02: Differential Equations \& Domains
 Logical Foundations of Cyber-Physical Systems

Karlsruhe Institute of Technology Department of Informatics

Computer Science Department Carnegie Mellon University
(1) Learning Objectives
(2) Introduction
(3) Differential Equations
(4) Examples of Differential Equations
(5) Domains of Differential Equations

- Terms
- First-Order Formulas
- Continuous Programs

6 Summary
\qquad
..

```-
```


\qquad

Learning Objectives

semantics of differential equations descriptive power of differential equations syntax versus semantics

continuous dynamics
continuous operational effects differential equations evolution domains first-order logic

\mathbb{P} Outline

(1) Learning Objectives

(2) Introduction
3) Differential Equations
(4) Examples of Differential Equations
-3 Domains of Differential Equations

- Terms
- First-Order Formulas
- Continuous Programs

6 Summary

Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)

$$
\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}
$$

Intuition:

Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)

$$
\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}
$$

Intuition:
(1) At each point in space, plot the value of RHS $f(t, y)$ as a vector

Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)

$$
\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}
$$

Intuition:
(1) At each point in space, plot the value of RHS $f(t, y)$ as a vector
(2) Start at initial state y_{0} at initial time t_{0}

Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation) $\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}$
Intuition:

- At each point in space, plot the value of RHS $f(t, y)$ as a vector
(2) Start at initial state y_{0} at initial time t_{0}
(0) Follow the direction of the vector

Example (Vector field and one solution of a differential equation)

$$
\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}
$$

Intuition:
(1) At each point in space, plot the value of RHS $f(t, y)$ as a vector
(2) Start at initial state y_{0} at initial time t_{0}
(3) Follow the direction of the vector
z The diagram should really show infinitely many vectors

Example (Vector field and one solution of a differential equation)
$\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}$
Intuition:

- At each point in space, plot the value of RHS $f(t, y)$ as a vector
(2) Start at initial state y_{0} at initial time t_{0}
(0) Follow the direction of the vector
z The diagram should really show infinitely many vectors

Your car's ODE: $x^{\prime}=v, v^{\prime}=a$

Example (Vector field and one solution of a differential equation)
$\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}$
Intuition:

- At each point in space, plot the value of RHS $f(t, y)$ as a vector
(2) Start at initial state y_{0} at initial time t_{0}
(0) Follow the direction of the vector
z The diagram should really show infinitely many vectors

Your car's ODE: $\quad x^{\prime}=v, v^{\prime}=a$
Well it's a wee bit more complicated

Intuition for Differential Equations

x

$$
\binom{x^{\prime}(t)=\frac{1}{4} x(t)}{x(0)=1}
$$

Intuition for Differential Equations

Intuition for Differential Equations

(1) Learning Objectives
(2) Introduction
(3) Differential Equations
(4) Examples of Differential Equations
(5) Domains of Differential Equations

- Terms
- First-Order Formulas
- Continuous Programs
(6) Summary
\mathbb{P} The Meaning of Differential Equations
(1) What exactly is a vector field?
(2) What does it mean to describe directions of evolution at every point in space?
(3) Could these directions possibly contradict each other?

Importance of meaning

The physical impacts of CPSs do not leave much room for failure. We immediately want to get into the habit of studying the behavior and exact meaning of all relevant aspects of CPS.
\mathbb{P} Differential Equations \& Initial Value Problems

Definition (Ordinary Differential Equation, ODE)

$f: D \rightarrow \mathbb{R}^{n}$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^{n}$ (i.e., open connected set). Then
$Y: I \rightarrow \mathbb{R}^{n}$ is solution of initial value problem (IVP)

$$
\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}
$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,
\mathbb{A} Differential Equations \& Initial Value Problems

Definition (Ordinary Differential Equation, ODE)

$f: D \rightarrow \mathbb{R}^{n}$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^{n}$ (i.e., open connected set). Then
$Y: I \rightarrow \mathbb{R}^{n}$ is solution of initial value problem (IVP)

$$
\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}
$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,
(1) defined $(t, Y(t)) \in D$
\mathbb{P} Differential Equations \& Initial Value Problems

Definition (Ordinary Differential Equation, ODE)

$f: D \rightarrow \mathbb{R}^{n}$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^{n}$ (i.e., open connected set). Then
$Y: I \rightarrow \mathbb{R}^{n}$ is solution of initial value problem (IVP)

$$
\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}
$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,
(1) defined $(t, Y(t)) \in D$
(2) time-derivative $Y^{\prime}(t)$ exists and satisfies $Y^{\prime}(t)=f(t, Y(t))$.
\mathbb{P} Differential Equations \& Initial Value Problems

Definition (Ordinary Differential Equation, ODE)

$f: D \rightarrow \mathbb{R}^{n}$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^{n}$ (i.e., open connected set). Then $Y: I \rightarrow \mathbb{R}^{n}$ is solution of initial value problem (IVP)

$$
\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}
$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,
(1) defined $(t, Y(t)) \in D$
(2) time-derivative $Y^{\prime}(t)$ exists and satisfies $Y^{\prime}(t)=f(t, Y(t))$.
(3) initial value $Y\left(t_{0}\right)=y_{0}$

Definition (Ordinary Differential Equation, ODE)

$f: D \rightarrow \mathbb{R}^{n}$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^{n}$ (i.e., open connected set). Then $Y: I \rightarrow \mathbb{R}^{n}$ is solution of initial value problem (IVP)

$$
\binom{y^{\prime}(t)=f(t, y)}{y\left(t_{0}\right)=y_{0}}
$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,
(1) defined $(t, Y(t)) \in D$
(2) time-derivative $Y^{\prime}(t)$ exists and satisfies $Y^{\prime}(t)=f(t, Y(t))$.
(3) initial value $Y\left(t_{0}\right)=y_{0}$

If $f \in C\left(D, \mathbb{R}^{n}\right)$, then $Y \in C^{1}\left(I, \mathbb{R}^{n}\right)$.
If f continuous, then Y continuously differentiable.
\mathbb{P} Outline
Learning Objectives
\square
P Outline
Learning Objectives

\qquad

 ．
\mathbb{P} Example: A Constant Differential Equation

Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{2}}{x(0)=-1} \quad \text { has a solution }
$$

\mathbb{P} Example: A Constant Differential Equation

Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{2}}{x(0)=-1} \text { has a solution } x(t)=\frac{1}{2} t-1
$$

\mathbb{P} Example: A Constant Differential Equation

Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{2}}{x(0)=-1} \text { has a solution } x(t)=\frac{1}{2} t-1
$$

\mathbb{P} Example: A Constant Differential Equation

Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{2}}{x(0)=-1} \text { has a solution } x(t)=\frac{1}{2} t-1
$$

\mathbb{P} Example: A Constant Differential Equation

Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{2}}{x(0)=-1} \text { has a solution } x(t)=\frac{1}{2} t-1
$$

\mathbb{P} Example: A Constant Differential Equation
Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{2}}{x(0)=-1} \text { has a solution } x(t)=\frac{1}{2} t-1
$$

Check by inserting solution into ODE+IVP.

$$
\left(\begin{array}{rl}
(x(t))^{\prime} & =\left(\frac{1}{2} t-1\right)^{\prime}=\frac{1}{2} \\
x(0) & =\frac{1}{2} \cdot 0-1=-1
\end{array}\right)
$$

\mathbb{P} Example: A Linear Differential Equation from before

 .
\mathbb{P} Example: A Linear Differential Equation from before

Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{4} x(t)}{x(0)=1} \quad \text { has a solution } x(t)=e^{\frac{t}{4}}
$$

\mathbb{P} Example: A Linear Differential Equation from before

Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{4} x(t)}{x(0)=1} \quad \text { has a solution } x(t)=e^{\frac{t}{4}}
$$

\mathbb{P} Example: A Linear Differential Equation from before

Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{4} x(t)}{x(0)=1} \quad \text { has a solution } x(t)=e^{\frac{t}{4}}
$$

\mathbb{P} Example: A Linear Differential Equation from before

Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{4} x(t)}{x(0)=1} \quad \text { has a solution } x(t)=e^{\frac{t}{4}}
$$

\mathbb{A} Example: A Linear Differential Equation from before
Example (Initial value problem)

$$
\binom{x^{\prime}(t)=\frac{1}{4} x(t)}{x(0)=1} \quad \text { has a solution } x(t)=e^{\frac{t}{4}}
$$

Check by inserting solution into ODE+IVP.

$$
\left(\begin{array}{rl}
(x(t))^{\prime} & =\left(e^{\frac{t}{4}}\right)^{\prime}=e^{\frac{t}{4}}\left(\frac{t}{4}\right)^{\prime}=e^{\frac{t}{4}} \frac{1}{4}=\frac{1}{4} x(t) \\
x(0) & =e^{\frac{0}{4}}=1
\end{array}\right.
$$

Example: Linear Dynamics

Example (Initial value problem)

$$
\left(\begin{array}{rl}
v^{\prime}(t) & =w(t) \\
w^{\prime}(t) & =-v(t) \\
v(0) & =0 \\
w(0) & =1
\end{array}\right) \quad \text { has solution }
$$

\mathbb{P} Example: Rotational Dynamics
Example (Initial value problem)

$$
\left(\begin{array}{rl}
v^{\prime}(t) & =w(t) \\
w^{\prime}(t) & =-v(t) \\
v(0) & =0 \\
w(0) & =1
\end{array}\right) \quad \text { has solution } \quad\binom{v(t)=\sin (t)}{w(t)=\cos (t)}
$$

\mathbb{P} Example: Rotational Dynamics
Example (Initial value problem)

$$
\left(\begin{array}{rl}
v^{\prime}(t) & =\omega w(t) \\
w^{\prime}(t) & =-\omega v(t) \\
v(0) & =0 \\
w(0) & =1
\end{array}\right) \quad \text { has solution }
$$

\mathbb{P} Example: Rotational Dynamics
Example (Initial value problem)

$$
\left(\begin{array}{rl}
v^{\prime}(t) & =\omega w(t) \\
w^{\prime}(t) & =-\omega v(t) \\
v(0) & =0 \\
w(0) & =1
\end{array}\right) \quad \text { has solution } \quad\binom{v(t)=\sin (\omega t)}{w(t)=\cos (\omega t)}
$$

Example: More Dynamics

Example (Initial value problem)

$$
\left(\begin{array}{rl}
x^{\prime}(t) & =v(t) \\
y^{\prime}(t) & =w(t) \\
v^{\prime}(t) & =\omega w(t) \\
w^{\prime}(t) & =-\omega v(t) \\
x(0) & =x_{0} \\
y(0) & =y_{0} \\
v(0) & =v_{0} \\
w(0) & =w_{0}
\end{array}\right)
$$

\mathbb{P} Example: Planar Motion Dynamics

Example (Initial value problem)

$$
\left(\begin{array}{l}
x^{\prime}(t)=v(t) \\
y^{\prime}(t)=w(t) \\
v^{\prime}(t)=\omega w(t) \\
w^{\prime}(t)=-\omega v(t) \\
x(0)=x_{0} \\
y(0)=y_{0} \\
v(0)=v_{0} \\
w(0)=w_{0}
\end{array}\right)
$$

ODE Examples

ODE
$x^{\prime}=1, x(0)=x_{0}$
$x^{\prime}=5, x(0)=x_{0}$
$x^{\prime}=x, x(0)=x_{0}$
$x^{\prime}=x^{2}, x(0)=x_{0}$
$x^{\prime}=\frac{1}{x}, x(0)=1$
$y^{\prime}(x)=-2 x y, y(0)=1$
$x^{\prime}(t)=t x, x(0)=x_{0}$
$x^{\prime}=\sqrt{x}, x(0)=x_{0}$
$x^{\prime}=y, y^{\prime}=-x, x(0)=0, y(0)=1$
$x^{\prime}=1+x^{2}, x(0)=0$
$x^{\prime}(t)=\frac{2}{t^{3}} x(t)$
$x^{\prime}=x^{2}+x^{4}$
$x^{\prime}(t)=e^{t^{2}}$

Solution
$x(t)=x_{0}+t$
$x(t)=x_{0}+5 t$
$x(t)=x_{0} e^{t}$
$x(t)=\frac{x_{0}}{1-t x_{0}}$
$x(t)=\sqrt{1+2 t} \ldots$
$y(x)=e^{-x^{2}}$
$x(t)=x_{0} e^{t^{2}}$
$x(t)=\frac{t^{2}}{4} \pm t \sqrt{x_{0}}+x_{0}$
$x(t)=\sin t, y(t)=\cos t$
$x(t)=\tan t$
$x(t)=e^{-\frac{1}{t^{2}}}$ non-analytic
???
non-elementary

ODE Examples

ODE
$x^{\prime}=1, x(0)=x_{0}$
$x^{\prime}=5, x(0)=x_{0}$
$x^{\prime}=x, x(0)=x_{0}$
$x^{\prime}=x^{2}, x(0)=x_{0}$
$x^{\prime}=\frac{1}{x}, x(0)=1$
$y^{\prime}(x)=-2 x y, y(0)=1$
$x^{\prime}(t)=t x, x(0)=x_{0}$
$x^{\prime}=\sqrt{x}, x(0)=x_{0}$
$x^{\prime}=y, y^{\prime}=-x, x(0)=0, y(0)=1$
$x^{\prime}=1+x^{2}, x(0)=0$
$x^{\prime}(t)=\frac{2}{3^{3}} x(t)$
$x^{\prime}=x^{2}+x^{4}$
$x^{\prime}(t)=e^{t^{2}}$

Solution
$x(t)=x_{0}+t$
$x(t)=x_{0}+5 t$
$x(t)=x_{0} e^{t}$
$x(t)=\frac{x_{0}}{1-t x_{0}}$
$x(t)=\sqrt{1+2 t} \ldots$
$y(x)=e^{-x^{2}}$
$x(t)=x_{0} e^{t^{2}}$
$x(t)=\frac{t^{2}}{4} \pm t \sqrt{x_{0}}+x_{0}$
$x(t)=\sin t, y(t)=\cos t$
$x(t)=\tan t$
$x(t)=e^{-\frac{1}{t^{2}}}$ non-analytic
???
non-elementary

Takeaway Message

Descriptive power of differential equations

(1) Solutions of differential equations can be much more involved than the differential equations themselves.
(2) Representational and descriptive power of differential equations!
(3) Simple differential equations can describe quite complicated physical processes.
(4) Local description as the direction into which the system evolves.

Leatine
(2) Introduction
Lerning
(arer
\mathbb{A} Outline
(1) Learning
(2) Introductior
P Outline
Learning o
(2) Introduction

[^0]
Evolution Domain Constraints

Enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A differential equation $x^{\prime}=f(x)$ with evolution domain Q is denoted by

$$
x^{\prime}=f(x) \& Q
$$

conjunctive notation (\&) signifies that the system obeys the differential equation $x^{\prime}=f(x)$ and the evolution domain Q.

Evolution Domain Constraints

Enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A differential equation $x^{\prime}=f(x)$ with evolution domain Q is denoted by

$$
x^{\prime}=f(x) \& Q
$$

conjunctive notation (\&) signifies that the system obeys the differential equation $x^{\prime}=f(x)$ and the evolution domain Q.

Evolution Domain Constraints

Enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A differential equation $x^{\prime}=f(x)$ with evolution domain Q is denoted by

$$
x^{\prime}=f(x) \& Q
$$

conjunctive notation (\&) signifies that the system obeys the differential equation $x^{\prime}=f(x)$ and the evolution domain Q.

Evolution Domain Constraints

Enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A differential equation $x^{\prime}=f(x)$ with evolution domain Q is denoted by

$$
x^{\prime}=f(x) \& Q
$$

conjunctive notation (\&) signifies that the system obeys the differential equation $x^{\prime}=f(x)$ and the evolution domain Q.

$$
\begin{aligned}
& x^{\prime}=v, v^{\prime}=a, t^{\prime}=1 \& t \leq \varepsilon \\
& x^{\prime}=v, v^{\prime}=a, t^{\prime}=1 \& v \geq 0 \\
& x^{\prime}=y, y^{\prime}=x+y^{2} \& \text { true }
\end{aligned}
$$

stops at clock ε at the latest stops before velocity negative no constraint

Define:
 Formulas

Definition (Evolution dołain constraints)

A differential equation $x^{\prime}=f(x)$ with evolution domaln Q is denoted by

$$
x^{\prime} \xlongequal[=]{=}(x) \& Q
$$

conjunctive notation (\&) signifies that the system obeys the differential equation $x^{\prime}=f(x)$ and the evolution domain Q.

$$
\begin{aligned}
& x^{\prime}=v, v^{\prime}=a, t^{\prime}=1 \& t \leq \varepsilon \\
& x^{\prime}=v, v^{\prime}=a, t^{\prime}=1 \& v \geq 0 \\
& x^{\prime}=y, y^{\prime}=x+y^{2} \& \text { true }
\end{aligned}
$$

stops at clock ε at the latest stops before velocity negative no constraint

Terms: Syntax

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

where e, \tilde{e} are terms, $x \in \mathscr{V}$ is a variable, $c \in \mathbb{Q}$ a rational number constant

Terms: Syntax

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Variable Constant
Add
Multiply
\mathbb{P} Terms: Syntax \& Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The value of term e in state $\omega: \mathscr{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega \llbracket e \rrbracket$ and is defined by induction on the structure of e :

$$
\begin{aligned}
\omega \llbracket x \rrbracket & =\omega(x) & & \text { if } x \in \mathscr{V} \text { is a variable } \\
\omega \llbracket c \rrbracket & =c & & \text { if } c \in \mathbb{Q} \text { is a rational constant } \\
\omega \llbracket e+\tilde{e} \rrbracket & =\omega \llbracket e \rrbracket+\omega \llbracket \tilde{e} \rrbracket & & \text { addition of reals } \\
\omega \llbracket e \cdot \tilde{e} \rrbracket & =\omega \llbracket e \rrbracket \cdot \omega \llbracket \tilde{e} \rrbracket & & \text { multiplication of reals }
\end{aligned}
$$

Terms: Syntax \& Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The value of term e in state $\omega: \mathscr{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega \llbracket e \rrbracket$ and is defined by induction on the structure of e :

$$
\begin{aligned}
\omega \llbracket x \rrbracket & =\omega(x) & & \text { if } x \in \mathscr{V} \text { is a variable } \\
\omega \llbracket c \rrbracket & =c & & \text { if } c \in \mathbb{Q} \text { is a rational constant } \\
\omega \llbracket e+\tilde{e} \rrbracket & =\omega \llbracket e \rrbracket+\omega \llbracket \tilde{e} \rrbracket & & \text { addition of reals } \\
\omega \llbracket e \cdot \tilde{e} \rrbracket & =\omega \llbracket e \rrbracket \cdot \omega \llbracket \tilde{\llbracket} \rrbracket & & \text { multiplication of reals }
\end{aligned}
$$

$\omega \llbracket 4+x \cdot 2 \rrbracket=$
if $\omega(x)=5$

Terms: Syntax \& Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The value of term e in state $\omega: \mathscr{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega \llbracket e \rrbracket$ and is defined by induction on the structure of e :

$$
\begin{aligned}
\omega \llbracket x \rrbracket & =\omega(x) & & \text { if } x \in \mathscr{V} \text { is a variable } \\
\omega \llbracket c \rrbracket & =c & & \text { if } c \in \mathbb{Q} \text { is a rational } c \\
\omega \llbracket e+\tilde{e} \rrbracket & =\omega \llbracket e \rrbracket+\omega \llbracket \tilde{e} \rrbracket & & \text { addition of reals } \\
\omega \llbracket e \cdot \tilde{e} \rrbracket & =\omega \llbracket e \rrbracket \cdot \omega \llbracket \tilde{e} \rrbracket & & \text { multiplication of reals }
\end{aligned}
$$

$$
\omega \llbracket 4+x \cdot 2 \rrbracket=\omega \llbracket 4 \rrbracket+\omega \llbracket x \rrbracket \cdot \omega \llbracket 2 \rrbracket=4+\omega(x) \cdot 2=14 \quad \text { if } \omega(x)=5
$$

Terms: Syntax \& Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The value of term e in state $\omega: \mathscr{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega \llbracket e \rrbracket$ and is defined by induction on the structure of e :

$$
\begin{aligned}
\omega \llbracket x \rrbracket & =\omega(x) & & \text { if } x \in \mathscr{V} \text { is a variable } \\
\omega \llbracket c \rrbracket & =c & & \text { if } c \in \mathbb{Q} \text { is a rational constant } \\
\omega \llbracket e+\tilde{e} \rrbracket & =\omega \llbracket e \rrbracket+\omega \llbracket \tilde{e} \rrbracket & & \text { addition of reals } \\
\omega \llbracket e \cdot \tilde{e} \rrbracket & =\omega \llbracket e \rrbracket \cdot \omega \llbracket \tilde{\llbracket} \rrbracket & & \text { multiplication of reals }
\end{aligned}
$$

What about $x-y$?

Terms: Syntax \& Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The value of term e in state $\omega: \mathscr{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega \llbracket e \rrbracket$ and is defined by induction on the structure of e :

$$
\begin{aligned}
\omega \llbracket x \rrbracket & =\omega(x) & & \text { if } x \in \mathscr{V} \text { is a variable } \\
\omega \llbracket c \rrbracket & =c & & \text { if } c \in \mathbb{Q} \text { is a rational } c \\
\omega \llbracket e+\tilde{e} \rrbracket & =\omega \llbracket e \rrbracket+\omega \llbracket \tilde{e} \rrbracket & & \text { addition of reals } \\
\omega \llbracket e \cdot \tilde{e} \rrbracket & =\omega \llbracket e \rrbracket \cdot \omega \llbracket \tilde{e} \rrbracket & & \text { multiplication of reals }
\end{aligned}
$$

What about $x-y$? Defined as $x+(-1) \cdot y$

Terms: Syntax \& Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The value of term e in state $\omega: \mathscr{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega \llbracket e \rrbracket$ and is defined by induction on the structure of e :

$$
\begin{aligned}
\omega \llbracket x \rrbracket & =\omega(x) & & \text { if } x \in \mathscr{V} \text { is a variable } \\
\omega \llbracket c \rrbracket & =c & & \text { if } c \in \mathbb{Q} \text { is a rational constant } \\
\omega \llbracket e+\tilde{e} \rrbracket & =\omega \llbracket e \rrbracket+\omega \llbracket \tilde{e} \rrbracket & & \text { addition of reals } \\
\omega \llbracket e \cdot \tilde{e} \rrbracket & =\omega \llbracket e \rrbracket \cdot \omega \llbracket \tilde{e} \rrbracket & & \text { multiplication of reals }
\end{aligned}
$$

What about x^{4} ?

Terms: Syntax \& Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The value of term e in state $\omega: \mathscr{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega \llbracket e \rrbracket$ and is defined by induction on the structure of e :

$$
\begin{aligned}
\omega \llbracket x \rrbracket & =\omega(x) & & \text { if } x \in \mathscr{V} \text { is a variable } \\
\omega \llbracket c \rrbracket & =c & & \text { if } c \in \mathbb{Q} \text { is a rational } c \\
\omega \llbracket e+\tilde{e} \rrbracket & =\omega \llbracket e \rrbracket+\omega \llbracket \tilde{e} \rrbracket & & \text { addition of reals } \\
\omega \llbracket e \cdot \tilde{e} \rrbracket & =\omega \llbracket e \rrbracket \cdot \omega \llbracket \tilde{e} \rrbracket & & \text { multiplication of reals }
\end{aligned}
$$

What about x^{4} ? Defined as $x \cdot x \cdot x \cdot x$

Terms: Syntax \& Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The value of term e in state $\omega: \mathscr{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega \llbracket e \rrbracket$ and is defined by induction on the structure of e :

$$
\begin{aligned}
\omega \llbracket x \rrbracket & =\omega(x) & & \text { if } x \in \mathscr{V} \text { is a variable } \\
\omega \llbracket c \rrbracket & =c & & \text { if } c \in \mathbb{Q} \text { is a rational constant } \\
\omega \llbracket e+\tilde{e} \rrbracket & =\omega \llbracket e \rrbracket+\omega \llbracket \tilde{e} \rrbracket & & \text { addition of reals } \\
\omega \llbracket e \cdot \tilde{e} \rrbracket & =\omega \llbracket e \rrbracket \cdot \omega \llbracket \tilde{e} \rrbracket & & \text { multiplication of reals }
\end{aligned}
$$

What about x^{n} ?

Terms: Syntax \& Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The value of term e in state $\omega: \mathscr{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega \llbracket e \rrbracket$ and is defined by induction on the structure of e :

$$
\begin{aligned}
\omega \llbracket x \rrbracket & =\omega(x) & & \text { if } x \in \mathscr{V} \text { is a variable } \\
\omega \llbracket c \rrbracket & =c & & \text { if } c \in \mathbb{Q} \text { is a rational } c \\
\omega \llbracket e+\tilde{e} \rrbracket & =\omega \llbracket e \rrbracket+\omega \llbracket \tilde{e} \rrbracket & & \text { addition of reals } \\
\omega \llbracket e \cdot \tilde{e} \rrbracket & =\omega \llbracket e \rrbracket \cdot \omega \llbracket \tilde{e} \rrbracket & & \text { multiplication of reals }
\end{aligned}
$$

What about x^{n} ? Defined as $x \cdot x \cdot x \cdot x \cdot x \cdot \ldots$, wait when do we stop???

First-Order Logic Formulas: Syntax

Definition (Syntax of first-order logic formulas)

The formulas of FOL of real arithmetic are defined by the grammar:
$P, Q::=e \geq \tilde{e}|e=\tilde{e}| \neg P|P \wedge Q| P \vee Q|P \rightarrow Q| P \leftrightarrow Q|\forall x P| \exists x P$

First-Order Logic Formulas: Syntax

Definition (Syntax of first-order logic formulas)

The formulas of FOL of real arithmetic are defined by the grammar:
$P, Q::=e \geq \tilde{e}|e=\tilde{e}| \neg P|P \wedge Q| P \vee Q|P \rightarrow Q| P \leftrightarrow Q|\forall x P| \exists x P$

Greater-or-equal
Not And Or Imply
Equiv
Exists

Definition (Syntax of first-order logic formulas)

The formulas of FOL of real arithmetic are defined by the grammar: $P, Q::=e \geq \tilde{e}|e=\tilde{e}| \neg P|P \wedge Q| P \vee Q|P \rightarrow Q| P \leftrightarrow Q|\forall x P| \exists x P$

Definition (Semantics of first-order logic formulas)

First-order formula P is true in state ω, written $\omega \models P$, defined inductively:

$\omega=e=\tilde{e}$	iff $\omega \llbracket e \rrbracket=\omega \llbracket \tilde{\llbracket} \rrbracket$
$\omega=e \geq \tilde{e}$	iff $\omega \llbracket e \rrbracket \geq \omega \llbracket \tilde{e} \rrbracket$
$\omega \models \neg$	iff $\omega \not \models P$, i.e., if it is not the case that $\omega \models P$
$\omega=P \wedge Q$	iff $\omega \models P$ and $\omega \models Q$
$\omega \models P \vee Q$	iff $\omega \models P$ or $\omega \models Q$
$\omega \models P \rightarrow Q$	iff $\omega \not \models P$ or $\omega \models Q$
$\omega=\forall x P$	iff $\omega_{x}^{d} \models P$ for all $d \in \mathbb{R}$
$\omega \models \exists x P$	iff $\omega_{x}^{d} \models P$ for some $d \in \mathbb{R}$

\omega(y) \& if y \neq x\end{array}\right]\)
$\omega \models P$ formula P is true in state ω
$\vDash P \quad$ formula P is valid, i.e., true in all states ω, i.e., $\omega \models P$ for all ω
$\llbracket P \rrbracket=\{\omega: \omega \models P\}$ set of all states in which P is true

Definition (Semantics of first-order logic formulas)

First-order formula P is true in state ω, written $\omega \models P$, defined inductively:

$\omega \mid=e=\tilde{e}$	iff $\omega \llbracket e \rrbracket=\omega \llbracket \tilde{e} \rrbracket$		
$\omega \mid=e \geq \tilde{e}$	iff $\omega \llbracket e \rrbracket \geq \omega \llbracket \widetilde{e} \rrbracket$		
$\omega \mid=\neg$	iff $\omega \not \models P$, i.e., if it is not the case that $\omega \models P$		
	iff $\omega \models P$ and $\omega \models$,		
$\omega \mid=P \vee Q$	iff $\omega \models P$ or $\omega=Q$		
$\omega \vDash P \rightarrow Q$	iff $\omega \not \models P$ or $\omega \models Q$		
$\omega \mid=\forall x P$	iff $\omega_{x}^{d} \models P$ for all $d \in \mathbb{R}$	$=\left\{^{d}\right.$	if $y=x$
$\omega \mid=\exists x$	iff $\omega_{x}^{d} \models P$ for some $d \in \mathbb{R}$	(y) $=\left\{\begin{array}{l}\text { d }\end{array}\right.$	if $y \neq x$

$\omega \models P$ formula P is true in state ω
$\vDash P \quad$ formula P is valid, i.e., true in all states ω, i.e., $\omega \models P$ for all ω
$\llbracket P \rrbracket=\{\omega: \omega \models P\}$ set of all states in which P is true

$$
\exists y\left(y^{2} \leq x\right) \quad \text { for } \omega(x)=5 \text { and } v(x)=-5
$$

Definition (Semantics of first-order logic formulas)

First-order formula P is true in state ω, written $\omega \models P$, defined inductively:
$\omega \models e=\tilde{e} \quad$ iff $\omega \llbracket e \rrbracket=\omega \llbracket \tilde{e} \rrbracket$
$\omega \models e \geq \tilde{e} \quad$ iff $\omega \llbracket e \rrbracket \geq \omega \llbracket \tilde{e} \rrbracket$
$\omega \mid=P \quad$ iff $\omega \not \models P$, i.e., if it is not the case that $\omega \models P$
$\omega \models P \wedge Q \quad$ iff $\omega \models P$ and $\omega \models Q$
$\omega \models P \vee Q \quad$ iff $\omega \models P$ or $\omega \models Q$
$\omega \mid=P \rightarrow Q \quad$ iff $\omega \not \models P$ or $\omega \models Q$
$\omega \models \forall x P \quad$ iff $\omega_{x}^{d} \models P$ for all $d \in \mathbb{R}$
$\omega \mid=\exists x P \quad$ iff $\omega_{x}^{d} \models P$ for some $d \in \mathbb{R}$

$$
\omega_{x}^{d}(y)= \begin{cases}d & \text { if } y=x \\ \omega(y) & \text { if } y \neq x\end{cases}
$$

$\omega \models P$ formula P is true in state ω
$\vDash P \quad$ formula P is valid, i.e., true in all states ω, i.e., $\omega \models P$ for all ω
$\llbracket P \rrbracket=\{\omega: \omega \models P\}$ set of all states in which P is true
$\omega \models \exists y\left(y^{2} \leq x\right)$ but $v \not \vDash \exists y\left(y^{2} \leq x\right) \quad$ for $\omega(x)=5$ and $v(x)=-5$

Definition (Semantics of first-order logic formulas)

First-order formula P is true in state ω, written $\omega \models P$, defined inductively:
$\omega \mid=e=\tilde{e} \quad$ iff $\omega \llbracket e \rrbracket=\omega \llbracket \tilde{e} \rrbracket$
$\omega \models e \geq \tilde{e} \quad$ iff $\omega \llbracket e \rrbracket \geq \omega \llbracket \tilde{e} \rrbracket$
$\omega \models \neg P \quad$ iff $\omega \not \models P$, i.e., if it is not the case that $\omega \models P$
$\omega \models P \wedge Q \quad$ iff $\omega \models P$ and $\omega \models Q$
$\omega \models P \vee Q \quad$ iff $\omega \models P$ or $\omega \models Q$
$\omega \mid=P \rightarrow Q \quad$ iff $\omega \not \models P$ or $\omega \models Q$
$\omega \models \forall x P \quad$ iff $\omega_{x}^{d} \models P$ for all $d \in \mathbb{R}$
$\omega \mid=\exists x P \quad$ iff $\omega_{x}^{d} \models P$ for some $d \in \mathbb{R}$

$$
\omega_{x}^{d}(y)= \begin{cases}d & \text { if } y=x \\ \omega(y) & \text { if } y \neq x\end{cases}
$$

Semantics of ODEs with Evolution Constraints

Definition (Semantics of differential equations)

A function $\varphi:[0, r] \rightarrow \mathscr{S}$ of some duration $r \geq 0$ satisfies the differential equation $x^{\prime}=f(x) \& Q$, written $\varphi=x^{\prime}=f(x) \wedge Q$, iff:
(1) $\varphi(z)\left(x^{\prime}\right)=\frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(z)$ exists at all times $0 \leq z \leq r$
(2) $\varphi(z) \models x^{\prime}=f(x) \wedge Q$ for all times $0 \leq z \leq r$
(3) $\varphi(z)=\varphi(0)$ except at x, x^{\prime}

Semantics of ODEs with Evolution Constraints

Definition (Semantics of differential equations)

A function $\varphi:[0, r] \rightarrow \mathscr{S}$ of some duration $r \geq 0$ satisfies the differential equation $x^{\prime}=f(x) \& Q$, written $\varphi=x^{\prime}=f(x) \wedge Q$, iff:
(1) $\varphi(z)\left(x^{\prime}\right)=\frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(z)$ exists at all times $0 \leq z \leq r$
(2) $\varphi(z) \models x^{\prime}=f(x) \wedge Q$ for all times $0 \leq z \leq r$
(3) $\varphi(z)=\varphi(0)$ except at x, x^{\prime}

Semantics of ODEs with Evolution Constraints

Definition (Semantics of differential equations)

A function $\varphi:[0, r] \rightarrow \mathscr{S}$ of some duration $r \geq 0$ satisfies the differential equation $x^{\prime}=f(x) \& Q$, written $\varphi=x^{\prime}=f(x) \wedge Q$, iff:
(1) $\varphi(z)\left(x^{\prime}\right)=\frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(z)$ exists at all times $0 \leq z \leq r$
(2) $\varphi(z) \models x^{\prime}=f(x) \wedge Q$ for all times $0 \leq z \leq r$
(3) $\varphi(z)=\varphi(0)$ except at x, x^{\prime}

Semantics of ODEs with Evolution Constraints

Definition (Semantics of differential equations)

A function $\varphi:[0, r] \rightarrow \mathscr{S}$ of some duration $r \geq 0$ satisfies the differential equation $x^{\prime}=f(x) \& Q$, written $\varphi=x^{\prime}=f(x) \wedge Q$, iff:
(1) $\varphi(z)\left(x^{\prime}\right)=\frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(z)$ exists at all times $0 \leq z \leq r$
(2) $\varphi(z) \models x^{\prime}=f(x) \wedge Q$ for all times $0 \leq z \leq r$
(3) $\varphi(z)=\varphi(0)$ except at x, x^{\prime}

\mathbb{P} Outline

(1) Learning Objectives

2. Introduction
(3) Differential Equations
(4) Examples of Differential Equations
(5) Domains of Differential Equations

- Terms
- First-Order Formulas
- Continuous Programs

6 Summary

Summary: Differential Equations \& Domains

Definition (Syntax of terms)

$$
e, \tilde{e}::=x|c| e+\tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Syntax of first-order logic formulas)

$$
P, Q::=e \geq \tilde{e}|e=\tilde{e}| \neg P|P \wedge Q| P \vee Q|P \rightarrow Q| P \leftrightarrow Q|\forall x P| \exists x P
$$

Definition (Syntax of continuous programs)

A differential equation $x^{\prime}=f(x)$ with evolution domain Q is denoted by

$$
x^{\prime}=f(x) \& Q
$$

André Platzer.
Logical Foundations of Cyber-Physical Systems.
Springer, Cham, 2018.
doi:10.1007/978-3-319-63588-0.
圊 André Platzer.
Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Springer, Heidelberg, 2010.
doi:10.1007/978-3-642-14509-4.

[^0]:

 路

