1: Operators of Differential Dynamic Logic (dL)

<table>
<thead>
<tr>
<th>dL</th>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e = \hat{e})</td>
<td>equals</td>
<td>true iff values of terms (e) and (\hat{e}) are equal</td>
</tr>
<tr>
<td>(e \geq \hat{e})</td>
<td>greater-or-equal</td>
<td>true iff value of (e) greater-or-equal to value of (\hat{e})</td>
</tr>
<tr>
<td>(p(e_1, \ldots, e_k))</td>
<td>predicate</td>
<td>true iff (p) holds for the value of ((e_1, \ldots, e_k))</td>
</tr>
<tr>
<td>(\neg P)</td>
<td>negation / not</td>
<td>true if (P) is false</td>
</tr>
<tr>
<td>(P \land Q)</td>
<td>conjunction / and</td>
<td>true if both (P) and (Q) are true</td>
</tr>
<tr>
<td>(P \lor Q)</td>
<td>disjunction / or</td>
<td>true if (P) is true or if (Q) is true</td>
</tr>
<tr>
<td>(P \rightarrow Q)</td>
<td>implication / implies</td>
<td>true if (P) is false or (Q) is true</td>
</tr>
<tr>
<td>(P \leftrightarrow Q)</td>
<td>bi-implication / equivalent</td>
<td>true if (P) and (Q) are both true or both false</td>
</tr>
<tr>
<td>(\forall x \ P)</td>
<td>universal quantifier / for all</td>
<td>true if (P) is true for all real values of variable (x)</td>
</tr>
<tr>
<td>(\exists x \ P)</td>
<td>existential quantifier / exists</td>
<td>true if (P) is true for some real value of variable (x)</td>
</tr>
<tr>
<td>([a]P)</td>
<td>([\cdot]) modality / box</td>
<td>true if (P) is true after all runs of HP (a)</td>
</tr>
<tr>
<td>(\langle a \rangle P)</td>
<td>(\langle\cdot\rangle) modality / diamond</td>
<td>true if (P) is true after at least one run of HP (a)</td>
</tr>
</tbody>
</table>

2: Statements and effects of Hybrid Programs (HPs)

<table>
<thead>
<tr>
<th>HP</th>
<th>Operation</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x := e)</td>
<td>discrete assignment</td>
<td>assigns value of term (e) to variable (x)</td>
</tr>
<tr>
<td>(x := \ast)</td>
<td>nondeterministic assignment</td>
<td>assigns any real value to variable (x)</td>
</tr>
<tr>
<td>(x' = f(x) \land Q)</td>
<td>continuous evolution</td>
<td>evolve along differential equation (x' = f(x)) within evolution domain (Q) for any duration</td>
</tr>
<tr>
<td>(?Q)</td>
<td>test</td>
<td>check truth of first-order formula (Q) at current state</td>
</tr>
<tr>
<td>(a; b)</td>
<td>sequential composition</td>
<td>HP (b) starts after HP (a) finishes</td>
</tr>
<tr>
<td>(a \cup b)</td>
<td>nondeterministic choice</td>
<td>choice between alternatives HP (a) or HP (b)</td>
</tr>
<tr>
<td>(a^*)</td>
<td>nondeterministic repetition</td>
<td>repeats HP (a) (n)-times for any (n \in \mathbb{N})</td>
</tr>
</tbody>
</table>

3: Semantics of dL formula \(P \) in interpretation \(I \) is the set of states \([P] \subseteq S \) in which it is true

- \([e \geq \hat{e}] = \{ \omega \in S : \omega[e] \geq \omega[\hat{e}] \} \)
- \([p(e_1, \ldots, e_k)] = \{ \omega \in S : (\omega[e_1], \ldots, \omega[e_k]) \in I(p) \} \) for predicate symbol \(p \)
- \([\neg P] = [P]^c = S \setminus [P] \)
- \([P \land Q] = [P] \cap [Q] \)
- \([\exists x \ P] = \{ \omega \in S : \exists \nu \in [P] \text{ for some state } \nu \text{ with } \nu = \omega \text{ except for the real value of } x \} \)
- \([\forall x \ P] = \{ \omega \in S : \forall \nu \in [P] \text{ for all states } \nu \text{ with } \nu = \omega \text{ except for the real value of } x \} \)
- \([\langle a \rangle P] = [a] \circ [P] = \{ \omega : \nu \in [P] \text{ for some state } \nu \text{ such that } (\omega, \nu) \in [a] \} \)
- \([\lbrack a \rbrack P] = \lbrack\lbrack a \rbrack P \rbrack = \{ \omega : \nu \in [P] \text{ for all states } \nu \text{ such that } (\omega, \nu) \in [a] \} \)

4: Semantics of HP \(a \) in interpretation \(I \) is relation \(\lbrack a \rbrack \subseteq S \times S \) between initial and final states

- \([x := e] = \{ (\omega, \nu) : \nu = \omega \text{ except } \nu[x] = \omega[e] \} \)
- \([?Q] = \{ (\omega, \nu) : \nu \in [Q] \} \)
- \([x' = f(x) \land Q] = \{ (\omega, \nu) : \varphi \vdash x' = f(x) \land Q \text{ for some solution } \varphi : [0, r] \to S \text{ with } \varphi(r) = \nu, \varphi(0) = \omega \} \)
- \([a \cup b] = [a] \cup [b] \)
- \([a; b] = [a] \circ [b] = \{ (\omega, \nu) : (\omega, \mu) \in [a], (\mu, \nu) \in [b] \} \)
- \([a^*] = \bigcup_{n \in \mathbb{N}} [a^n] \) with \(a^{n+1} \equiv (a^n); a \) and \(a^0 \equiv (?true) \)

5: Axiomatization

\((a) P \leftrightarrow \neg [a] \neg P \)

\([e] \ [x := e] p(x) \leftrightarrow p(e) \)

\([\forall] \ [x := \forall] p(x) \leftrightarrow \forall x p(x) \)

\([?Q] p \leftrightarrow (Q \rightarrow p) \)

\([a \cup b] P \leftrightarrow [a] P \land [b] P \)

\([a; b] P \leftrightarrow [a][b] P \)

\([a^*] P \leftrightarrow P \land [a][a^*] P \)

\(K \ [a] (P \rightarrow Q) \rightarrow ([a] P \rightarrow [a] Q) \)

\(I \ [a^*] P \leftrightarrow P \land [a^*] (P \rightarrow [a] P) \)

\(V \ p \rightarrow [a] p \quad (\text{FV}(p) \cap \text{BV}(a) = \emptyset) \)

\(\frac{P \rightarrow Q}{[a] P \rightarrow [a] Q} \) (M)

\(\frac{P}{[a] P} \) (G)

\(\frac{\forall x p(x)}{\forall x p(x)} \) (∀)

\(\frac{p \rightarrow q}{q} \) (MP)

\(\frac{f(\bar{x}) = g(\bar{x})}{c(f(\bar{x})) = c(g(\bar{x}))} \) (CT)

\(\frac{f(\bar{x}) = g(\bar{x})}{p(f(\bar{x})) \leftrightarrow p(g(\bar{x}))} \) (CQ)

\(\frac{P \rightarrow Q}{C(P) \leftrightarrow C(Q)} \) (CE)

6: Differential equation axioms and differential axioms

\(\text{DW} \ [x' = f(x) \land Q] P \leftrightarrow [x' = f(x) \land Q](Q \rightarrow P) \)

\(\text{DC} \ ([x' = f(x) \land Q] P \leftrightarrow [x' = f(x) \land Q \land C] P) \leftrightarrow [x' = f(x) \land Q] C \)

\(\text{DE} \ ([x' = f(x) \land Q] P \leftrightarrow [x' = f(x) \land Q][x' := f(x)] P) \)

\(\text{DI} \ ([x' = f(x) \land Q] P \leftrightarrow [?Q] P \leftrightarrow (Q \rightarrow [x' = f(x) \land Q])(P)') \)

\(\text{DG} \ [x' = f(x) \land Q] P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \land Q] P \)

\(\text{DS} \ [x' = c \land q(x)] p(x) \leftrightarrow \forall t \geq 0 \ ((\forall 0 \leq s \leq t q(x + cs)) \rightarrow [x := x + ct] p(x)) \)

\(c' \ (c)' = 0 \)

\(x' (x)' = x' \)

\((e + d)' = (e)' + (d)' \)

\((e \cdot d)' = (e)' \cdot d + e \cdot (d)' \)

\([y := g(x)][y' := 1]((f(g(x)))' = (f(y))' \cdot (g(x))') \)

7: First-order axioms

\(\forall i \ (\forall x p(x)) \rightarrow p(c) \)

\(\forall \rightarrow \forall x (P \rightarrow Q) \rightarrow (\forall x P \rightarrow \forall x Q) \)

\(\forall y p \rightarrow \forall x p \quad (x \notin \text{FV}(p)) \)
8: dL Sequent calculus proof rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop</td>
<td>$\Gamma, J \vdash J \cdot J \cdot [a]J \cdot J \vdash P$</td>
<td>$\Gamma \vdash [a]^*P, \Delta$</td>
</tr>
<tr>
<td>MR</td>
<td>$\Gamma \vdash [a]P, \Delta$</td>
<td>$\Gamma \vdash [a]Q, \Delta$ $Q \vdash P$</td>
</tr>
<tr>
<td>ML</td>
<td>$\Gamma, [a]Q \vdash \Delta$</td>
<td>$\Gamma, [a]P \vdash \Delta$ $P \vdash Q$</td>
</tr>
<tr>
<td>G</td>
<td>$\Gamma \vdash [a]P, \Delta$</td>
<td>$\Gamma \vdash [a]P, \Delta$ $P \vdash Q$</td>
</tr>
<tr>
<td>GVR</td>
<td>$\Gamma_{const} \vdash p, \Delta_{const}$</td>
<td>$\Gamma \vdash [a]p, \Delta$</td>
</tr>
</tbody>
</table>

9: Differential equation sequent calculus proof rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>dW</td>
<td>$Q \vdash x' = f(x) & Q \vdash P, \Delta$</td>
<td>$\Gamma \vdash x' = f(x)'$</td>
</tr>
<tr>
<td>dI</td>
<td>$\Gamma, q(x) \vdash p(x), \Delta$ $q(x) \vdash x' = f(x)'$</td>
<td>$\Gamma \vdash x' = f(x) & q(x)p(x), \Delta$</td>
</tr>
<tr>
<td>dC</td>
<td>$\Gamma \vdash x' = f(x) & Q, C, \Delta$</td>
<td>$\Gamma \vdash [x' = f(x) & Q & C]P, \Delta$</td>
</tr>
<tr>
<td>dG</td>
<td>$\Gamma \vdash \exists y [x' = f(x), y' = a(x)y + b(x) & Q], \Delta$</td>
<td>$\Gamma \vdash [x' = f(x) & Q]P, \Delta$</td>
</tr>
</tbody>
</table>

10: Propositional sequent calculus proof rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬R</td>
<td>$\Gamma, P \vdash \Delta$</td>
<td>$\Gamma \vdash \neg P, \Delta$</td>
</tr>
<tr>
<td>¬L</td>
<td>$\Gamma \vdash \neg P, \Delta$</td>
<td>$\Gamma \vdash P, \Delta$ $\Delta \vdash P & Q, \Delta$</td>
</tr>
<tr>
<td>⊢L</td>
<td>$\Gamma \vdash C, \Delta$ $\Gamma, C \vdash \Delta$</td>
<td>$\Gamma \vdash \Delta$</td>
</tr>
<tr>
<td>⊢L</td>
<td>$\Gamma \vdash \neg P, \Delta$</td>
<td>$\Gamma \vdash P, \Delta$ $\Delta \vdash P & Q, \Delta$</td>
</tr>
<tr>
<td>⊢L</td>
<td>$\Gamma \vdash \exists x \forall p(x), \Delta$</td>
<td>$\Gamma \vdash \exists x \forall p(x), \Delta$</td>
</tr>
<tr>
<td>⊢R</td>
<td>$\Gamma \vdash \forall x p(x), \Delta$</td>
<td>$\Gamma \vdash \exists x p(x), \Delta$</td>
</tr>
</tbody>
</table>

11: Quantifier sequent calculus proof rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>∀R</td>
<td>$\Gamma \vdash p(y), \Delta$</td>
<td>$\Gamma \vdash \forall x p(x), \Delta$</td>
</tr>
<tr>
<td>∀L</td>
<td>$\Gamma, p(e) \vdash \Delta$</td>
<td>$\Gamma, \forall x p(x) \vdash \Delta$</td>
</tr>
<tr>
<td>∃R</td>
<td>$\Gamma \vdash p(x), \Delta$</td>
<td>$\Gamma \vdash \exists x p(x), \Delta$</td>
</tr>
<tr>
<td>∃L</td>
<td>$\Gamma \vdash \exists x p(x), \Delta$</td>
<td>$\Gamma \vdash \exists x p(x), \Delta$</td>
</tr>
</tbody>
</table>

12: Derived rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR</td>
<td>$\vdash P$</td>
<td>$\Gamma \vdash P, \Delta$</td>
</tr>
<tr>
<td>WL</td>
<td>$P \vdash$</td>
<td>$\Gamma \vdash P & Q, \Delta$</td>
</tr>
<tr>
<td>WLR</td>
<td>$\Gamma, P \vdash Q, \Delta$</td>
<td>$\Gamma \vdash P & Q, \Delta$</td>
</tr>
</tbody>
</table>

Derived rules (continued)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>↔cR</td>
<td>$\Gamma \vdash Q \leftrightarrow P, \Delta$</td>
<td>$\Gamma \vdash P \leftrightarrow Q, \Delta$</td>
</tr>
<tr>
<td>↔cL</td>
<td>$\Gamma \vdash P \leftrightarrow Q, \Delta$</td>
<td>$\Gamma \vdash P \leftrightarrow Q, \Delta$</td>
</tr>
<tr>
<td>→2cL</td>
<td>$\Gamma \vdash P \leftrightarrow Q, \Delta$</td>
<td>$\Gamma \vdash P \leftrightarrow Q, \Delta$</td>
</tr>
</tbody>
</table>
13: Derived axioms
\[\lceil\land\ [\alpha](P \land Q) \leftrightarrow [\alpha]P \land [\alpha]Q\]