
CESAR: Control Envelope Synthesis via
Angelic Refinements

1

Aditi Kabra1 Jonathan Laurent1,2 Stefan Mitsch1,3 André Platzer1,2

1Carnegie Mellon University
2Karlsruhe Institute of Technology

3DePaul University

TACAS 2024

FRA contract number
693JJ620C000025

an Alexander von Humboldt
Professorship

Swartz Center Innovation
Commercialization Fellowship

Supported
by:

Control Envelope Synthesis

2

Cyber-physical
systems

Designing Control
Conditions

• Difficult: the main point
control theory

• Needs creativity, careful
reasoning about
dynamics

Conjecture
Conditions Try Proof

Solution: Synthesis justified by
verification

Synthesis procedure:
fills control conditions

Correct by
Construction
Control Envelope!

Human provides:
Shape of model

Requires
Verification

𝑝 =

Control Envelopes

3

Safe Actions Only

Action
C

Action
A

Action
B

Unverified Controller

Control
Envelope

• Non-deterministic: allow all safe actions
• Define families of safe controllers
• Full system monitored for adherence at

runtime
• Higher-order constraint compared to

controllers: solutions permit as many
safe control solutions as possible

Overview

• Introduction
• Problem Statement
• Game Logic and Solution
• Refinement
• Evaluation

4

Problem

5

Synthesis procedure fills holes (). Which action is safe when?

Assuming
assum ∧

?

Assumptions Control Loop Contract

Control Loop

Safety
Contract

Holds

Environment
(Differential
Equations)

? ...

if

action 2if

if action n

action 1

?

?

?

Example: Train

6

Synthesis procedure fills holes (). Which action is safe when??

[1] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/ 978-3-642-10373-5_13

Assuming
 assum ∧

Control Loop
?

if

if

𝑒 − 𝑝 > 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴?

?
𝑡 ≔ 0;	𝑝! = 𝑣, 𝑣! = 𝑎,
𝑡! = 1 &	𝑡 ≤ 𝑇 ∧ 𝑣 ≥ 0

Modeling
assumptions

Additional
conditions

required for
safety

Where assum=𝐴 > 0 ∧ 𝐵 > 0 ∧ 𝑇 > 0 ∧ 𝑣 ≥ 0

action choice 1:
acceleration

action choice 2:
braking

Train moves per chosen
acceleration for up to

one time-period 𝑇

Safety contract:
train must not go

past position 𝑒

Solution

7

Synthesis procedure fills holes (). Which action is safe when?

Assuming
assum ∧

Control Loop

𝐼

if

if

if

Safety
Contract

Holds

Environment
(Differential
Equations)

...

action 1𝐺!

𝐺"

𝐺#

action 2

?

Solution I, 𝐺:

action 2

Solution

8

Synthesis procedure fills holes (). Which action is safe when?

Assuming
assum ∧

Control Loop

Safety
Contract

Holds

?

Solution I, 𝐺: ensures:
1. Safety (valid formula, as proved by loop invariant assum ∧ I)

𝐼𝐼 𝐼 𝐼

Solution

9

Synthesis procedure fills holes (). Which action is safe when?

Assuming
assum ∧

Control Loop

𝐼

if

if

if

Safety
Contract

Holds

Environment
(Differential
Equations)

...

action n

action 1𝐺!

𝐺"

𝐺#

action 2

?

Solution I, 𝐺: ensures
1. Safety (valid formula)
2. Controllability (always some control option: assum ∧ 𝐼 →∨: 	𝐺:)

Example: Train

10

Synthesis procedure fills holes (). Which action is safe when??

[1] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/ 978-3-642-10373-5_13

Assuming
 assum ∧

Control Loop
?

if

if

𝑒 − 𝑝 > 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴?

?
𝑡 ≔ 0;	𝑝! = 𝑣, 𝑣! = 𝑎,
𝑡! = 1 &	𝑡 ≤ 𝑇 ∧ 𝑣 ≥ 0

When is it safe to
accelerate?

Back compute to ensure the safety
contract isn’t breached

po
sit

io
n

time

𝑒

ve
lo

ci
ty

time

time

ac
ce

le
ra

tio
n

Example: Train

11

Synthesis procedure fills holes (). Which action is safe when??

[1] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/ 978-3-642-10373-5_13

Assuming
 assum ∧

Control Loop

?

if

if

𝑒 − 𝑝 > 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴

?

𝑝! = 𝑣, 𝑣! = 𝑎,
𝑡! = 1 &	𝑡 ≤ 𝑇 ∧

𝑣 ≥ 0

𝑣𝑇 + $%!

"

+
&'$% !

"(
>

𝑒 − 𝑝

Example: Train

12

Synthesis procedure fills holes (). Which action is safe when??

[1] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal
Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/ 978-3-642-10373-5_13

Assuming
 assum ∧

Control Loop

if

if

𝑒 − 𝑝 > 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴

𝑝! = 𝑣, 𝑣! = 𝑎,
𝑡! = 1 &	𝑡 ≤ 𝑇 ∧

𝑣 ≥ 0

True𝑝 +
𝑣"

2𝐵
> 𝑒	

𝑣𝑇 + $%!

"

+
&'$% !

"(
>

𝑒 − 𝑝

Envelope=all safe solutions.
Conditions computed once

and for all

Quality of Solution

• Good solution: more permissive

• 𝑆> ≥ 𝑆 when either 𝐼′ is strictly more permissive than 𝐼,

 or they are equally permissive and each 𝐺:′	is more permissive than 𝐺:
• Optimum exists, expressible in dGL!

13

When False (never)

Safe Not Useful

When 𝑒 − 𝑝 > 𝑣𝑇 + "#!

$
+ @(&'"#)!

$)

Safe Useful

When can the train Accelerate?

⊨ assum → 𝐼 → 𝐼! and ⊨ assum → ¬(𝐼′ → 𝐼)

⊨ assum → 𝐼 → 𝐼! and ⊨ assum ∧ 𝐼 →∧* (𝐺* → 𝐺*!)

Overview

• Introduction
• Problem Statement
• Solution
• Evaluation

14

Background: Differential Game Logic (dGL)

15

Systems have nondeterminism
𝑥 ≔ 𝐴 ∪ 𝑥 ≔ 𝐵

Players resolve nondeterminism

vs

𝑥 ≔ 𝐴 ∪ 𝑥 ≔ 𝐵

Operators

𝑥 ≔ 𝐴 ∩ 𝑥 ≔ 𝐵

Demonic Win Condition

[𝑥 ≔ 𝐴 ∩ 𝑥 ≔ 𝐵]𝑥 = 𝐴
Demon wins if in the end, 𝑥 = 𝐴

𝛼 ∩ 𝛽, 𝛼×, ? 𝜙,	, 𝑥! = 𝑓 𝑥 &𝑄 -

dGL Axioms

Winning Strategy

[𝑥 ≔ 𝐴 ∩ 𝑥 ≔ 𝐵]𝑥 = 𝐴
Demon strategy: choose left

𝛼 ∩ 𝛽, 𝛼∗, ? 𝜙, 𝑥^′=𝑓(𝑥)&𝑄

Formulas

[𝑥 ≔ 𝐴 ∩ 𝑥 ≔ 𝐵]𝑥 = 𝐴

Formula true in states where
demon has a winning strategy

Demon has a winning strategy if:
• 𝑥 > 0: choose left
• 𝑥 < 0: choose right

Provide a way to get a propositional
arithmetic formula saying “when can
demon win this game”?

𝑣 ≔ 1 ∩ 𝑣 ≔ −1 ; 𝑥" = 𝑣 𝑥 ≠ 0

𝑣 ≔ 1][𝑥" = 𝑣 𝑥 ≠ 0 ∨
𝑣 ≔ −1][𝑥" = 𝑣 𝑥 ≠ 0

𝑥" = 1 𝑥 ≠ 0 ∨ 𝑥" = −1 𝑥 ≠ 0

∀𝑡 ≥ 0𝑥 + 𝑡 ≠ 0 ∨ ∀𝑡 ≥ 0𝑥 − 𝑡 ≠ 0

𝑥 > 0 ∨ 𝑥 < 0

0

0

Optimal Solution

16

Still Safe?

= Per Optimal Control Solution

action n

...

action 1

action 2 Environment

Environment

Environment

assum
∧

= Per Least Friendly Environment

Assuming
assum ∧

Control Loop
?

if

if

if

Safety
Contract

Holds

Environment
(Differential
Equations)

...

action n

action 1?
?
?

action 2

?

action n

action 1

action 2

Environment
... Environment

Environment

Optimal Solution

17

Still Safe?

action n

action 1

action 2

Environment
... Environment

Environment

= Per Optimal Controller

action n

...

action 1

action 2 Environment

Environment

Environment

assum
∧

= Per Least Friendly Environment

Assuming
assum ∧

Control Loop
?

if

if

if

Safety
Contract

Holds

Environment
(Differential
Equations)

...

action n

action 1?
?
?

action 2

?

18

assum
∧
?

Control Loop

Wins
when

 Safety
Contract

Holds

Environment
(Differential
Equations)

...

action n

action 1

action 2

Still Safe?

action n

action 1
action 2

Environment

... Environment
Environment

action n

...

action 1

action 2 Environment

Environment

Environment

assum
∧ ?

Optimal Solution

19

𝐼/01

Control Loop Body

Wins
when
 𝐼)*+

Environment...

action n

action 1?
action 2

Optimal Solution: Guards

Allow a control action when it is guaranteed to keep the system within 𝐼/01

Computed 𝐼/01 is loop invariant. Guards ensure inductive step.

Next: Extracting Explicit Solutions

• Propositional arithmetic: easily checked at runtime
• Use the axioms of dGL (which are in terms of 𝐹𝑂𝐿∗)
• *But two dGL constructions need more than 𝐹𝑂𝐿.

• Loops: Defined in terms of fixed point

• Differential equations: Presupposes an ODE solution

20

Approximate with “Refinement”

Approximate using
continuous invariants

Action Choice Refinement

21

The game obtained by restricting the controller
to one action

Is harder than the game where the controller
chooses between multiple actions

𝒂 ≔ −𝑩; 𝑡 ≔ 0;
𝑝" = 𝑣, 𝑣" = 𝑎, 𝑡" = 1		𝑡 ≤ 𝑇 ∧ 𝑣 ≥ 0

∗
	𝑒 − 𝑝 > 0 (𝒂 ≔ −𝑩 ∩ 𝒂 ≔ 𝑨); 𝑡 ≔ 0;

𝑝" = 𝑣, 𝑣" = 𝑎, 𝑡" = 1		𝑡 ≤ 𝑇 ∧ 𝑣 ≥ 0

∗
	𝑒 − 𝑝 > 0

If you repeat a time bounded ODE
That’s like executing the ODE for

arbitrarily long
𝑎 ≔ −𝐵; 𝒕 ≔ 𝟎;

𝑝" = 𝑣, 𝑣" = 𝑎, 𝑡" = 1		𝒕 ≤ 𝑻 ∧ 𝑣 ≥ 0
∗
	𝑒 − 𝑝 > 0 𝑎 ≔ −𝐵; 𝑝" = 𝑣, 𝑣" = 𝑎, 𝑡" = 1	&	𝑣 ≥ 0 𝑒 − 𝑝 > 0

One Shot Unrolling
12

3 4

implies

After One Shot Unrolling

22

𝑎 ≔ −𝐵; 𝑝! = 𝑣, 𝑣! = 𝑎, 𝑡! = 1	&	𝑣 ≥ 0 𝑒 − 𝑝 > 0

∀𝑡(𝑣 − 𝐵𝑡 ≥ 0	 → 𝑝 + 𝑣𝑡 −
𝐵𝑡$

2 > 𝑒)	

𝑝 +
𝑣$

2𝐵 > 𝑒	𝐼 =

Quantifier Elimination

Axioms of dGLimplies

implies

Assuming
 assum ∧

Control Loop

if

if

𝑒 − 𝑝
> 0

𝑎 ≔ −𝐵

𝑎 ≔ 𝐴

True𝑝 +
𝑣"

2𝐵
> 𝑒	

𝑒 − 𝑝 > 𝑣𝑇 +
$%!

"
 + &'$% !

"(

2. Systematic refinements make
games easier to reason about

1. Define optimal solution game
using hybrid system game theory

3. Symbolic execution using game
axioms produces solution formulas

More Unrolling

1 iteration 1-shot unroll

• 1-shot unrolling lets the controller choose one action and run it
forever.

Multi-shot Bounded Unrolling

24

• 1-shot unrolling lets the controller choose one action and run it
forever.

2 iterations 1-shot unroll 2-shot unroll

• Bounded unrolling allows a “switch” in action choice
• Recursive game formulation for each switch This is safe too, but requires

robot to switch choice of action

Other Ideas that Make CESAR Work

25

Solution: Approximate
with Pegasus invariant
generator

𝛼 ¬𝑃

𝐼2 ??

Problem: Symbolic
reasoning about
unsolvable ODEs

Problem: Is the synthesized envelope still
optimal after all those refinements?

¬ 𝛼 ¬𝑃	 ↔ 	 𝑎 𝑃

𝛼 ¬𝑃
𝛼 𝑃 Solution: Proposition Arithmetic

simplification using heuristics

Solution: Optimality Checking by
Duality Problem: Complicated arithmetic

expressions resulting in slow quantifier
elimination

Overview

Part 2: Synthesis
• Introduction
• Problem Statement
• Solution
• Evaluation

26

27
[3] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal Engineering Methods,
ICFEM 2009

4]

]

Evaluation

[4] Fulton, N., Mitsch, S., Bohrer, R., Platzer, A.: Bellerophon: Tactical theorem proving for hybrid systems. In: Ayala-Rincon, M., Munoz, C.A. (eds.) ITP. LNCS, vol. 10499, pp. 207–224. Springer
(2017).

[3],[4]: Solved Manually in
the Literature

State Dependent Fallback

Non Solvable Dynamics

Optimal control requires a
careful sequence of actions

28

Summary

Automate

Model Shape Synthesis procedure
fills control conditions

Correct by
Construction

Control Envelope

When False (never)

Safe Not Useful

When 𝑒 − 𝑝 > (($%&')!
)*

Safe Useful

Solution Ordering

Characterize optimal solution
using games

Compute explicit
solution with
symbolic execution
of refined games

Refinement:
One-Shot
Unrolling

Refinement: Multi-shot Unrolling

Other
Techniques

Evaluation: Benchmark Suite with
Diverse Control Challenges

𝛼 ¬𝑃
𝐼" ??

