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Control Envelope Synthesis
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Cyber-physical 
systems

Designing Control 
Conditions

• Difficult: the main point 
control theory

• Needs creativity, careful 
reasoning about 
dynamics

Conjecture 
Conditions Try Proof

Solution: Synthesis justified by 
verification

Synthesis procedure:
fills control conditions

Correct by 
Construction
Control Envelope!

Human provides: 
Shape of model

Requires
Verification

𝑝 =



Control Envelopes
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Safe Actions Only

Action 
C

Action 
A

Action 
B

Unverified Controller

Control 
Envelope

• Non-deterministic: allow all safe actions
• Define families of safe controllers
• Full system monitored for adherence at 

runtime
• Higher-order constraint compared to 

controllers: solutions permit as many 
safe control solutions as possible



Overview

• Introduction
• Problem Statement
• Game Logic and Solution
• Refinement
• Evaluation
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Problem
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Synthesis procedure fills holes (     ). Which action is safe when?

Assuming
assum ∧

?

Assumptions Control Loop Contract

Control Loop

Safety 
Contract

Holds

Environment
(Differential 
Equations)

? ...

if

action 2if

if action n

action 1

? 

?

?



Example: Train
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Synthesis procedure fills holes (     ). Which action is safe when??

[1] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal 
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/ 978-3-642-10373-5_13 

Assuming
 assum ∧

Control Loop
?

if

if

𝑒 − 𝑝 > 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴?

?
𝑡 ≔ 0;	𝑝! = 𝑣, 𝑣! = 𝑎, 
𝑡! = 1 &	𝑡 ≤ 𝑇 ∧ 𝑣 ≥ 0

Modeling 
assumptions

Additional 
conditions 

required for 
safety

Where assum=𝐴 > 0 ∧ 𝐵 > 0 ∧ 𝑇 > 0 ∧ 𝑣 ≥ 0

action choice 1: 
acceleration

action choice 2: 
braking

Train moves per chosen 
acceleration for up to 

one time-period 𝑇

Safety contract: 
train must not go 

past position 𝑒



Solution
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Synthesis procedure fills holes (     ). Which action is safe when?

Assuming
assum ∧

Control Loop

𝐼

if

if

if

Safety 
Contract

Holds

Environment
(Differential 
Equations)

...

action 1𝐺!

𝐺"

𝐺#

action 2

?

Solution I, 𝐺:

action 2



Solution
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Synthesis procedure fills holes (     ). Which action is safe when?

Assuming
assum ∧

Control Loop

Safety 
Contract

Holds

?

Solution I, 𝐺:  ensures:
1. Safety (valid formula, as proved by loop invariant assum ∧ I )

𝐼𝐼 𝐼 𝐼



Solution
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Synthesis procedure fills holes (     ). Which action is safe when?

Assuming
assum ∧

Control Loop

𝐼

if

if

if

Safety 
Contract

Holds

Environment
(Differential 
Equations)

...

action n

action 1𝐺!

𝐺"

𝐺#

action 2

?

Solution I, 𝐺:  ensures
1. Safety (valid formula)
2. Controllability (always some control option: assum ∧ 𝐼 →∨: 	𝐺: 	)



Example: Train
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Synthesis procedure fills holes (     ). Which action is safe when??

[1] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal 
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/ 978-3-642-10373-5_13 

Assuming
 assum ∧

Control Loop
?

if

if

𝑒 − 𝑝 > 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴?

?
𝑡 ≔ 0;	𝑝! = 𝑣, 𝑣! = 𝑎, 
𝑡! = 1 &	𝑡 ≤ 𝑇 ∧ 𝑣 ≥ 0

When is it safe to 
accelerate? 

Back compute to ensure the safety 
contract isn’t breached

po
sit

io
n

time

𝑒

ve
lo

ci
ty

time

time

ac
ce

le
ra

tio
n



Example: Train
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Synthesis procedure fills holes (     ). Which action is safe when??

[1] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal 
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/ 978-3-642-10373-5_13 

Assuming
 assum ∧

Control Loop

?

if

if

𝑒 − 𝑝 > 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴

?

𝑝! = 𝑣, 𝑣! = 𝑎, 
𝑡! = 1 &	𝑡 ≤ 𝑇 ∧

𝑣 ≥ 0

𝑣𝑇 + $%!

"
 

+
&'$% !

"(
>

𝑒 − 𝑝



Example: Train
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Synthesis procedure fills holes (     ). Which action is safe when??

[1] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal 
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/ 978-3-642-10373-5_13 

Assuming
 assum ∧

Control Loop

if

if

𝑒 − 𝑝 > 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴

𝑝! = 𝑣, 𝑣! = 𝑎, 
𝑡! = 1 &	𝑡 ≤ 𝑇 ∧

𝑣 ≥ 0

True𝑝 +
𝑣"

2𝐵
> 𝑒	

𝑣𝑇 + $%!

"
 

+
&'$% !

"(
>

𝑒 − 𝑝

Envelope=all safe solutions. 
Conditions computed once 

and for all



Quality of Solution

• Good solution: more permissive

• 𝑆> ≥ 𝑆 when either 𝐼′ is strictly more permissive than 𝐼,

   or they are equally permissive and each 𝐺:′	is more permissive than 𝐺:
• Optimum exists, expressible in dGL!
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When False (never)

Safe Not Useful

When 𝑒 − 𝑝 > 𝑣𝑇 + "#!

$
+ @(&'"#)!

$)

Safe Useful

When can the train Accelerate?

⊨ assum → 𝐼 → 𝐼!  and  ⊨ assum → ¬(𝐼′ → 𝐼) 

⊨ assum → 𝐼 → 𝐼!  and ⊨ assum ∧ 𝐼 →∧* (𝐺* → 𝐺*!) 



Overview

• Introduction
• Problem Statement
• Solution
• Evaluation
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Background: Differential Game Logic (dGL)
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Systems have nondeterminism
𝑥 ≔ 𝐴 ∪ 𝑥 ≔ 𝐵

Players resolve nondeterminism

vs

𝑥 ≔ 𝐴 ∪ 𝑥 ≔ 𝐵

Operators

𝑥 ≔ 𝐴 ∩ 𝑥 ≔ 𝐵

Demonic Win Condition

[ 𝑥 ≔ 𝐴 ∩ 𝑥 ≔ 𝐵 ]𝑥 = 𝐴
Demon wins if in the end, 𝑥 = 𝐴

𝛼 ∩ 𝛽, 𝛼×, ? 𝜙,	, 𝑥! = 𝑓 𝑥 &𝑄 -

dGL Axioms

Winning Strategy

[ 𝑥 ≔ 𝐴 ∩ 𝑥 ≔ 𝐵 ]𝑥 = 𝐴
Demon strategy: choose left

𝛼 ∩ 𝛽, 𝛼∗, ? 𝜙, 𝑥^′=𝑓(𝑥)&𝑄

Formulas

[ 𝑥 ≔ 𝐴 ∩ 𝑥 ≔ 𝐵 ]𝑥 = 𝐴

Formula true in states where 
demon has a winning strategy

Demon has a winning strategy if:
• 𝑥 > 0: choose left
• 𝑥 < 0: choose right

Provide a way to get a propositional 
arithmetic formula saying “when can 
demon win this game”?

𝑣 ≔ 1 ∩ 𝑣 ≔ −1 ; 𝑥" = 𝑣 𝑥 ≠ 0

𝑣 ≔ 1 ][ 𝑥" = 𝑣 𝑥 ≠ 0 ∨
𝑣 ≔ −1 ][ 𝑥" = 𝑣 𝑥 ≠ 0

𝑥" = 1 𝑥 ≠ 0 ∨ 𝑥" = −1 𝑥 ≠ 0

∀𝑡 ≥ 0𝑥 + 𝑡 ≠ 0 ∨ ∀𝑡 ≥ 0𝑥 − 𝑡 ≠ 0

𝑥 > 0 ∨ 𝑥 < 0

0

0



Optimal Solution

16

Still Safe?

= Per Optimal Control Solution

action n

...

action 1

action 2 Environment

Environment

Environment

assum 
∧

= Per Least Friendly Environment

Assuming 
assum ∧

Control Loop
?

if

if

if

Safety 
Contract

Holds

Environment
(Differential 
Equations)

...

action n

action 1?
? 
?

action 2

?

action n

action 1

action 2

Environment
... Environment

Environment



Optimal Solution
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Still Safe?

action n

action 1

action 2

Environment
... Environment

Environment

= Per Optimal Controller

action n

...

action 1

action 2 Environment

Environment

Environment

assum 
∧

= Per Least Friendly Environment

Assuming 
assum ∧

Control Loop
?

if

if

if

Safety 
Contract

Holds

Environment
(Differential 
Equations)

...

action n

action 1?
? 
?

action 2

?
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assum 
∧
?

Control Loop

Wins 
when

 Safety 
Contract

Holds

Environment
(Differential 
Equations)

...

action n

action 1

action 2

Still Safe?

action n

action 1
action 2

Environment

... Environment
Environment

action n

...

action 1

action 2 Environment

Environment

Environment

assum 
∧ ?

Optimal Solution
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𝐼/01

Control Loop Body

Wins 
when
 𝐼)*+

Environment...

action n

action 1?
action 2

Optimal Solution: Guards

Allow a control action when it is guaranteed to keep the system within 𝐼/01

Computed 𝐼/01 is loop invariant. Guards ensure inductive step.



Next: Extracting Explicit Solutions

• Propositional arithmetic: easily checked at runtime
• Use the axioms of dGL (which are in terms of 𝐹𝑂𝐿∗)
• *But two dGL constructions need more than 𝐹𝑂𝐿.

• Loops: Defined in terms of fixed point

• Differential equations: Presupposes an ODE solution

20

Approximate with “Refinement”

Approximate using 
continuous invariants



Action Choice Refinement
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The game obtained by restricting the controller 
to one action

Is harder than the game where the controller 
chooses between multiple actions

𝒂 ≔ −𝑩; 𝑡 ≔ 0;
𝑝" = 𝑣, 𝑣" = 𝑎, 𝑡" = 1		𝑡 ≤ 𝑇 ∧ 𝑣 ≥ 0

∗
	𝑒 − 𝑝 > 0 (𝒂 ≔ −𝑩 ∩ 𝒂 ≔ 𝑨); 𝑡 ≔ 0;

𝑝" = 𝑣, 𝑣" = 𝑎, 𝑡" = 1		𝑡 ≤ 𝑇 ∧ 𝑣 ≥ 0

∗
	𝑒 − 𝑝 > 0

If you repeat a time bounded ODE
That’s like executing the ODE for 

arbitrarily long
𝑎 ≔ −𝐵; 𝒕 ≔ 𝟎;

𝑝" = 𝑣, 𝑣" = 𝑎, 𝑡" = 1		𝒕 ≤ 𝑻 ∧ 𝑣 ≥ 0
∗
	𝑒 − 𝑝 > 0 𝑎 ≔ −𝐵; 𝑝" = 𝑣, 𝑣" = 𝑎, 𝑡" = 1	&	𝑣 ≥ 0 𝑒 − 𝑝 > 0

One Shot Unrolling
12

3 4

implies



After One Shot Unrolling
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𝑎 ≔ −𝐵; 𝑝! = 𝑣, 𝑣! = 𝑎, 𝑡! = 1	&	𝑣 ≥ 0 𝑒 − 𝑝 > 0

∀𝑡(𝑣 − 𝐵𝑡 ≥ 0	 → 𝑝 + 𝑣𝑡 −
𝐵𝑡$

2 > 𝑒)	

𝑝 +
𝑣$

2𝐵 > 𝑒	𝐼 =

Quantifier Elimination

Axioms of dGLimplies

implies

Assuming
 assum ∧

Control Loop

if

if

𝑒 − 𝑝
> 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴

True𝑝 +
𝑣"

2𝐵
> 𝑒	

𝑒 − 𝑝 > 𝑣𝑇 +
$%!

"
 + &'$% !

"(

2. Systematic refinements make 
games easier to reason about

1. Define optimal solution game 
using hybrid system game theory

3. Symbolic execution using game 
axioms produces solution formulas



More Unrolling

1 iteration 1-shot unroll

• 1-shot unrolling lets the controller choose one action and run it 
forever.



Multi-shot Bounded Unrolling
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• 1-shot unrolling lets the controller choose one action and run it 
forever.

2 iterations 1-shot unroll 2-shot unroll

• Bounded unrolling allows a “switch” in action choice
• Recursive game formulation for each switch This is safe too, but requires 

robot to switch choice of action



Other Ideas that Make CESAR Work
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Solution: Approximate
with Pegasus invariant 
generator

𝛼 ¬𝑃

𝐼2 ??

Problem: Symbolic 
reasoning about 
unsolvable ODEs

Problem: Is the synthesized envelope still 
optimal after all those refinements?

¬ 𝛼 ¬𝑃	 ↔ 	 𝑎 𝑃

𝛼 ¬𝑃
𝛼 𝑃 Solution: Proposition Arithmetic 

simplification using heuristics

Solution: Optimality Checking by 
Duality Problem: Complicated arithmetic 

expressions resulting in slow quantifier 
elimination



Overview

Part 2: Synthesis
• Introduction
• Problem Statement
• Solution
• Evaluation

26
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[3] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal Engineering Methods, 
ICFEM 2009

4]

]

Evaluation

[4] Fulton, N., Mitsch, S., Bohrer, R., Platzer, A.: Bellerophon: Tactical theorem proving for hybrid systems. In: Ayala-Rincon, M., Munoz, C.A. (eds.) ITP. LNCS, vol. 10499, pp. 207–224. Springer 
(2017).

[3],[4]: Solved Manually in 
the Literature

State Dependent Fallback

Non Solvable Dynamics

Optimal control requires a 
careful sequence of actions
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Summary

Automate

Model Shape Synthesis procedure 
fills control conditions

Correct by 
Construction 

Control Envelope

When False (never)

Safe Not Useful

When 𝑒 − 𝑝 > (($%&')!
)*

Safe Useful

Solution Ordering

Characterize optimal solution 
using games

Compute explicit 
solution with 
symbolic execution 
of refined games

Refinement: 
One-Shot 
Unrolling

Refinement: Multi-shot Unrolling

Other 
Techniques

Evaluation: Benchmark Suite with 
Diverse Control Challenges

𝛼 ¬𝑃
𝐼" ??


