For a set A ⊆ Rn(or a banach space(?)) we define
Df:A→Hom(Rn,Rm);
x ↦ (Df)(x),
(Df)(x):Rn→Rm; h ↦ (Df)(x)(h)
= f'(x)·h with f'(x)∈Rm×n
(which is the functional matrix)
df/dx = f' = ∂f/∂x = (∂fi/∂xj)i,j = | ( | ∇f1 | ) | = | [ | ∂f1/∂x1, | ∂f1/∂x2, , | …, | ∂f1/∂xn | ] |
∇f2 | ∂f2/∂x1, | ∂f2/∂x2, | …, | ∂f2/∂xn | ||||||
⋮ | ⋮ | … | ⋮ | |||||||
∇fm | ∂fm/∂x1, | ∂fm/∂x2, | …, | ∂fm/∂xn |