02: Differential Equations & Domains
Logical Foundations of Cyber-Physical Systems

André Platzer
Karlsruhe Institute of Technology
Department of Informatics
Computer Science Department
Carnegie Mellon University
Outline

1. Learning Objectives
2. Introduction
3. Differential Equations
4. Examples of Differential Equations
5. Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs
6. Summary
1. Learning Objectives

2. Introduction

3. Differential Equations

4. Examples of Differential Equations

5. Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs

6. Summary
Learning Objectives

Differential Equations & Domains

- semantics of differential equations
- descriptive power of differential equations
- syntax versus semantics

CT

M&C

CPS

continuous dynamics

differential equations

evolution domains

first-order logic

continuous operational effects
Outline

1. Learning Objectives

2. Introduction

3. Differential Equations

4. Examples of Differential Equations

5. Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs

6. Summary
Example (Vector field and one solution of a differential equation)

\[
\begin{cases}
 y'(t) = f(t, y) \\
y(t_0) = y_0
\end{cases}
\]

Intuition:
Example (Vector field and one solution of a differential equation)

\[
\begin{align*}
 y'(t) &= f(t, y) \\
y(t_0) &= y_0
\end{align*}
\]

Intuition:

1. At each point in space, plot the value of RHS \(f(t, y) \) as a vector.
Example (Vector field and one solution of a differential equation)

\[
\begin{align*}
y'(t) &= f(t, y) \\
y(t_0) &= y_0
\end{align*}
\]

Intuition:

1. At each point in space, plot the value of RHS \(f(t, y) \) as a vector

2. Start at initial state \(y_0 \) at initial time \(t_0 \)
Example (Vector field and one solution of a differential equation)

\[
\begin{align*}
 y'(t) &= f(t, y) \\
 y(t_0) &= y_0
\end{align*}
\]

Intuition:

1. At each point in space, plot the value of RHS \(f(t, y) \) as a vector
2. Start at initial state \(y_0 \) at initial time \(t_0 \)
3. Follow the direction of the vector
Example (Vector field and one solution of a differential equation)

\[
\begin{align*}
 y'(t) &= f(t, y) \\
 y(t_0) &= y_0
\end{align*}
\]

Intuition:

1. At each point in space, plot the value of RHS \(f(t, y) \) as a vector
2. Start at initial state \(y_0 \) at initial time \(t_0 \)
3. Follow the direction of the vector
4. The diagram should really show infinitely many vectors . . .
Example (Vector field and one solution of a differential equation)

\[
\begin{align*}
 \frac{dy}{dt} &= f(t, y) \\
 y(t_0) &= y_0
\end{align*}
\]

Intuition:

1. At each point in space, plot the value of RHS \(f(t, y) \) as a vector
2. Start at initial state \(y_0 \) at initial time \(t_0 \)
3. Follow the direction of the vector

\[\text{The diagram should really show infinitely many vectors . . .} \]

Your car’s ODE: \(x' = v, v' = a \)
Example (Vector field and one solution of a differential equation)

\[
\begin{align*}
\frac{dy}{dt} &= f(t, y) \\
y(t_0) &= y_0
\end{align*}
\]

Intuition:

1. At each point in space, plot the value of RHS \(f(t, y) \) as a vector
2. Start at initial state \(y_0 \) at initial time \(t_0 \)
3. Follow the direction of the vector

The diagram should really show infinitely many vectors . . .

Your car’s ODE: \(x' = v, v' = a \)

Well it’s a wee bit more complicated
Intuition for Differential Equations

\[x'(t) = \frac{1}{4} x(t) \]
\[x(0) = 1 \]
\begin{align*}
\begin{pmatrix}
 x'(t) = \frac{1}{4}x(t) \\
 x(0) = 1
\end{pmatrix}
\sim
\begin{pmatrix}
 x(t + \Delta) := x(t) + \frac{1}{4}x(t)\Delta \\
 x(0) := 1
\end{pmatrix}
\end{align*}
\[
\begin{align*}
(x'(t) &= \frac{1}{4}x(t), \quad x(0) = 1) \\
&\quad \leadsto (x(t + \Delta) := x(t) + \frac{1}{4}x(t)\Delta, \quad x(0) := 1)
\end{align*}
\]
\[
\begin{align*}
\left(x'(t) &= \frac{1}{4} x(t) \\
\quad x(0) &= 1 \right) &\quad \sim \quad \left(x(t + \Delta) := x(t) + \frac{1}{4} x(t) \Delta \\
\quad x(0) := 1 \right)
\end{align*}
\]
\[
\begin{align*}
(x'(t) &= \frac{1}{4} x(t) \\
(x(0) &= 1 \\
(4)(x(t + \Delta) &:= x(t) + \frac{1}{4} x(t)\Delta \\
(x(0) &:= 1
\end{align*}
\]
\[
\begin{align*}
\left(x'(t) &= \frac{1}{4} x(t) \\
x(0) &= 1 \right) \sim \left(x(t + \Delta) &:= x(t) + \frac{1}{4} x(t) \Delta \right)
\end{align*}
\]
Intuition for Differential Equations

\[
\begin{align*}
\left(\begin{array}{l}
x'(t) = \frac{1}{4}x(t) \\
x(0) = 1
\end{array} \right) & \sim \left(\begin{array}{l}
x(t + \Delta) := x(t) + \frac{1}{4}x(t)\Delta \\
x(0) := 1
\end{array} \right)
\end{align*}
\]
Outline

1. Learning Objectives
2. Introduction
3. Differential Equations
4. Examples of Differential Equations
5. Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs
6. Summary
1. What exactly is a vector field?
2. What does it mean to describe directions of evolution at every point in space?
3. Could these directions possibly contradict each other?

Importance of meaning

The physical impacts of CPSs do not leave much room for failure. We immediately want to get into the habit of studying the behavior and exact meaning of all relevant aspects of CPS.
Definition (Ordinary Differential Equation, ODE)

\[f : D \rightarrow \mathbb{R}^n \text{ on domain } D \subseteq \mathbb{R} \times \mathbb{R}^n \text{ (i.e., open connected set). Then } \]
\[Y : I \rightarrow \mathbb{R}^n \text{ is solution of initial value problem (IVP) } \]
\[
\begin{align*}
 y'(t) &= f(t, y) \\
 y(t_0) &= y_0
\end{align*}
\]
on the interval \(I \subseteq \mathbb{R} \), iff, for all times \(t \in I \),

\[f \in C(D, \mathbb{R}^n) \]
\[Y \in C^1(I, \mathbb{R}^n) \]

If \(f \) continuous, then \(Y \) continuously differentiable.
Definition (Ordinary Differential Equation, ODE)

$f : D \rightarrow \mathbb{R}^n$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$ (i.e., open connected set). Then $Y : I \rightarrow \mathbb{R}^n$ is *solution* of initial value problem (IVP)

\[
\begin{align*}
 y'(t) &= f(t, y) \\
 y(t_0) &= y_0
\end{align*}
\]

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,

1. defined $(t, Y(t)) \in D$
Definition (Ordinary Differential Equation, ODE)

\[f : D \to \mathbb{R}^n \] on domain \(D \subseteq \mathbb{R} \times \mathbb{R}^n \) (i.e., open connected set). Then \(Y : I \to \mathbb{R}^n \) is \textit{solution} of initial value problem (IVP)

\[
\begin{align*}
\left(y'(t) &= f(t, y) \right) \\
y(t_0) &= y_0
\end{align*}
\]
on the interval \(I \subseteq \mathbb{R} \), iff, for all times \(t \in I \),

1. defined \((t, Y(t)) \in D\)
2. time-derivative \(Y'(t) \) exists and satisfies \(Y'(t) = f(t, Y(t)) \).
Definition (Ordinary Differential Equation, ODE)

\[f : D \rightarrow \mathbb{R}^n \text{ on domain } D \subseteq \mathbb{R} \times \mathbb{R}^n \text{ (i.e., open connected set). Then } \]
\[Y : I \rightarrow \mathbb{R}^n \text{ is solution of initial value problem (IVP) } \]
\[\begin{align*}
 y'(t) &= f(t, y) \\
 y(t_0) &= y_0
\end{align*} \]

on the interval \(I \subseteq \mathbb{R} \), iff, for all times \(t \in I \),

1. defined \((t, Y(t)) \in D\)
2. time-derivative \(Y'(t) \) exists and satisfies \(Y'(t) = f(t, Y(t)) \).
3. initial value \(Y(t_0) = y_0 \)
Definition (Ordinary Differential Equation, ODE)

\[f : D \to \mathbb{R}^n \text{ on domain } D \subseteq \mathbb{R} \times \mathbb{R}^n \text{ (i.e., open connected set)}. \text{ Then } Y : I \to \mathbb{R}^n \text{ is solution of initial value problem (IVP)} \]

\[
\begin{align*}
(Y'(t) &= f(t, y)) \\
y(t_0) &= y_0
\end{align*}
\]

on the interval \(I \subseteq \mathbb{R} \), iff, for all times \(t \in I \),

1. defined \((t, Y(t)) \in D \)
2. time-derivative \(Y'(t) \) exists and satisfies \(Y'(t) = f(t, Y(t)) \).
3. initial value \(Y(t_0) = y_0 \)

If \(f \in C(D, \mathbb{R}^n) \), then \(Y \in C^1(I, \mathbb{R}^n) \).
If \(f \) continuous, then \(Y \) continuously differentiable.
Learning Objectives

Introduction

Differential Equations

Examples of Differential Equations

Domains of Differential Equations
- Terms
- First-Order Formulas
- Continuous Programs

Summary
Example: A Constant Differential Equation

Example (Initial value problem)

\[
\begin{align*}
\left(x'(t) &= \frac{1}{2} \\
 x(0) &= -1 \right)
\end{align*}
\]

has a solution

Check by inserting solution into ODE+IVP.

\[
\left(\frac{1}{2} t - 1 \right)'
\]

\[
= \frac{1}{2}
\]

\[
= x(0) = -1
\]

\[
= \frac{1}{2} \cdot 0 - 1 = -1
\]
Example (Initial value problem)

\[
\begin{align*}
 x'(t) &= \frac{1}{2} \\
 x(0) &= -1
\end{align*}
\]

has a solution \(x(t) = \frac{1}{2}t - 1 \)
Example (Initial value problem)

\[
\begin{align*}
 x'(t) &= \frac{1}{2} \\
 x(0) &= -1
\end{align*}
\]

has a solution \(x(t) = \frac{1}{2} t - 1 \)

\[
\begin{align*}
 (x'(t))' &= \left(\frac{1}{2} t - 1\right)'
 x(0) &= \frac{1}{2} \cdot 0 - 1 = -1
\end{align*}
\]

André Platzer (KIT || CMU)
Example: A Constant Differential Equation

Example (Initial value problem)

\[
\begin{align*}
 x'(t) &= \frac{1}{2} \\
 x(0) &= -1
\end{align*}
\]

has a solution \(x(t) = \frac{1}{2} t - 1 \)

\[\text{Check by inserting solution into ODE+IVP.}\]

\[
\begin{align*}
 x'(t) &= \frac{1}{2} \\
 x(0) &= \frac{1}{2} \cdot 0 - 1 = -1
\end{align*}
\]
Example (Initial value problem)

\[
\begin{align*}
(x'(t) &= \frac{1}{2} \\
 x(0) &= -1
\end{align*}
\]

has a solution \(x(t) = \frac{1}{2} t - 1 \).
Example: A Constant Differential Equation

Example (Initial value problem)

\[
\begin{align*}
(x'(t)) &= \frac{1}{2} \\
(x(0)) &= -1
\end{align*}
\]

has a solution \(x(t) = \frac{1}{2} t - 1 \)

Check by inserting solution into ODE+IVP.

\[
\begin{align*}
((x(t))') &= ((\frac{1}{2} t - 1)') = \frac{1}{2} \\
(x(0)) &= \frac{1}{2} \cdot 0 - 1 = -1
\end{align*}
\]
Example (Initial value problem)

\[
\begin{aligned}
 x'(t) &= \frac{1}{4} x(t) \\ x(0) &= 1
\end{aligned}
\]

has a solution.
Example (Initial value problem)

\[
\begin{cases}
 x'(t) = \frac{1}{4}x(t) \\
 x(0) = 1
\end{cases}
\]

has a solution \(x(t) = e^{\frac{t}{4}} \)

\[
\begin{align*}
 x'(t) &= \frac{1}{4}x(t) \\
 x(0) &= 1 \\
 x(t) &= e^{\frac{t}{4}}
\end{align*}
\]
Example (Initial value problem)

\[
\begin{pmatrix}
 x'(t) = \frac{1}{4} x(t) \\
 x(0) = 1
\end{pmatrix}
\] has a solution \(x(t) = e^{\frac{t}{4}} \)
Example: A Linear Differential Equation from before

Example (Initial value problem)

\[
\begin{align*}
(x'(t) &= \frac{1}{4}x(t)) \\
(x(0) &= 1)
\end{align*}
\]

has a solution \(x(t) = e^{\frac{t}{4}} \)

Check by inserting solution into ODE+IVP.

\[
\begin{align*}
(x(t))' &= (e^{\frac{t}{4}})' \\
&= e^{\frac{t}{4}} \cdot \frac{1}{4} \\
&= \frac{1}{4}x(t) \\
x(0) &= e^{0} \cdot 4 = 1
\end{align*}
\]
Example (Initial value problem)

\[
\begin{pmatrix}
 x'(t) = \frac{1}{4}x(t) \\
 x(0) = 1
\end{pmatrix}
\]

has a solution \(x(t) = e^{\frac{t}{4}} \)
Example (Initial value problem)

\[
\begin{align*}
(x'(t) &= \frac{1}{4}x(t)) \\
(x(0) &= 1)
\end{align*}
\]

has a solution \(x(t) = e^{\frac{t}{4}}\)

Check by inserting solution into ODE+IVP.

\[
\begin{align*}
((x(t))' &= (e^{\frac{t}{4}})' = e^{\frac{t}{4}}\left(\frac{t}{4}\right)' = e^{\frac{t}{4}}\frac{1}{4} = \frac{1}{4}x(t) \\
x(0) &= e^{\frac{0}{4}} = 1
\end{align*}
\]
Example (Initial value problem)

\[
\begin{align*}
 v'(t) &= w(t) \\
 w'(t) &= -v(t) \\
 v(0) &= 0 \\
 w(0) &= 1
\end{align*}
\]

has solution

\[
\begin{align*}
 v(t) &= \sin(t) \\
 w(t) &= \cos(t)
\end{align*}
\]
Example (Initial value problem)

\[
\begin{align*}
 v'(t) &= w(t) \\
 w'(t) &= -v(t) \\
 v(0) &= 0 \\
 w(0) &= 1
\end{align*}
\]

has solution

\[
\begin{align*}
 v(t) &= \sin(t) \\
 w(t) &= \cos(t)
\end{align*}
\]
Example (Initial value problem)

\[
\begin{align*}
 v'(t) &= \omega w(t) \\
 w'(t) &= -\omega v(t) \\
 v(0) &= 0 \\
 w(0) &= 1
\end{align*}
\]

has solution

\[
\begin{align*}
 v(t) &= \sin(t) \\
 w(t) &= \cos(t)
\end{align*}
\]
Example: Rotational Dynamics

Example (Initial value problem)

\[
\begin{cases}
 v'(t) = \omega w(t) \\
 w'(t) = -\omega v(t) \\
 v(0) = 0 \\
 w(0) = 1
\end{cases}
\]

has solution

\[
\begin{cases}
 v(t) = \sin(\omega t) \\
 w(t) = \cos(\omega t)
\end{cases}
\]
Example (Initial value problem)

\[
\begin{align*}
x'(t) &= v(t) \\
y'(t) &= w(t) \\
v'(t) &= \omega w(t) \\
w'(t) &= -\omega v(t) \\
x(0) &= x_0 \\
y(0) &= y_0 \\
v(0) &= v_0 \\
w(0) &= w_0
\end{align*}
\]
Example (Initial value problem)

\[
\begin{align*}
 x'(t) &= v(t) \\
 y'(t) &= w(t) \\
 v'(t) &= \omega w(t) \\
 w'(t) &= -\omega v(t) \\
 x(0) &= x_0 \\
 y(0) &= y_0 \\
 v(0) &= v_0 \\
 w(0) &= w_0
\end{align*}
\]
<table>
<thead>
<tr>
<th>ODE</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x' = 1, x(0) = x_0$</td>
<td>$x(t) = x_0 + t$</td>
</tr>
<tr>
<td>$x' = 5, x(0) = x_0$</td>
<td>$x(t) = x_0 + 5t$</td>
</tr>
<tr>
<td>$x' = x, x(0) = x_0$</td>
<td>$x(t) = x_0 e^t$</td>
</tr>
<tr>
<td>$x' = x^2, x(0) = x_0$</td>
<td>$x(t) = \frac{x_0}{1-tx_0}$</td>
</tr>
<tr>
<td>$x' = \frac{1}{x}, x(0) = 1$</td>
<td>$x(t) = \sqrt{1 + 2t} \ldots$</td>
</tr>
<tr>
<td>$y'(x) = -2xy, y(0) = 1$</td>
<td>$y(x) = e^{-x^2}$</td>
</tr>
<tr>
<td>$x'(t) = tx, x(0) = x_0$</td>
<td>$x(t) = x_0 e^{\frac{t^2}{2}}$</td>
</tr>
<tr>
<td>$x' = \sqrt{x}, x(0) = x_0$</td>
<td>$x(t) = \frac{t^2}{4} \pm t \sqrt{x_0 + x_0}$</td>
</tr>
<tr>
<td>$x' = y, y' = -x, x(0) = 0, y(0) = 1$</td>
<td>$x(t) = \sin t, y(t) = \cos t$</td>
</tr>
<tr>
<td>$x' = 1 + x^2, x(0) = 0$</td>
<td>$x(t) = \tan t$</td>
</tr>
<tr>
<td>$x'(t) = \frac{2}{t^3} x(t)$</td>
<td>$x(t) = e^{-\frac{1}{t^2}}$ non-analytic</td>
</tr>
<tr>
<td>$x' = x^2 + x^4$</td>
<td>non-elementary</td>
</tr>
<tr>
<td>$x'(t) = e^{t^2}$</td>
<td></td>
</tr>
<tr>
<td>ODE</td>
<td>Solution</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>$x' = 1, x(0) = x_0$</td>
<td>$x(t) = x_0 + t$</td>
</tr>
<tr>
<td>$x' = 5, x(0) = x_0$</td>
<td>$x(t) = x_0 + 5t$</td>
</tr>
<tr>
<td>$x' = x, x(0) = x_0$</td>
<td>$x(t) = x_0 e^t$</td>
</tr>
<tr>
<td>$x' = x^2, x(0) = x_0$</td>
<td>$x(t) = \frac{x_0}{1 - tx_0}$</td>
</tr>
<tr>
<td>$x' = \frac{1}{x}, x(0) = 1$</td>
<td>$x(t) = \sqrt{1 + 2t}$…</td>
</tr>
<tr>
<td>$y'(x) = -2xy, y(0) = 1$</td>
<td>$y(x) = e^{-x^2}$</td>
</tr>
<tr>
<td>$x'(t) = tx, x(0) = x_0$</td>
<td>$x(t) = x_0 e^{\frac{t^2}{2}}$</td>
</tr>
<tr>
<td>$x' = \sqrt{x}, x(0) = x_0$</td>
<td>$x(t) = \frac{t^2}{4} \pm t \sqrt{x_0 + x_0}$</td>
</tr>
<tr>
<td>$x' = y, y' = -x, x(0) = 0, y(0) = 1$</td>
<td>$x(t) = \sin t, y(t) = \cos t$</td>
</tr>
<tr>
<td>$x' = 1 + x^2, x(0) = 0$</td>
<td>$x(t) = \tan t$</td>
</tr>
<tr>
<td>$x'(t) = \frac{2}{t^3} x(t)$</td>
<td>$x(t) = e^{-\frac{1}{t^2}}$ non-analytic</td>
</tr>
<tr>
<td>$x' = x^2 + x^4$</td>
<td>???</td>
</tr>
<tr>
<td>$x'(t) = e^{t^2}$</td>
<td>non-elementary</td>
</tr>
</tbody>
</table>
Takeaway Message

Descriptive power of differential equations

1. Solutions of differential equations can be much more involved than the differential equations themselves.
2. Representational and descriptive power of differential equations!
3. Simple differential equations can describe quite complicated physical processes.
4. Local description as the direction into which the system evolves.
Outline

1. Learning Objectives
2. Introduction
3. Differential Equations
4. Examples of Differential Equations
5. Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs
6. Summary
Enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A *differential equation* $x' = f(x)$ *with evolution domain* Q is denoted by

\[x' = f(x) \& Q \]

conjunctive notation ($\&$) signifies that the system obeys the differential equation $x' = f(x)$ *and* the evolution domain Q.
Definition (Evolution domain constraints)

A differential equation $x' = f(x)$ with evolution domain Q is denoted by

$$x' = f(x) \& Q$$

conjunctive notation ($\&$) signifies that the system obeys the differential equation $x' = f(x)$ and the evolution domain Q.
Enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A differential equation \(x' = f(x) \) with evolution domain \(Q \) is denoted by

\[
x' = f(x) & Q
\]

conjunctive notation (\&) signifies that the system obeys the differential equation \(x' = f(x) \) and the evolution domain \(Q \).
Evolution Domain Constraints

Enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A *differential equation* \(x' = f(x) \) *with evolution domain* \(Q \) is denoted by

\[
x' = f(x) \& Q
\]

 Conjunctive notation \((\&) \) signifies that the system obeys the differential equation \(x' = f(x) \) and the evolution domain \(Q \).

\[
\begin{align*}
x' &= v, \quad v' = a, \quad t' = 1 \& t \leq \varepsilon & \text{stops at clock } \varepsilon \text{ at the latest} \\
x' &= v, \quad v' = a, \quad t' = 1 \& v \geq 0 & \text{stops before velocity negative} \\
x' &= y, \quad y' = x + y^2 \& \text{true} & \text{no constraint}
\end{align*}
\]
A differential equation \(x' = f(x) \) with evolution domain \(Q \) is denoted by

\[
x' = f(x) \& Q
\]

conjunctive notation \((\&)\) signifies that the system obeys the differential equation \(x' = f(x) \) and the evolution domain \(Q \).

\[
\begin{align*}
x' &= v, \quad v' = a, \quad t' = 1 \& t \leq \varepsilon \\
x' &= v, \quad v' = a, \quad t' = 1 \& v \geq 0 \\
x' &= y, \quad y' = x + y^2 \& \text{true}
\end{align*}
\]

stops at clock \(\varepsilon \) at the latest

stops before velocity negative

no constraint
Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$e, \tilde{e} ::= x \mid c \mid e + \tilde{e} \mid e \cdot \tilde{e}$$

where e, \tilde{e} are terms, $x \in V$ is a variable, $c \in Q$ a rational number constant.
A term e is a polynomial term defined by the grammar:

$$e, \bar{e} ::= x \mid c \mid e + \bar{e} \mid e \cdot \bar{e}$$

- **Variable**
- **Constant**
- **Add**
- **Multiply**
Definition (Syntax of terms)

A *term* e is a polynomial term defined by the grammar:

$$
e, \tilde{e} ::= x \mid c \mid e + \tilde{e} \mid e \cdot \tilde{e}
$$

Definition (Semantics of terms)

The *value* of term e in state $\omega : \mathcal{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega[e]$ and is defined by induction on the structure of e:

- $\omega[x] = \omega(x)$ if $x \in \mathcal{V}$ is a variable
- $\omega[c] = c$ if $c \in \mathbb{Q}$ is a rational constant
- $\omega[e + \tilde{e}] = \omega[e] + \omega[\tilde{e}]$ addition of reals
- $\omega[e \cdot \tilde{e}] = \omega[e] \cdot \omega[\tilde{e}]$ multiplication of reals
Terms: Syntax & Semantics

Definition (Syntax of terms)

A *term* e is a polynomial term defined by the grammar:

\[e, \tilde{e} ::= x \mid c \mid e + \tilde{e} \mid e \cdot \tilde{e} \]

Definition (Semantics of terms)

The *value* of term e in state \(\omega : \mathcal{V} \rightarrow \mathbb{R} \) is a real number denoted \(\omega[e] \) and is defined by induction on the structure of e:

\[
\begin{align*}
\omega[x] &= \omega(x) & \text{if } x \in \mathcal{V} \text{ is a variable} \\
\omega[c] &= c & \text{if } c \in \mathbb{Q} \text{ is a rational constant} \\
\omega[e + \tilde{e}] &= \omega[e] + \omega[\tilde{e}] & \text{addition of reals} \\
\omega[e \cdot \tilde{e}] &= \omega[e] \cdot \omega[\tilde{e}] & \text{multiplication of reals}
\end{align*}
\]

\[
\omega[4 + x \cdot 2] = \begin{cases}
4 + \omega(x) \cdot 2 & \text{if } \omega(x) = 5
\end{cases}
\]
Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$ e, \bar{e} ::= x | c | e + \bar{e} | e \cdot \bar{e} $$

Definition (Semantics of terms)

The value of term e in state $\omega : \mathcal{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega[e]$ and is defined by induction on the structure of e:

- $\omega[x] = \omega(x)$ if $x \in \mathcal{V}$ is a variable
- $\omega[c] = c$ if $c \in \mathbb{Q}$ is a rational constant
- $\omega[e + \bar{e}] = \omega[e] + \omega[\bar{e}]$ addition of reals
- $\omega[e \cdot \bar{e}] = \omega[e] \cdot \omega[\bar{e}]$ multiplication of reals

$$\omega[4 + x \cdot 2] = \omega[4] + \omega[x] \cdot \omega[2] = 4 + \omega(x) \cdot 2 = 14 \quad \text{if } \omega(x) = 5$$
Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$ e, \tilde{e} ::= x \mid c \mid e + \tilde{e} \mid e \cdot \tilde{e} $$

Definition (Semantics of terms) ($([\cdot]): \text{Trm} \to (\mathcal{X} \to \mathbb{R})$)

The value of term e in state $\omega : \mathcal{X} \to \mathbb{R}$ is a real number denoted $\omega[e]$ and is defined by induction on the structure of e:

- $\omega[x] = \omega(x)$ if $x \in \mathcal{X}$ is a variable
- $\omega[c] = c$ if $c \in \mathbb{Q}$ is a rational constant
- $\omega[e + \tilde{e}] = \omega[e] + \omega[\tilde{e}]$ addition of reals
- $\omega[e \cdot \tilde{e}] = \omega[e] \cdot \omega[\tilde{e}]$ multiplication of reals

What about $x - y$?
Definition (Syntax of terms)

A *term* e is a polynomial term defined by the grammar:

$$e, \tilde{e} ::= x \mid c \mid e + \tilde{e} \mid e \cdot \tilde{e}$$

Definition (Semantics of terms)

The *value* of term e in state $\omega : \mathcal{V} \to \mathbb{R}$ is a real number denoted $\omega[e]$ and is defined by induction on the structure of e:

- $\omega[x] = \omega(x)$ if $x \in \mathcal{V}$ is a variable
- $\omega[c] = c$ if $c \in \mathbb{Q}$ is a rational constant
- $\omega[e + \tilde{e}] = \omega[e] + \omega[\tilde{e}]$ addition of reals
- $\omega[e \cdot \tilde{e}] = \omega[e] \cdot \omega[\tilde{e}]$ multiplication of reals

What about $x - y$? Defined as $x + (-1) \cdot y$
Terms: Syntax & Semantics

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$ e, \tilde{e} ::= x \mid c \mid e + \tilde{e} \mid e \cdot \tilde{e} $$

Definition (Semantics of terms) $(\llbracket \cdot \rrbracket : \text{Trm} \to (\mathcal{S} \to \mathbb{R}))$

The value of term e in state $\omega : \mathcal{V} \to \mathbb{R}$ is a real number denoted $\omega[e]$ and is defined by induction on the structure of e:

- $\omega[x] = \omega(x)$ if $x \in \mathcal{V}$ is a variable
- $\omega[c] = c$ if $c \in \mathbb{Q}$ is a rational constant
- $\omega[e + \tilde{e}] = \omega[e] + \omega[\tilde{e}]$ addition of reals
- $\omega[e \cdot \tilde{e}] = \omega[e] \cdot \omega[\tilde{e}]$ multiplication of reals

What about x^4?
A term e is a polynomial term defined by the grammar:

$$e, \bar{e} ::= x \mid c \mid e + \bar{e} \mid e \cdot \bar{e}$$

The value of term e in state $\omega : \mathcal{V} \to \mathbb{R}$ is a real number denoted $\omega[e]$ and is defined by induction on the structure of e:

- $\omega[x] = \omega(x)$ if $x \in \mathcal{V}$ is a variable
- $\omega[c] = c$ if $c \in \mathbb{Q}$ is a rational constant
- $\omega[e + \bar{e}] = \omega[e] + \omega[\bar{e}]$ addition of reals
- $\omega[e \cdot \bar{e}] = \omega[e] \cdot \omega[\bar{e}]$ multiplication of reals

What about x^4? Defined as $x \cdot x \cdot x \cdot x$
Terms: Syntax & Semantics

Definition (Syntax of terms)

A *term* e is a polynomial term defined by the grammar:

$$e, \tilde{e} ::= x \mid c \mid e + \tilde{e} \mid e \cdot \tilde{e}$$

Definition (Semantics of terms)

The *value* of term e in state $\omega : V \rightarrow \mathbb{R}$ is a real number denoted $\omega[e]$ and is defined by induction on the structure of e:

- $\omega[x] = \omega(x)$ if $x \in V$ is a variable
- $\omega[c] = c$ if $c \in \mathbb{Q}$ is a rational constant
- $\omega[e + \tilde{e}] = \omega[e] + \omega[\tilde{e}]$ addition of reals
- $\omega[e \cdot \tilde{e}] = \omega[e] \cdot \omega[\tilde{e}]$ multiplication of reals

What about x^n?
Definition (Syntax of terms)

A *term* e is a polynomial term defined by the grammar:

$$e, \tilde{e} ::= x \mid c \mid e + \tilde{e} \mid e \cdot \tilde{e}$$

Definition (Semantics of terms) ($[[\cdot]] : \text{Trm} \rightarrow (\mathcal{V} \rightarrow \mathbb{R})$)

The *value* of term e in state $\omega : \mathcal{V} \rightarrow \mathbb{R}$ is a real number denoted $\omega[[e]]$ and is defined by induction on the structure of e:

- $\omega[[x]] = \omega(x)$ if $x \in \mathcal{V}$ is a variable
- $\omega[[c]] = c$ if $c \in \mathbb{Q}$ is a rational constant
- $\omega[[e + \tilde{e}]] = \omega[[e]] + \omega[[\tilde{e}]]$ addition of reals
- $\omega[[e \cdot \tilde{e}]] = \omega[[e]] \cdot \omega[[\tilde{e}]]$ multiplication of reals

What about x^n? Defined as $x \cdot x \cdot x \cdot x \cdot \ldots$, wait when do we stop???
Definition (Syntax of first-order logic formulas)

The formulas of FOL of real arithmetic are defined by the grammar:

\[
P, Q ::= e \geq \tilde{e} \mid e = \tilde{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid P \leftrightarrow Q \mid \forall x P \mid \exists x P
\]
Definition (Syntax of first-order logic formulas)

The formulas of FOL of real arithmetic are defined by the grammar:

\[P, Q ::= e \geq \bar{e} \mid e = \bar{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid P \leftrightarrow Q \mid \forall x P \mid \exists x P \]

Greater-or-equal Not And Or Imply Equiv All Exists
Definition (Syntax of first-order logic formulas)

The formulas of FOL of real arithmetic are defined by the grammar:

\[
P, Q ::= e \geq \tilde{e} \mid e = \tilde{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid P \leftrightarrow Q \mid \forall x P \mid \exists x P
\]

Definition (Semantics of first-order logic formulas)

First-order formula \(P \) is true in state \(\omega \), written \(\omega \models P \), defined inductively:

- \(\omega \models e = \tilde{e} \) iff \(\omega[e] = \omega[\tilde{e}] \)
- \(\omega \models e \geq \tilde{e} \) iff \(\omega[e] \geq \omega[\tilde{e}] \)
- \(\omega \models \neg P \) iff \(\omega \not\models P \), i.e., if it is not the case that \(\omega \models P \)
- \(\omega \models P \land Q \) iff \(\omega \models P \) and \(\omega \models Q \)
- \(\omega \models P \lor Q \) iff \(\omega \models P \) or \(\omega \models Q \)
- \(\omega \models P \rightarrow Q \) iff \(\omega \not\models P \) or \(\omega \models Q \)
- \(\omega \models \forall x P \) iff \(\omega^d_x \models P \) for all \(d \in \mathbb{R} \)
- \(\omega \models \exists x P \) iff \(\omega^d_x \models P \) for some \(d \in \mathbb{R} \)

\[\omega^d_x(y) = \begin{cases} d & \text{if } y = x \\ \omega(y) & \text{if } y \neq x \end{cases}\]
First-Order Logic Formulas: Syntax & Semantics

\(\omega \models P \) formula \(P \) is true in state \(\omega \)

\(\models P \) formula \(P \) is valid, i.e., true in all states \(\omega \), i.e., \(\omega \models P \) for all \(\omega \)

\([P] = \{ \omega : \omega \models P \} \) set of all states in which \(P \) is true

Definition (Semantics of first-order logic formulas)

First-order formula \(P \) is true in state \(\omega \), written \(\omega \models P \), defined inductively:

\(\omega \models e = \tilde{e} \) iff \(\omega[e] = \omega[\tilde{e}] \)

\(\omega \models e \geq \tilde{e} \) iff \(\omega[e] \geq \omega[\tilde{e}] \)

\(\omega \models \neg P \) iff \(\omega \not\models P \), i.e., if it is not the case that \(\omega \models P \)

\(\omega \models P \land Q \) iff \(\omega \models P \) and \(\omega \models Q \)

\(\omega \models P \lor Q \) iff \(\omega \models P \) or \(\omega \models Q \)

\(\omega \models P \rightarrow Q \) iff \(\omega \not\models P \) or \(\omega \models Q \)

\(\omega \models \forall x \ P \) iff \(\omega^d_x \models P \) for all \(d \in \mathbb{R} \)

\(\omega \models \exists x \ P \) iff \(\omega^d_x \models P \) for some \(d \in \mathbb{R} \)

\(\omega^d_x(y) = \begin{cases} d & \text{if } y = x \\ \omega(y) & \text{if } y \neq x \end{cases} \)
First-Order Logic Formulas: Syntax & Semantics

\(\omega \models P \) formula \(P \) is true in state \(\omega \)

\(\models P \) formula \(P \) is valid, i.e., true in all states \(\omega \), i.e., \(\omega \models P \) for all \(\omega \)

\(\mathcal{L}[P] = \{ \omega : \omega \models P \} \) set of all states in which \(P \) is true

\[\exists y \left(y^2 \leq x \right) \]

for \(\omega(x) = 5 \) and \(\nu(x) = -5 \)

Definition (Semantics of first-order logic formulas)

First-order formula \(P \) is true in state \(\omega \), written \(\omega \models P \), defined inductively:

\(\omega \models e = \tilde{e} \) iff \(\omega[e] = \omega[\tilde{e}] \)

\(\omega \models e \geq \tilde{e} \) iff \(\omega[e] \geq \omega[\tilde{e}] \)

\(\omega \models \neg P \) iff \(\omega \not\models P \), i.e., if it is not the case that \(\omega \models P \)

\(\omega \models P \land Q \) iff \(\omega \models P \) and \(\omega \models Q \)

\(\omega \models P \lor Q \) iff \(\omega \models P \) or \(\omega \models Q \)

\(\omega \models P \to Q \) iff \(\omega \not\models P \) or \(\omega \models Q \)

\(\omega \models \forall x P \) iff \(\omega^d_x \models P \) for all \(d \in \mathbb{R} \)

\(\omega \models \exists x P \) iff \(\omega^d_x \models P \) for some \(d \in \mathbb{R} \)

\[\omega^d_x(y) = \begin{cases}
 d & \text{if } y = x \\
 \omega(y) & \text{if } y \neq x
\end{cases} \]
First-Order Logic Formulas: Syntax & Semantics

ω |= P formula P is true in state ω
|= P formula P is valid, i.e., true in all states ω, i.e., ω |= P for all ω
⟦P⟧ = {ω : ω |= P} set of all states in which P is true

ω |= ∃y (y^2 ≤ x) but ν ̸|= ∃y (y^2 ≤ x) for ω(x) = 5 and ν(x) = −5

Definition (Semantics of first-order logic formulas)

First-order formula P is true in state ω, written ω |= P, defined inductively:

ω |= e = ˜e iff ω[e] = ω[˜e]
ω |= e ≥ ˜e iff ω[e] ≥ ω[˜e]
ω |= ¬P iff ω ̸|= P, i.e., if it is not the case that ω |= P
ω |= P ∧ Q iff ω |= P and ω |= Q
ω |= P ∨ Q iff ω |= P or ω |= Q
ω |= P → Q iff ω ̸|= P or ω |= Q
ω |= ∀x P iff ω^d_x |= P for all d ∈ ℝ
ω |= ∃x P iff ω^d_x |= P for some d ∈ ℝ

ω^d_x(y) = \begin{cases} d & \text{if } y = x \\ ω(y) & \text{if } y ≠ x \end{cases}
Definition (Semantics of differential equations)

A function \(\varphi : [0, r] \rightarrow \mathcal{I} \) of some duration \(r \geq 0 \) satisfies the differential equation \(x' = f(x) \& Q \), written \(\varphi \models x' = f(x) \land Q \), iff:

1. \(\varphi(z)(x') = \frac{d\varphi(t)(x)}{dt}(z) \) exists at all times \(0 \leq z \leq r \)
2. \(\varphi(z) \models x' = f(x) \land Q \) for all times \(0 \leq z \leq r \)
3. \(\varphi(z) = \varphi(0) \) except at \(x, x' \)
A function \(\varphi : [0, r] \rightarrow \mathcal{I} \) of some duration \(r \geq 0 \) satisfies the differential equation \(x' = f(x) \land Q \), written \(\varphi \models x' = f(x) \land Q \), iff:

1. \(\varphi(z)(x') = \frac{d\varphi(t)(x)}{dt}(z) \) exists at all times \(0 \leq z \leq r \)
2. \(\varphi(z) \models x' = f(x) \land Q \) for all times \(0 \leq z \leq r \)
3. \(\varphi(z) = \varphi(0) \) except at \(x, x' \)
Definition (Semantics of differential equations)

A function $\varphi : [0, r] \rightarrow \mathcal{X}$ of some duration $r \geq 0$ satisfies the differential equation $x' = f(x) \& Q$, written $\varphi \models x' = f(x) \land Q$, iff:

1. $\varphi(z)(x') = \frac{d\varphi(t)(x)}{dt}(z)$ exists at all times $0 \leq z \leq r$
2. $\varphi(z) \models x' = f(x) \land Q$ for all times $0 \leq z \leq r$
3. $\varphi(z) = \varphi(0)$ except at x, x'

\[
x' = f(x) \& Q
\]
Definition (Semantics of differential equations)

A function $\varphi : [0, r] \to I$ of some duration $r \geq 0$ satisfies the differential equation $x' = f(x) \& Q$, written $\varphi \models x' = f(x) \land Q$, iff:

1. $\varphi(z)(x') = \frac{d\varphi(t)(x)}{dt}(z)$ exists at all times $0 \leq z \leq r$
2. $\varphi(z) \models x' = f(x) \land Q$ for all times $0 \leq z \leq r$
3. $\varphi(z) = \varphi(0)$ except at x, x'
Learning Objectives

Introduction

Differential Equations

Examples of Differential Equations

Domains of Differential Equations
- Terms
- First-Order Formulas
- Continuous Programs

Summary
Definition (Syntax of terms)

\[e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e} \]

Definition (Syntax of first-order logic formulas)

\[P, Q ::= e \geq \tilde{e} | e = \tilde{e} | \neg P | P \land Q | P \lor Q | P \rightarrow Q | P \leftrightarrow Q | \forall x P | \exists x P \]

Definition (Syntax of continuous programs)

A differential equation \(x' = f(x) \) with evolution domain \(Q \) is denoted by

\[x' = f(x) \land Q \]
André Platzer.
Logical Foundations of Cyber-Physical Systems.
Springer, Cham, 2018.
doi:10.1007/978-3-319-63588-0.

André Platzer.
Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
doi:10.1007/978-3-642-14509-4.