial roundabout flight maneuver in Fig. 2 safely avoids collisions, i.e., it directs
aircraft on flight paths with minimal horizontal aircraft separation at least p > 0.

This result can be proven in our theorem prover [36] in 3s including user in-
teractions for D13 and D15. Its proof does not need G1, which we only used
here to shorten the proof presentation. Theorem 3 expresses unbounded-time
safety for fully parametric tangential roundabouts with arbitrary choices for the
free parameters. The proof of Theorem 3 generalises to roundabouts entered
by more than two participants when φ and T are augmented accordingly. For
instance, using an automatic proof procedure based on the DAL calculus, our
theorem prover can prove mutual collision avoidance for 5 aircraft fully automat-
ically [35]. Likewise, G5 and D15 can be used to prove that external separation to
all other sufficiently far points is maintained during the roundabout maneuver,
in particular, the maneuver only needs bounded space:

Proposition 2 (External separation of roundabout maneuvers). Separa-
tion of aircraft x to all external points u ∈ R2 of distance beyond the roundabout
diameter 2r is maintained:

r ≥ 0 ∧ (rω)2 = ‖d‖2 → ∀u (‖x− u‖2 > (2r + p)2 → [F(ω)](‖x− u‖2 > p2)) .

Tangential Entry Procedure. As a simple choice for the tangential initiation
procedure entry satisfying property T , consider the following operation which
chooses an arbitrary angular velocity ω, an arbitrary centre c ∈ R2 for the
roundabout maneuver, and adjusts d and e tangentially:

entry ≡ ∃uω := u; ∃c (d := ω(x− c)⊥ ∧ e := ω(y − c)⊥) . (7)

This formula expresses that the speed vectors d and e of both aircraft at x and
y, respectively, are tangentially and of the same angular velocity ω relative to
the intended centre c of the roundabout, with the same orientation (Fig. 10). For
this choice, the assumption of Theorem 3 can be proven after D10 substitutes
the corresponding terms for d and e in T , using F1 (or linearity of d⊥):

∗
P9φ ` φ

∗
φ ` ω(x− c)⊥ − ω(y − c)⊥ = ω(x− y)⊥

P5 φ ` φ ∧ ω(x− c)⊥ − ω(y − c)⊥ = ω(x− y)⊥
D10 φ ` [d := ω(x− c)⊥ ∧ e := ω(y − c)⊥](φ ∧ T )

F1,F1 φ ` ∀ω ∀c [d := ω(x− c)⊥ ∧ e := ω(y − c)⊥](φ ∧ T )
D2,D6,D6φ ` [entry](φ ∧ T )

It can also be shown that ∃c (d = ω(x− c)⊥ ∧ e = ω(y − c)⊥) is equivalent to T
for nonzero ω. With choice (7), the tangential roundabout maneuver in Fig. 2 is
safe and has been significantly simplified and generalised in comparison to [34].
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Discussion. Our tangential roundabout maneuver leaves open how and when
precisely the collision avoidance maneuver is initiated or when to leave it. For
instance, (7) does not restrict c and ω but accepts any choice including choices
optimising secondary objectives like fuel consumption. Furthermore, as specified
in Fig. 2 and proven in this section, the roundabout maneuver can be left safely
with arbitrary free flight by repeating the loop at any time: The roundabout
maneuver will be initiated again during free flight when necessary. As a spe-
cial case, this open policy includes free flight enabling the aircraft to leave the
roundabout in their original direction. While the simple choice (7) is possibly
discontinuous in d and e, it is comparably easy to see that there are fully curved
entry and exit procedures that remain safe when the entry procedure is initiated
with sufficient distance by using the separation limit of Proposition 2. Develop-
ing a corresponding entry procedure is, however, beyond the scope of this paper.
Our proof shows that the tangential roundabout maneuver is safe for every such
entry procedure. In particular, the control parameters c and ω of (7) can also
be chosen such that the resulting speed vectors d and e are in a bounded range
meeting external speed requirements of the aircraft:

∀v (φ→ 〈entry〉(φ ∧ T ∧ ‖d‖2 = ‖e‖2 = v2)) .

6 Conclusions and Future Work

We have introduced a first-order dynamic logic for differential-algebraic pro-
grams with interacting first-order discrete jump constraints and first-order dif-
ferential-algebraic constraints. For this differential-algebraic logic, DAL, we have
presented a calculus for verifying hybrid systems given as differential-algebraic
programs.

In differential-algebraic programs, both internal choices and disturbances
during continuous evolutions and nondeterminism in discrete operations can
be described uniformly by quantifiers. Most importantly, we have introduced
first-order differential induction with differential invariants and differential vari-
ants for proving correctness statements with first-order differential-algebraic con-
straints purely algebraically using the differential constraints themselves instead
of their solutions. In combination with successive differential strengthening for
refining the system dynamics by auxiliary differential invariants, we obtain a
powerful verification calculus for systems with challenging dynamics. We com-
pare the deductive strength for classes of differential invariants and show that
the deductive power of general differential induction exceeds the deductive power
of atomic differential invariants.

We have demonstrated that our calculus can be used successfully for veri-
fying fully parametric roundabout maneuvers in air traffic control. To the best
of our knowledge, this is the first formal proof for unbounded safety of hybrid
aircraft dynamics in curved collision avoidance maneuvers for air traffic control.
Moreover, we argue that our fully formal proof about aircraft gives more con-
fidence in flight maneuvers than informal approaches that do not consider the
actual hybrid flight dynamics [25, 14, 18] or results that only prevent orthogonal
collisions in discretisations of the system [11, 29]. Our logic DAL is also more
convenient, because hybrid systems like the tangential roundabout maneuver
can be specified and verified uniformly within a single logic. Despite challenging
flight dynamics, the DAL formulas about aircraft and roundabout maneuvers
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that we presented in this paper can be proven in our theorem prover [36] within
a few seconds.

While this work answers the open issues (1), (3) and (4) raised in the work of
Piazza et al. [30], we are interested in extending differential-algebraic methods
to address further questions about hybrid systems. In a follow-up paper [35],
we investigate algorithms for constructing differential invariants automatically
on the basis of our DAL calculus presented here. Interesting future work for
the aircraft case study is to find a fully curved maneuver that achieves collision
avoidance by joint horizontal and vertical evasive actions.
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A Soundness of Differential Invariance Restrictions

While Example 4 shows that differential invariant F cannot generally be as-
sumed to hold in the premiss of G5 without loosing soundness, we present two
corresponding refinements of G5 that are indeed sound.

Proposition 3. Using the notation of G5–G6, the following variations of dif-
ferential induction G5 are sound (in the first rule, F describes an open set):

(G5’)
` ∀α∀y1 . . . ∀yk (F ∧ χ→ F ′

θ1
x′1
. . .θnx′n)

[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ)]F

(G5”)
` ∀α∀y1 . . . ∀yk (F ∧ χ→ (F ′ > 0)

θ1
x′1
. . .θnx′n)

[∃y1 . . . ∃yk χ]F ` [∃y1 . . . ∃yk (x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ)]F

Proof. The proof that the first rule is sound is similar to the proof for G5 in
Theorem 1, except that assuming ϕ(ζ) |= ¬F only yields h(0) ≥ 0 ≥ h(ζ), which
does not lead to a contradiction. However, by using that F is open, the distance
to the border of F is positive in the initial state ϕ(0), which yields the inequal-
ity h(0) > 0 ≥ h(ζ), and the contradiction arises accordingly.

The soundness of the second rule needs more adaptation. Repeating the ar-
gument for G5, we can assume F to be of the form c ≥ 0. Suppose there was
a ι ∈ [0, r] where ϕ(ι) |= c < 0, which will lead to a contradiction. Let ζ ∈ [0, r]
be the infimum of these ι, hence, ϕ(ζ) |= c = 0 by continuity. Then the func-
tion h : [0, r]→ R defined as h(t) = val(ϕ(t), c) satisfies h(0) ≥ 0 ≥ h(ζ), be-
cause ν |= c ≥ 0 by antecedent. By repeating the argument with Lemma 1 like
in the proof for G5, h is continuous on [0, r] and differentiable at every ξ ∈ (0, r)

with derivative dh(t)
dt (ξ) = val(ϕ̄(ξ), D(c)), which in turn equals val(ϕ̄(ξ), D(c)

θ
x′),

because ϕ |= x′ = θ. Now, the mean value theorem implies that there is a ξ ∈ (0, ζ)

such that dh(t)
dt (ξ) · (ζ − 0) = h(ζ)− h(0) ≤ 0. In particular, as ζ ≥ 0, we can con-

clude that dh(t)
dt (ξ) = val(ϕ̄(ξ), D(c)

θ
x′) ≤ 0. This, however, contradicts that the

premiss implies ϕ̄(ξ) |= D(c)
θ
x′ > 0, as the flow satisfies ϕ |= χ and ϕ(ξ) |= c ≥ 0,

because ζ > ξ is the infimum of the counterexamples ι with ϕ(ι) |= c < 0. ut
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42. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci.
290(1) (2003) 937–973

43. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid
systems. [2] 539–554

44. Schobbens, P.Y., Raskin, J.F., Henzinger, T.A.: Axioms for real-time logics. Theor.
Comput. Sci. 274(1-2) (2002) 151–182



Differential-Algebraic Dynamic Logic for Differential-Algebraic Programs 45

45. Sibirsky, K.S.: Introduction to Topological Dynamics. Noordhoff, Leyden (1975)
46. Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue

sharing. J. Autom. Reasoning 30(1) (2003) 1–31
47. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management:

a study in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4) (1998)
509–521

48. Walter, W.: Ordinary Differential Equations. Springer (1998)
49. Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid

real-time systems. In Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H., eds.:
Hybrid Systems. Volume 736 of LNCS., Springer (1992) 36–59




