### CESAR: Control Envelope Synthesis via Angelic Refinements

#### Aditi Kabra<sup>1</sup>

Jonathan Laurent<sup>1,2</sup>

Stefan Mitsch<sup>1,3</sup>

André Platzer<sup>1,2</sup>

<sup>1</sup>Carnegie Mellon University <sup>2</sup>Karlsruhe Institute of Technology <sup>3</sup>DePaul University

#### **TACAS 2024**



Supported FRA contract number 693JJ620C000025

Swartz Center Innovation Commercialization Fellowship an Alexander von Humboldt Professorship 1

### Control Envelope Synthesis



### Control Envelopes

- Non-deterministic: allow *all* safe actions
- Define *families* of safe controllers
- Full system monitored for adherence at runtime
- Higher-order constraint compared to controllers: solutions permit as many safe control solutions as possible



### Overview

- Introduction
- Problem Statement
- Game Logic and Solution
- Refinement
- Evaluation

### Problem

Synthesis procedure fills holes ( ). Which action is safe when?



AssumptionsControl LoopContractprob 
$$\equiv$$
assum  $\land \sqcup \rightarrow [((\cup_i (? \sqcup_i; act_i)); plant)^*]$ Contract

### Example: Train

Synthesis procedure fills holes ( ). Which action is safe when?



Where assum= $A > 0 \land B > 0 \land T > 0 \land v \ge 0$ 

### Solution

Synthesis procedure fills holes ( ). Which action is safe when?



Solution  $(I, G_i)$ 

### Solution

Synthesis procedure fills holes ( ). Which action is safe when?



Solution  $(I, G_i)$  ensures: 1. Safety (valid formula, as proved by loop invariant assum  $\land I$ )

### Solution

Synthesis procedure fills holes ( ). Which action is safe when?



Solution  $(I, G_i)$  ensures

- 1. Safety (valid formula)
- 2. Controllability (always some control option: (assum  $\land I$ )  $\rightarrow \lor_i G_i$ )

# Example: Train

Synthesis procedure fills holes ( ). Which action is safe when? When is it safe to accelerate?  $a \coloneqq A$  $t \coloneqq 0; \ p' = v, v' = a,$  $t' = 1 \& t \le T \land v \ge 0$ e - p > 0Assuming assum  $\Lambda$ **Control Loop** acceleration Back compute to ensure the safety position *e* elocity contract isn't breached time time time

### Example: Train Synthesis procedure fills holes ( ). Which action is safe when?



### Example: Train Synthesis procedure fills holes ( ). Which action is safe when?



# Quality of Solution

### When can the train Accelerate?



• Good solution: more permissive

 $\vDash \operatorname{assum} \rightarrow (I \rightarrow I') \text{ and } \vDash \operatorname{assum} \rightarrow \neg (I' \rightarrow I)$ 

•  $S' \ge S$  when either I' is strictly more permissive than I,

 $\vDash \operatorname{assum} \rightarrow (I \rightarrow I') \text{ and } \vDash (\operatorname{assum} \land I) \rightarrow \land_i (G_i \rightarrow G'_i)$ 

or they are equally permissive and each  $G_i'$  is more permissive than  $G_i$ 

• Optimum exists, expressible in dGL!

### Overview

- Introduction
- Problem Statement

### Solution

• Evaluation

### Background: Differential Game Logic (dGL)

Systems have nondeterminism  $(x \coloneqq A \cup x \coloneqq B)$ 



$$(x \coloneqq A \cup x \coloneqq B)$$
$$(x \coloneqq A \cap x \coloneqq B)$$

 $\alpha \cap \beta, \alpha^*, ?\phi, \{x^{\wedge}=f(x)\&Q\}$  $\alpha \cap \beta, \alpha^{\times}, ? \phi^{d}, \{x' = f(x) \& Q\}^{d}$  Demonic Win Condition

 $[(x \coloneqq A \cap x \coloneqq B)]x = A$ Demon wins if in the end, x = A

Winning Strategy

 $[(x \coloneqq A \cap x \coloneqq B)]x = A$ Demon strategy: choose left

Formulas

 $[(x \coloneqq A \cap x \coloneqq B)]x = A$ 

Formula true in states where demon has a **winning strategy** 

#### dGL Axioms

Provide a way to get a *propositional arithmetic* formula saying "when can demon win this game"?

 $[(v \coloneqq 1 \cap v \coloneqq -1); \{x' = v\}] x \neq 0$  $[(v \coloneqq 1)][\{x' = v\}]x \neq 0 \lor$  $[(v \coloneqq -1)][\{x' = v\}]x \neq 0$  $[\{x' = 1\}]x \neq 0 \lor [\{x' = -1\}]x \neq 0$  $\forall t \ge 0x + t \ne 0 \lor \forall t \ge 0x - t \ne 0$  $x > 0 \lor x < 0$ 

Demon has a winning strategy if:

- x > 0: choose left  $\xleftarrow{0}{0} \triangle$  x < 0: choose right  $\xleftarrow{0}{0} \triangle$







### **Optimal Solution: Guards**

Computed *I*<sup>opt</sup> is loop invariant. Guards ensure inductive step.



Allow a control action when it is guaranteed to keep the system within  $I^{opt}$ 

$$G_i^{\text{opt}} \equiv [\operatorname{act}_i; \operatorname{plant}] I^{\text{opt}}.$$

### Next: Extracting Explicit Solutions

- Propositional arithmetic: easily checked at runtime
- Use the axioms of dGL (which are in terms of FOL\*)
- \*But two dGL constructions need more than *FOL*.

  - Differential equations: Presupposes an ODE solution 

     Approximate using
     continuous invariants

### Action Choice Refinement

The game obtained by restricting the controller to one action

$$\left[\left(\begin{array}{c} a \coloneqq -B; t \coloneqq 0; \\ \left\{p' = v, v' = a, t' = 1 \ t \leq T \land v \geq 0\right\}\right)^*\right] e - p > 0$$

### One Shot Unrolling

Is harder than the game where the controller chooses between multiple actions

$$\left[ \begin{pmatrix} (\boldsymbol{a} \coloneqq -\boldsymbol{B} \cap \boldsymbol{a} \coloneqq \boldsymbol{A}); t \coloneqq 0; \\ \{p' = v, v' = a, t' = 1 \ t \le T \land v \ge 0\} \end{pmatrix}^* \right] e - p > 0$$



implie



# More Unrolling

• 1-shot unrolling lets the controller choose one action and run it forever.



1 iteration

1-shot unroll

# Multi-shot Bounded Unrolling

- 1-shot unrolling lets the controller choose one action and run it forever.
- Bounded unrolling allows a "switch" in action choice  ${\color{black}\bullet}$ 
  - Recursive game formulation for each switch This is safe too, but requires robot to switch choice of action (0,0)•  $I^0$  $\equiv$  |forever|  $I^{n+1} \equiv I^n \vee [\text{step}] I^n$ 1-shot unroll 2-shot unroll

 $\bullet$ 

### Other Ideas that Make CESAR Work

Problem: Is the synthesized envelope still optimal after all those refinements?



Solution: Optimality Checking by

Duality



 $\neg \langle \alpha \rangle \neg P \quad \leftrightarrow \qquad [a]P$ 



Problem: Symbolic reasoning about unsolvable ODEs

Solution: Approximate with Pegasus invariant generator



Problem: Complicated arithmetic expressions resulting in slow quantifier elimination

Solution: Proposition Arithmetic simplification using heuristics

### Overview

Part 2: Synthesis

- Introduction
- Problem Statement
- Solution
- Evaluation

| Evaluation                            |                       |          |              |                    |                             |                                            |
|---------------------------------------|-----------------------|----------|--------------|--------------------|-----------------------------|--------------------------------------------|
| Summary of CESAR experimental results |                       |          |              |                    |                             |                                            |
| Benchmark                             | Synthesis<br>Time (s) | Checking | Optimal      | Needs<br>Unrolling | Non<br>Solvable<br>Dynamics | [3],[4]: Solved Manually in the Literature |
|                                       |                       | Time (s) |              |                    |                             | State Dependent Fallback                   |
| ETCS Train [3]                        | 14                    | 9        | $\checkmark$ |                    |                             |                                            |
| Sled                                  | 20                    | 8        | $\checkmark$ |                    |                             |                                            |
| Intersection                          | 49                    | 44       | $\checkmark$ |                    |                             | Non Solvable Dynamics                      |
| Parachute [4]                         | 46                    | 8        |              |                    | $\checkmark$                |                                            |
| Curvebot                              | 26                    | 9        |              |                    | $\checkmark$                | Ontine of control requires of              |
| Coolant                               | 49                    | 20       | $\checkmark$ | $\checkmark$       |                             | careful sequence of actions                |
| Corridor                              | 20                    | 8        | $\checkmark$ | $\checkmark$       |                             |                                            |
| Power Station                         | 26                    | 17       | $\checkmark$ | $\checkmark$       |                             |                                            |

-

[3] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal Engineering Methods, ICFEM 2009

[4] Fulton, N., Mitsch, S., Bohrer, R., Platzer, A.: Bellerophon: Tactical theorem proving for hybrid systems. In: Ayala-Rincon, M., Munoz, C.A. (eds.) ITP. LNCS, vol. 10499, pp. 207–224. Springer 27 (2017).

### Summary

