
15-812: Programming Language Semantics

Lecture Notes on
Static Semantics

André Platzer

Carnegie Mellon University
Lecture 9

1 Introduction

After we now saw the clever use of uniform substitution as a single mechanism to
rigorously justify the correctness of numerous operations in program reasoning, we
are now well-motivated to understand the pieces that go into the definition of uniform
substitutions. All that they are based on is the static semantics of the free variables
and the bound variables of formulas and programs. Classically, the static semantics is
studied earlier in the development of programming language semantics [Rey98], but is
then potentially rather unmotivated. Now we understand exactly what we need it for
and have already seen both useful applications and warning signs of what happens if
we get things wrong.

This lecture is based on prior work [Pla15, Pla17]. As usual, we will develop things
one step at a time even if this presentation summarizes the result instead of the process.
For your long-term understanding, the process is quite impactful to enable you to take
advantage of programming language semantics in your favorite application contexts.

2 Dynamic Logic

Recall the syntax and semantics of dynamic logic.

2.1 Syntax

Definition 1 (Terms). Terms are defined by the following grammar (θ, η are terms, x a
variable, q a number literal and f a function symbol):

θ, η ::= x | q | f(θ1, . . . , θn) | θ + η | θ · η

15-812 LECTURE NOTESANDRÉ PLATZER

http://www.cs.cmu.edu/~aplatzer/course/pls18.html
http://www.cs.cmu.edu/~aplatzer/andre.html

L9.2 Static Semantics

Definition 2 (Nondeterministic programs). Programs are defined by the following gram-
mar (α, β are programs, x a variable, θ a term possibly containing x, and Q a first-order
formula):

α, β ::= x := θ | ?Q | α;β | if(Q)α elseβ | while(Q)α | α∗

Definition 3 (DL formula). The formulas of dynamic logic (DL) are defined by the gram-
mar (where φ, ψ are DL formulas, θ1, θ2 terms, p a predicate symbol, x a variable, α a
program):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | p(θ1, . . . , θn) | ¬φ | φ ∧ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

2.2 Dynamic Semantics

A state is a mapping from variables to R. The set of states is denoted S. Let ωr
x denote

the state that agrees with state ω except for the interpretation of variable x, which is
changed to r ∈ R.

For later use, additional function symbols f and predicate symbols p are already al-
lowed in the logic. For now, consider unary minus f(x) with the fixed interpretation as
I(f)(d) = −d and arithmetic comparison operators p(x, y) with the fixed interpretation
(c, d) ∈ I(p) iff c < d. But this device of extending DL with additional function symbols
and predicate symbols will prove useful later.

Definition 4 (Semantics of terms). The semantics of a term θ in a state ω ∈ S is its value.
It is defined inductively as follows

• Iω[[x]] = ω(x) for variable x

• Iω[[q]] = q for number literals q

• Iω[[f(θ1, . . . , θk)]] = I(f)
(
Iω[[θ1]], . . . , Iω[[θk]]

)
• Iω[[θ + η]] = Iω[[θ]] + Iω[[η]]

• Iω[[θ · η]] = Iω[[θ]] · Iω[[η]]

Definition 5 (Transition semantics of programs). Each program α is interpreted seman-
tically as a binary reachability relation I[[α]] ⊆ S × S over states, defined inductively by

• I[[x := θ]] = {(ω, ν) : ν = ω except that Iν[[x]] = Iω[[θ]]}

• I[[?Q]] = {(ω, ω) : ω ∈ I[[Q]] i.e. ω ∈ I[[Q]]}

• I[[α;β]] = I[[α]] ◦ I[[β]] = {(ω, ν) : (ω, µ) ∈ I[[α]], (µ, ν) ∈ I[[β]]}

• I[[if(Q)α elseβ]] = I[[Q]] ◦ I[[α]] ∪ I[[Q]]{ ◦ I[[β]] =
{(ω, ν) : (ω, ν) ∈ I[[α]] and ω ∈ I[[Q]]} ∪ {(ω, ν) : (ω, ν) ∈ I[[β]] and ω 6∈ I[[Q]]}

15-812 LECTURE NOTES ANDRÉ PLATZER

Static Semantics L9.3

• I[[α∗]] =
(
I[[α]]

)∗
=
⋃
n∈N

I[[αn]] =
{
(ω, ν) : there are an n and states µ0 = ω, µ1, µ2, . . . , µn =

ν such that (µi, µi+1) ∈ I[[α]] for all 0 ≤ i < n}
with αn+1 ≡ αn;α and α0 ≡ ?true and where ρ∗ is the reflexive transitive closure
of a relation ρ ⊆ S × S.

• I[[while(Q)α]] =
{
(ω, ν) : there are an n and states µ0 = ω, µ1, µ2, . . . , µn = ν

such that for all 0 ≤ i < n: 1© the loop condition is true µi ∈ I[[Q]] and 2© from
state µi is state µi+1 reachable by running α so (µi, µi+1) ∈ I[[α]] and 3© the loop
condition is false µn 6∈ I[[Q]] in the end

}
=
(
I[[Q]] ◦ I[[α]]

)∗ ◦ I[[Q]]{

Definition 6 (DL semantics). The semantics of a DL formula φ, for each interpretation I
with a corresponding set of states S, is the subset I[[φ]] ⊆ S of states in which φ is true.
It is defined inductively as follows

1. I[[p(θ1, . . . , θk)]] = {I, ω ∈ S : (Iω[[θ1]], . . . , Iω[[θk]]) ∈ I(p)}

2. I[[θ1 ≥ θ2]] = {I, ω ∈ S : Iω[[θ1]] ≥ Iω[[θ2]]}

3. I[[¬φ]] = (I[[φ]]){

4. I[[φ ∧ ψ]] = I[[φ]] ∩ I[[ψ]]

5. I[[∃xφ]] = {I, ω ∈ S : ωr
x ∈ I[[φ]] for some r ∈ R}

6. I[[〈α〉φ]] = I[[α]] ◦ I[[φ]] = {ω : ν ∈ I[[φ]] for some ν such that (ω, ν) ∈ I[[α]]}

7. I[[[α]φ]] = I[[¬〈α〉¬φ]] = (I[[α]] ◦ (I[[φ]]){){ =
{ω : ν ∈ I[[φ]] for all ν such that (ω, ν) ∈ I[[α]]}

A DL formula φ is valid in I , written I |= φ, iff I[[φ]] = S. Formula φ is valid, � φ, iff
I |= φ for all interpretations I .

2.3 Static Semantics

The static semantics of DL and programs defines some aspects of their behavior that can
be read off directly from their syntactic structure without ever having to run their pro-
grams or evaluating their dynamical effects. In this context, the most important aspects
of the static semantics concern free or bound occurrences of variables (which are closely
related to definitions and uses of variables in compilers). Bound variables are those
variables x that are bound by ∀x or ∃x , but also those that are bound by modalities such
as [x := 5y] or 〈x := x+ 1〉 or [if(x ≥ 0)x := 1elsex := x+ 1] or [if(x ≥ 0)x := 1else ?true].

The notions of free and bound variables are defined by simultaneous induction in
the subsequent definitions: free variables for terms (FV(θ)), for formulas (FV(φ)), and
for programs (FV(α)), as well as bound variables for formulas (BV(φ)) and for pro-
grams (BV(α)). For programs, there will also be a need to distinguish variables that are
bound/written to on all executions of α, these are the must-bound variables (MBV(α)).

15-812 LECTURE NOTES ANDRÉ PLATZER

L9.4 Static Semantics

Must-bound variables are in contrast to the (may) bound variables (BV(α)) which may
only be bound on some execution paths ofα, such as in [if(x ≥ 0)x := 1else (x := 0; y := x+ 1)],
which has bound variables {x, y} but must-bound variables only {x}, because y is not
written to in the first choice.

Definition 7 (Bound variable). The set BV(φ) of bound variables of DL formula φ is de-
fined inductively as

BV(θ1 ≥ θ2) = ∅
BV(p(θ1, . . . , θn)) = ∅

BV(¬φ) = BV(φ)

BV(φ ∧ ψ) = BV(φ) ∪ BV(ψ)

BV(∀xφ) = {x} ∪ BV(φ)

BV(∃xφ) = {x} ∪ BV(φ)

BV([α]φ) = BV(α) ∪ BV(φ)

BV(〈α〉φ) = BV(α) ∪ BV(φ)

Definition 8 (Free variable). The set FV(θ) of free variables of term θ, i.e. those that occur
in θ, is defined inductively as

FV(x) = {x}
FV(q) = ∅

FV(f(θ1, . . . , θn)) = FV(θ1) ∪ · · · ∪ FV(θn)

FV(θ + η) = FV(θ) ∪ FV(η)

FV(θ · η) = FV(θ) ∪ FV(η)

The set FV(φ) of free variables of DL formula φ, i.e. all those that occur in φ outside the
scope of quantifiers or modalities binding it, is defined inductively as

FV(θ1 ≥ θ2) = FV(θ1) ∪ FV(θ2)

FV(p(θ1, . . . , θn)) = FV(θ1) ∪ · · · ∪ FV(θn)

FV(¬φ) = FV(φ)

FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ)

FV(∀xφ) = FV(φ) \ {x}
FV(∃xφ) = FV(φ) \ {x}
FV([α]φ) = FV(α) ∪ (FV(φ) \MBV(α))

FV(〈α〉φ) = FV(α) ∪ (FV(φ) \MBV(α))

The simpler definition FV([α]φ) = FV(α) ∪ FV(φ) would be correct, but the results
are less precise then. Likewise for 〈α〉φ.

Which variables are free so may possibly be read (FV(α)), which variables are bound
(BV(α)) so may be written to somewhere in α and which variables are must-bound
(MBV(α)) so must be written to on all execution paths.

15-812 LECTURE NOTES ANDRÉ PLATZER

Static Semantics L9.5

Definition 9 (Bound variable). The set BV(α) of bound variables of program α, i.e. all
those that may potentially be written to, is defined inductively as

BV(x := θ) = {x}
BV(?Q) = ∅

BV(α;β) = BV(α) ∪ BV(β)

BV(if(Q)α elseβ) = BV(α) ∪ BV(β)

BV(α∗) = BV(α)

Definition 10 (Must-bound variable). The set MBV(α) of must-bound variables of pro-
gram α, i.e. all those that must be written to on all paths of α, is defined inductively
as

MBV(x := θ) = {x}
MBV(?Q) = ∅

MBV(α;β) = MBV(α) ∪MBV(β)

MBV(if(Q)α elseβ) = MBV(α) ∩MBV(β)

MBV(α∗) = ∅

Obviously, MBV(α) ⊆ BV(α). If α is only built by sequential compositions from
atomic programs, then MBV(α) = BV(α).

Definition 11 (Free variable). The set FV(α) of free variables of program α, i.e. all those
that may potentially be read, is defined inductively as

FV(x := θ) = FV(θ)

FV(?Q) = FV(Q)

FV(α;β) = FV(α) ∪ (FV(β) \MBV(α))

FV(if(Q)α elseβ) = FV(Q) ∪ FV(α) ∪ FV(β)

FV(α∗) = FV(α)

The variables of program α are V(α) = FV(α) ∪ BV(α).

The simpler definition FV(α;β) = FV(α) ∪ FV(β) would be correct, but the results
are less precise then.

Note that these definitions are sound syntactic overapproximations of the concept
of reading and writing variables. There may not be any actual run of α in which the
variable is read, nor one in which is actually written to. But without the program α
mentioning x as a free variable x ∈ FV(α), it cannot read the value of x. Likewise,
without α mentioning x as a bound variable x ∈ BV(α), it cannot write to x. The
definition Def. 11 is already parsimonious. For example, x is not a free variable of the
following program

(if(y ≥ 0)x := 1elsex := 2); z := x+ y

15-812 LECTURE NOTES ANDRÉ PLATZER

L9.6 Static Semantics

because x is never actually read, since x must have been defined on every execution
path of the first part before being read by the second part. No execution of the above
program, thus, depends on the initial value of x, which is why it is not a free variable.
This would have been different for the simpler definition

FV(α;β) = FV(α) ∪ FV(β)

There is a limit to the precision with which any such static analysis of the program can
determine which variables are really read and really written, though, by Rice’s theorem
[Ric53]. The static semantics in Def. 11 will, e.g., call x a free variable of the following
program even though no execution could ever read it, because they all fail the test ?false
when trying to run the branch that reads x:

z := 0; (?false; z := z + x)∗

The following insight reflects that for a variable x to be modified during a run of α,
the program α first needs to have x be a bound variable, i.e. x ∈ BV(α), so that α can
write to x. The converse is not true, because α may be binding a variable x, e.g. by
having an assignment to x, that it never actually changes, because that assignment is
never executed. The following program, for example, binds x but will never actually
change the value of x because there is no way of satisfying the test ?false :

if(y ≥ 0) (?false;x := 42)else z := x+ 1

Lemma 12 (Bound lemma). If (ω, ν) ∈ I[[α]], then ω = ν on BV(α){.

Proof. The proof is by a straightforward structural induction on α.

• (ω, ν) ∈ I[[x := θ]] = {(ω, ν) : ν = ω except that Iν[[x]] = Iω[[θ]]} implies that ω =
ν except for {x} = BV(x := θ).

• (ω, ω) ∈ I[[?Q]] = {(ω, ω) : ω ∈ I[[Q]] i.e. ω ∈ I[[Q]]} fits to BV(?Q) = ∅

• (ω, ν) ∈ I[[α;β]] = I[[α]] ◦ I[[β]], i.e. there is a µ such that (ω, µ) ∈ I[[α]] and (µ, ν) ∈ I[[β]].
So, by induction hypothesis, ω = µ on BV(α){ and µ = ν on BV(β){. By transitiv-
ity, ω = ν on (BV(α) ∪ BV(β)){ = BV(α;β){.

• (ω, ν) ∈ I[[if(Q)α elseβ]] is left as an exercise.

• (ω, ν) ∈ I[[α∗]] =
⋃
n∈N

I[[αn]], then there is an n ∈ N and a sequence ν0 = ω, ν1, . . . , νn =

ν such that (νi, νi+1) ∈ I[[α]] for all i < n. By n uses of the induction hypothesis,
νi = νi+1 on BV(α){ for all i < n. Thus, ω = ν0 = νn = ν on BV(α){ = BV(α∗){.

The value of terms only depend on the values of their free variables. When evaluating
a term θ in two states ω, ν̃ that differ widely but agree on the free variables FV(θ) of θ,
then the values of θ in both states coincide.

15-812 LECTURE NOTES ANDRÉ PLATZER

Static Semantics L9.7

Lemma 13 (Coincidence lemma). If ω = ν̃ on FV(θ), then Iω[[θ]] = Iν̃[[θ]].

Proof. The proof is by a straightforward structural induction on θ.

• Iω[[x]] = ω(x) = ν̃(x) = Iν̃[[x]] for variable x since ω = ν̃ on FV(x) = {x}.

• Iω[[q]] = q = Iν̃[[q]] for number literals q.

• Iω[[θ + η]] = Iω[[θ]] + Iω[[η]] = Iν̃[[θ]] + Iν̃[[η]] = Iν̃[[θ + η]] by induction hypothesis,
because FV(θ) ⊆ FV(θ + η) and FV(η) ⊆ FV(θ + η).

• Iω[[θ · η]] = Iω[[θ]] · Iω[[η]] = Iν̃[[θ]] · Iν̃[[η]] = Iν̃[[θ · η]] by induction hypothesis, be-
cause FV(θ) ⊆ FV(θ · η) and FV(η) ⊆ FV(θ · η).

By a more subtle argument, the value of DL formulas also only depend on the values
of their free variables. When evaluating DL formula φ in two states ω, ν̃ that differ
widely but agree on the free variables FV(φ) of φ, then the (truth) values of φ in both
states coincide. Lemma 14 and 16 are proved by simultaneous induction.

Lemma 14 (Coincidence lemma). If ω = ν̃ on FV(φ), then ω ∈ I[[φ]] iff ν̃ ∈ I[[φ]].

Proof. The proof is by induction on the structural complexity of φ.

1. ω ∈ I[[p(θ1, . . . , θk)]] iff (Iω[[θ1]], . . . , Iω[[θk]]) ∈ I(p) iff (Iν̃[[θ1]], . . . , Iν̃[[θk]]) ∈ I(p)
iff ν̃ ∈ I[[p(θ1, . . . , θk)]] by Lemma 13 since FV(θi) ⊆ FV(p(θ1, . . . , θk)).

2. ω ∈ I[[θ1 ≥ θ2]] iff Iω[[θ1]] ≥ Iω[[θ2]] iff Iν̃[[θ1]] ≥ Iν̃[[θ2]] iff ν̃ ∈ I[[θ1 ≥ θ2]] by Lemma 13
since FV(θi) ⊆ FV(θ1 ≥ θ2).

3. ω ∈ I[[¬φ]] iff ω 6∈ I[[φ]] iff ν̃ 6∈ I[[φ]] iff ν̃ ∈ I[[¬φ]] by induction hypothesis as FV(¬φ) =
FV(φ).

4. ω ∈ I[[φ ∧ ψ]] iff ω ∈ I[[φ]] ∩ I[[ψ]] iff ν̃ ∈ I[[φ]] ∩ I[[ψ]] iff ν̃ ∈ I[[φ ∧ ψ]] by induction
hypothesis using FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ).

5. ω ∈ I[[∃xφ]] iff ωr
x ∈ I[[φ]] for some r ∈ R iff ν̃rx ∈ I[[φ]] for some r ∈ R iff ν̃ ∈ I[[∃xφ]]

by induction hypothesis using that, for the same r, ωr
x = ν̃rx on FV(φ) ⊆ {x} ∪

FV(∃xφ).

6. ω ∈ I[[〈α〉φ]] will be postponed until Sect. ??

7. ω ∈ I[[[α]φ]] = I[[¬〈α〉¬φ]] iff ω 6∈ I[[〈α〉¬φ]] iff ν̃ 6∈ I[[〈α〉¬φ]] iff ν̃ ∈ I[[[α]φ]] by in-
duction hypothesis using FV(〈α〉¬φ) = FV([α]φ).

15-812 LECTURE NOTES ANDRÉ PLATZER

L9.8 Static Semantics

In a sense, the runs of an program α also only depend on the values of its free vari-
ables, because its behavior cannot depend on the values of variables that it never reads.
That is, if ω = ν̃ on FV(α) and (ω, ν) ∈ I[[α]], then there is an ω̃ such that (ν̃, ω̃) ∈ I[[α]]
and ν and ω̃ agree in some sense. There is a subtlety, though. The resulting states ν and
ω̃ will only continue to agree on FV(α) and the variables that are bound on the particu-
lar path that α took for the transition (ω, ν) ∈ I[[α]]. On variables z that are neither free
(so the initial states ω and ν̃ have not been assumed to already coincide on z) nor bound
on the particular path that α took, ν and ω̃ may continue to disagree, because z has not
been written to on that path.

Example 15. Let (ω, ν) ∈ I[[α]]. It is not enough to assume ω = ν̃ only on FV(α) in order
to guarantee ν = ω̃ on V(α) for some ω̃ such that (ν̃, ω̃) ∈ I[[α]], because

α
def≡ (z := z + 1)∗; if(z > 0)x := 1else y := 2

will force the final states to agree only on either x or on y, whichever one was assigned
to during the respective run of α, not on all BV(α) = {x, y, z}, even though any initial
states ω, ν̃ agree on FV(α) = ∅. Note that this can only happen because MBV(α) =
{z} 6= BV(α) = {x, y, z}.

Yet, ν and ω̃ will certainly agree on the variables that are bound on all paths of α,
rather than just somewhere in α. These are the must-bound variables of α.

If initial states agree on (at least) all free variables FV(α) that program α may read,
then the final states agree on those as well as on all variables that α must write, i.e. on
MBV(α).

Lemma 16 (Coincidence lemma). If ω = ν̃ on V ⊇ FV(α) and (ω, ν) ∈ I[[α]], then there is
an ω̃ such that (ν̃, ω̃) ∈ I[[α]] and ν = ω̃ on V ∪MBV(α).

ω ν

ν̃ ω̃

on V ⊇ FV(α)

α

α

∃

on V ∪MBV(α)

on BV(α){

on BV(α){

Proof. The proof is by induction on the structural complexity of α, where α∗ is con-
sidered to be structurally more complex than programs of any length but with less
repetitions, which induces a well-founded order on programs. For atomic programs α,
for which BV(α) = MBV(α), it is enough to conclude agreement on V(α) = FV(α) ∪
BV(α) = FV(α)∪MBV(α), because any variable in V \V(α) is in BV(α){, which remains
unchanged by α according to Lemma 12.

• (ω, ν) ∈ I[[x := θ]] = {(ω, ν) : ν = ω except that Iν[[x]] = Iω[[θ]]} then there is a tran-
sition (ν̃, ω̃) ∈ I[[x := θ]] and ω̃(x) = Iω̃[[x]] = Iν̃[[θ]] = Iω[[θ]] = Iν[[x]] = ω(x) by

15-812 LECTURE NOTES ANDRÉ PLATZER

Static Semantics L9.9

Lemma 14, since ω = ν̃ on FV(x := θ) = FV(θ). So, ν = ω̃ on BV(x := θ) = {x}.
Also, ω = ν on BV(x := θ){ and ν̃ = ω̃ on BV(x := θ){ by Lemma 12. Since ω = ν̃
on FV(x := θ), these imply ν = ω̃ on FV(x := θ) \ BV(x := θ). Since ν = ω̃ on
BV(x := θ) had been shown already, this implies ν = ω̃ on V(x := θ).

• (ω, ν) ∈ I[[?Q]] = {(ω, ω) : ω ∈ I[[Q]] i.e. ω ∈ I[[Q]]} then ν = ω by Def. 5. Since,
ω ∈ I[[Q]] and ω = ν̃ on FV(?Q), Lemma 14 implies that ν̃ ∈ I[[Q]], so (ν̃, ν̃) ∈ I[[?Q]].
Finally, ω = ν̃ on V(?Q) follows since BV(?Q) = ∅.

• (ω, ν) ∈ I[[α;β]] = I[[α]] ◦ I[[β]], i.e. there is a µ such that (ω, µ) ∈ I[[α]] and (µ, ν) ∈ I[[β]].
Since V ⊇ FV(α;β) ⊇ FV(α), by induction hypothesis, there is a µ̃ such that
(ν̃, µ̃) ∈ I[[α]] and µ = µ̃ on V ∪MBV(α). Since V ⊇ FV(α;β), so V ∪MBV(α) ⊇
FV(α;β) ∪MBV(α) = FV(α) ∪ (FV(β) \MBV(α)) ∪MBV(α) = FV(α) ∪ FV(β) ∪
MBV(α) ⊇ FV(β) by Def. 11, and since (µ, ν) ∈ I[[β]], the induction hypothesis
implies that there is an ω̃ such that (µ̃, ω̃) ∈ I[[β]] and ν = ω̃ on (V ∪MBV(α)) ∪
MBV(β) = V ∪MBV(α;β).

ω µ ν

ν̃ µ̃ ω̃

αon V ⊇
FV(α;β)
⊇ FV(α)

α

∃

β
on V ∪

MBV(α)

on V ∪MBV(α)
∪MBV(β)

β

∃

on BV(α){

on BV(α){

on BV(β){

on BV(β){

• (ω, ν) ∈ I[[if(Q)α elseβ]] is left as an exercise.

• (ω, ν) ∈ I[[α∗]] =
⋃
n∈N

I[[αn]] iff there is an n ∈ N such that (ω, ν) ∈ I[[αn]]. The case

n = 0 follows from the assumption ω = ν̃ on V ⊇ FV(α), since ν = ω holds in
that case and MBV(α∗) = ∅. The case n > 0 proceeds as follows. Since FV(αn) =
FV(α∗) = FV(α), the induction hypothesis applied to the structurally simpler
program αn implies that there is an ω̃ such that (ν̃, ω̃) ∈ I[[αn]] and ν = ω̃ on
V ∪MBV(αn) ⊇ V = V ∪MBV(α∗), since MBV(α∗) = ∅. Since I[[αn]] ⊆ I[[α∗]], this
concludes the proof.

When assuming ω and ν̃ to agree on all V(α), whether free or bound, ν and ω̃ will
continue to agree on V(α):

Corollary 17 (Coincidence lemma). If ω = ν̃ on V(α) and (ω, ν) ∈ I[[α]], then there is an
ω̃ such that (ν̃, ω̃) ∈ I[[α]] and ν = ω̃ on V(α). The same continues to hold if ω = ν̃ only on
V(α) \MBV(α).

15-812 LECTURE NOTES ANDRÉ PLATZER

L9.10 Static Semantics

Proof. By Lemma 16 using either V def
= V(α) ⊇ FV(α) or V def

= V(α) \MBV(α), respec-
tively.

References

[Pla15] André Platzer. A uniform substitution calculus for differential dynamic logic.
In Amy Felty and Aart Middeldorp, editors, CADE, volume 9195 of LNCS,
pages 467–481, Berlin, 2015. Springer. doi:10.1007/978-3-319-21401-6_32.

[Pla17] André Platzer. A complete uniform substitution calculus for differen-
tial dynamic logic. J. Autom. Reas., 59(2):219–265, 2017. doi:10.1007/

s10817-016-9385-1.
[Rey98] John C. Reynolds. Theories of Programming Languages. Cambridge Univ. Press,

1998.
[Ric53] H. Gordon Rice. Classes of recursively enumerable sets and their decision

problems. Trans. AMS, 74(2):358–366, 1953. doi:10.2307/1990888.

15-812 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/978-3-319-21401-6_32
http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.2307/1990888

	Introduction
	Dynamic Logic
	Syntax
	Dynamic Semantics
	Static Semantics

