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1 Introduction

Hybrid systems have so far served us well throughout this course as a model for cyber-
physical systems [Pla08, Pla10b]. Most definitely, hybrid systems can also serve as
models for other systems that are not cyber-physical per se, i.e. they are not built as
a combination of cyber and computing capabilities with physical capabilities. Some bi-
ological systems can be understood as hybrid systems, because they combine discrete
and continuous dynamics. Or physical processes in which things happen at very differ-
ent speeds, so where there is a slow process about which a continuous understanding is
critical as well as a very fast process in which a discrete abstraction might be sufficient.
Neither of those examples are particularly cyber-physical. Yet, nevertheless, they can
have natural models as hybrid systems, because their fundamental characteristics is the
interaction of discrete and continuous dynamics, which is exactly what hybrid systems
are good for. Hence, despite their good match, not all hybrid systems are cyber-physical
systems.

One important point of today’s lecture is that the converse is not true either. Not
all cyber-physical systems are hybrid systems. The reason for that is not that cyber-
physical systems lack discrete and continuous dynamics, but, rather, that they involve
also additional dynamical aspects. It is a common phenomenon in cyber-physical sys-
tems that they involve several dynamical aspects, which is why they are best under-
stood as multi-dynamical systems, i.e. systems with multiple dynamical features [Pla12c,
Pla12b, Pla11, Pla13].

In a certain sense, applications often have a +1 effect on dynamical aspects. Your
analysis might start out focusing on some number of dynamical aspects just to observe
during the elaboration of the analysis that there is a part of the system for which one
more dynamical aspect is relevant than was originally anticipated. The bouncing ball
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L20.2 Hybrid Systems & Games

is an example where a preliminary analysis might first ascribe an entirely continuous
dynamics to it, just to find out after a while that the singularity of bouncing back from
the ground would be better understood by discrete dynamics. So whenever you are
analyzing a system, be prepared to find one more dynamical aspect around the corner.
That is yet another reason why it is useful to have flexible and general analysis tech-
niques grounded in logic that still work even after a new dynamical aspect has been
found.

Of course, it is not going to be feasible to understand all multi-dynamical system
aspects at once in today’s lecture. But today’s lecture is going to introduce one very
fundamental dynamical aspect: adversarial dynamics [Pla13, Pla14]. Adversarial dy-
namics comes from multiple players that, in the context of CPS, interact on a hybrid
system and are allowed to make their respective choices arbitrarily, just in pursuit of
their goals. The combination of discrete, continuous, and adversarial dynamics leads
to hybrid games. Unlike hybrid systems, hybrid games allow choices in the system dy-
namics to be resolved adversarially by different players with different objectives.

Hybrid games are necessary in situations where multiple agents actively compete.
The canonical situation of a hybrid game would, thus, be RoboCup, where two teams
of robots play robot soccer, moving around physically in space, controlled according
to discrete computer decisions, and in active competition for scoring goals in opposite
directions on the field. The robots in a RoboCup match just can’t agree on the direction
into which they try to get the ball rolling. It turns out, however, that hybrid games
also come up for reasons of analytic competition, that is, where possible competition is
assumed only for the sake of a worst-case analysis.

Consider lab 4, the static and dynamic obstacles lab, for example, where your robot
is interacting with a roguebot. You are in control of the robot, but somebody else is
controlling the roguebot. Your objective is to control your robot so that it will not run
into the roguebot no matter what. That means you need to find some way of playing
your control choices for your robot so that it makes progress but will be safe for all
possible control choices that the roguebot might follow. After all you do not exactly
know how the other roguebot is implemented and how it will react to your control
decisions. That makes your robot play a hybrid game with the roguebot in which your
robot is trying to safely avoid collisions. The roguebot might behave sanely and tries
to stay safe as well. But the roguebot’s objectives could differ from yours, because its
objective is not to get you to your goal. The roguebot rather wants to get to its own goal
instead, which might cause unsafe interferences whenever the roguebot takes an action
in pursuit of its goal that is not in your robot’s interest. If your robot causes a collision,
because it chose an action that was incompatible with the roguebot’s action, your robot
would certainly be faulty and sent back to the design table.

Alas, when you try to understand how you need to control your robot to stay safe,
it can be instructive to think about what the worst-case action of a roguebot might
be to make life difficult for you. And when your friendly course instructors try to
demonstrate for you under which circumstance a simulation of your robot controller
exhibits a faulty behavior, so that you can learn from the cases where your control does
not work, they might actually be playing a hybrid game with you. If your robot wins
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and stays safe, that is an indication of a strong robot design. But if your course TAs
win and show an unsafe trace, you still win even if you lose this particular simulation,
because you learn more about the corner cases in your robot control design than when
staring at simulation movies where everything is just fair-weather control.

If you think carefully again about lab 2, where your robot was put on a highway and
had to find some way of being controlled to stay safe for all possible choices of the robot
in front of it, then you will find that a hybrid game interpretation might be in order for
that lab as well.

These lecture notes are based on [Pla13, Pla14], where more information can be found
on logic and hybrid games. The most important learning goals of this lecture are:

Modeling and Control: We identify an important additional dynamical aspect, the
aspect of adversarial dynamics, which adds an adversarial way of resolving the
choices in the system dynamics. This dynamical aspect is important for under-
standing the core principles behind CPS, because multiple agents with possibly
conflicting actions are featured frequently in CPS applications. It is helpful to
learn under which circumstance adversarial dynamics is important for under-
standing a CPS and when in can be neglected without loss. CPS in which all
choices are resolved against you or all choices are resolved for you can already
be described and analyzed in differential dynamic logic. Adversarial dynamics is
interesting in mixed cases, where some choices fall in your favor and others turn
out against you. Another important goal of this lecture is how to develop models
and controls of CPS with adversarial dynamics corresponding to multiple agents.

Computational Thinking: This lecture follows fundamental principles from computa-
tional thinking to capture the new phenomenon of adversarial dynamics in CPS
models. We leverage core ideas from programming languages by extending syn-
tax and semantics of program models and specification and verification logics
with the complementary operator of duality to incorporate adversariality in a
modular way into the realm of hybrid systems models. This leads to a composi-
tional model of hybrid games with compositional operators. Modularity makes it
possible to generalize our rigorous reasoning principles for CPS to hybrid games
while simultaneously taming their complexity. This lecture introduces differential
game logic dGL [Pla13, Pla14] extending by adversarial dynamics the familiar dif-
ferential dynamic logic, which has been used as the specification and verification
language for CPS in the other parts of this course. Computer science ultimately
is about analysis like worst-case analysis or expected-case analysis or correctness
analysis. Hybrid games enable analysis of CPS at a more fine-grained level in
between worst-case analysis and best-case analysis. In the dL formula [α]φ all
choices are resolved against us in the sense that [α]φ is only true if φ holds after
all runs of α. In the dL formula 〈α〉φ all choices are resolved in favor in the sense
that 〈α〉φ is true if φ holds after at least one run of α. Hybrid games can be used to
attribute some but not all of the choices in a system to an opponent while leaving
the others to be resolved favorably. Finally, this lecture provides a perspective on
advanced models of computation with alternating choices.
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CPS Skills: We add a new dimension into our understanding of the semantics of a CPS
model: the adversarial dimension corresponding to how a system changes state
over time as multiple agents react to each other. This understanding is crucial
for developing an intuition for the operational effects of multi-agent CPS. The
presence of adversarial dynamics will cause us to reconsider the semantics of CPS
models to incorporate the effects of multiple agents and their mutual reactions.
This generalization, while crucial for understanding adversarial dynamics in CPS,
also shines a helpful complementary light on the semantics of hybrid systems
without adversariality by causing us to reflect on choices.

2 Choices & Nondeterminism

Note 1 (Choices in hybrid systems). Hybrid systems involve choices. They manifest
evidently in hybrid programs as nondeterministic choices α ∪ β whether to run HP α or
HPβ, in nondeterministic repetitions α∗ where the choice is how often to repeat α, and in
differential equations x′ = θ&H where the choice is how long to follow that differential
equation. All those choices, however, have still been resolved in one way, i.e. by the same
entity or player.

In which way the various choices are resolved depends on the context. In the box
modality [α] of differential dynamic logic [Pla08, Pla10b, Pla12c], the choices are re-
solved in all possible ways so that the modal formula [α]φ expresses that formula φ holds
for all ways how the choices in HP α could resolve. In the diamond modality 〈α〉, in-
stead, the choices are resolved in some way so that formula 〈α〉φ expresses that formula
φ holds for one way of resolving the choices in HP α. That is how [α]φ expresses that φ
holds necessarily after α while 〈α〉φ expresses that φ is possible after α.

In particular, choices in α help〈α〉φ, because what this formulas calls for is some way
of making φ happen after α. If α has many possible behaviors, this is easier to satisfy.
Choices in α hurt [α]φ, however, because this formula requires φ to hold for all those
choices. The more choices there are, the more difficult it is to make sure that φ holds
after every single combination of those choices.

Note 2. In differential dynamic logic, choices in α either help uniformly (when they occur
in 〈α〉φ) or make things more difficult uniformly (when they occur in [α]φ).

That is why these various forms of choices in hybrid programs have been called non-
deterministic. They are “unbiased”. All possible resolutions of the choices in α could
happen nondeterministically when running α. Which possibilities we care about (all or
some) just depends on the modal formula around it.
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3 Control & Dual Control

Another way of looking at the choices that are to be resolved during the runs of a hybrid
program α is that they can be resolved by one player. Let’s call her Angel, because she
helps us so much in making 〈α〉φ formulas true. Whenever a choice is about to happen
(by running the program statements α ∪ β, α∗, or x′ = θ&H), Angel is called upon to
see how the choice is supposed to be resolved this time.

From that perspective, it sounds easy enough to add a second player. Let’s call him
Demon as Angel’s perpetual opponent.1 Only so far, Demon will probably be rather
bored after a while, when he realizes that he never actually gets to decide anything,
because Angel has all the fun in choosing how the hybrid program world unfolds and
Demon just sits around idly. So to keep Demon entertained, we need to introduce some
choices that fall under Demon’s control.

One thing, we could do to keep Demon interested in playing along is to add a pair of
shiny new controls especially for him. They might be called α ∩ β for Demon’s choice
between α or β as well as α× for repetition of α under Demon’s control as well as an
operation, say x′ = θ&Hd, for continuous evolution under Demon’s reign. But that
would cause a lot of attention to Demon’s control, which might make him feel overly
majestic. Let’s not do that, because we don’t want Demon to get any ideas.

Instead, we will find it sufficient to add just a single operator to hybrid programs:
the dual operator d. What αd does is to give all control that Angel had in α to Demon,
and, vice versa, all control that Demon had in α to Angel. The dual operator, thus,
is a little bit like what happens when you turn a chessboard around by 180◦ in the
middle of the game. Whoever played the choices of player White before suddenly
controls Black, and whoever played Black now controls White. With just this single
duality operator it turns out that Demon still gets his own set of controls (α ∩ β, α×,
x′ = θ&Hd) by suitably nesting the operators, but we did not have to give him those
controls specifically. Yet, now those extra controls are not special but simply an aspect
of a more fundamental principle: duality.

4 Hybrid Games

Differential game logic (dGL) is a logic for studying properties of hybrid games. The
idea is to describe the game form, i.e. rules, dynamics, and choices of the particular
hybrid game of interest, using a program notation and to then study its properties by
proving the validity of logical formulas that refer to the existence of winning strategies
for objectives of those hybrid games. Even though hybrid game forms only describe
the game form with its dynamics and rules and choices, not the actual objective, they
are still simply called hybrid games. The objective for a hybrid game is defined in the
modal logical formula that refers to that hybrid game form.

1The responsibilities of such ontologically loaded names are easier to remember than those of neutral
player names I and II.
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Definition 1 (Hybrid games). The hybrid games of differential game logic dGL are
defined by the following grammar (α, β are hybrid games, x a vector of variables,
θ a vector of (polynomial) terms of the same dimension, H is a dGL formula or just
a formula of first-order real arithmetic):

α, β ::= x := θ | x′ = θ&H | ?H | α ∪ β | α;β | α∗ | αd

The only syntactical difference of hybrid games compared to hybrid programs for
hybrid systems from Lecture 3 on Choice & Control is that, unlike hybrid programs,
hybrid games allow the dual operator αd. This minor syntactic change also requires us
to reinterpret the meaning of the other operators in a much more flexible way to make
sense of the presence of subgames within the games in which the players already inter-
act. The basic principle is that whenever there used to be nondeterminism in the hybrid
program semantics, there will now be a choice of Angel in the hybrid game semantics.
But don’t be fooled. The parts of such a hybrid game may still be hybrid games, in
which players interact, rather than just a single system running. So all operators of hy-
brid games still need a careful understanding as games, not just ·d, because all operators
can be applied to subgames that mention ·d or be part of a context that mentions ·d.

The atomic games of dGL are assignments, continuous evolutions, and tests. In the
deterministic assignment game (or discrete assignment game) x := θ, the value of variable
x changes instantly and deterministically to that of θ by a discrete jump without any
choices to resolve. In the continuous evolution game (or continuous game) x′ = θ&H , the
system follows the differential equation x′ = θ where the duration is Angel’s choice,
but Angel is not allowed to choose a duration that would, at any time, take the state
outside the region where formulaH holds. In particular, Angel is deadlocked and loses
immediately if H does not hold in the current state, because she cannot even evolve
for duration 0 then without being outside H .2 The test game or challenge ?H has no
effect on the state, except that Angel loses the game immediately if dGL formula H
does not hold in the current state, because she failed the test she was supposed to pass.
The test game ?H challenges Angel and she loses immediately if she fails. Angel does
not win just because she passed the challenge ?H , but at least the game continues. So
passing challenges is a necessary condition to win games. Failing challenges, instead,
immediately makes Angel lose.

The compound games of dGL are sequential, choice, repetition, and duals. The sequen-
tial game α;β is the hybrid game that first plays hybrid game α and, when hybrid game
α terminates without a player having won already (so no challenge in α failed), con-
tinues by playing game β. When playing the choice game α ∪ β, Angel chooses whether
to play hybrid game α or play hybrid game β. Like all the other choices, this choice is

2 Note that the most common case for H is a formula of first-order real arithmetic, but any dGL formula
will work. Evolution domain constraints H turn out to be unnecessary, because they can be defined
using hybrid games [Pla13, Pla14]. In the ordinary differential equation x′ = θ, the term x′ denotes
the time-derivative of x and θ is a polynomial term that is allowed to mention x and other variables.
More general forms of differential equations are possible [Pla10a, Pla10b], but will not be considered
explicitly.
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Hybrid Systems & Games L20.7

dynamic, i.e. every time α ∪ β is played, Angel gets to choose again whether she wants
to play α or β this time. The repeated game α∗ plays hybrid game α repeatedly and An-
gel chooses, after each play of α that terminates without a player having won already,
whether to play the game again or not, albeit she cannot choose to play indefinitely but
has to stop repeating ultimately. Angel is also allowed to stop α∗ right away after zero
iterations of α. Most importantly, the dual game αd is the same as playing the hybrid
game α with the roles of the players swapped. That is Demon decides all choices in αd

that Angel has in α, and Angel decides all choices in αd that Demon has in α. Players
who are supposed to move but deadlock lose. Thus, while the test game ?H causes
Angel to lose if formula H does not hold, the dual test game (or dual challenge) (?H)d

instead causes Demon to lose if H does not hold.
For example, if α describes the game of chess, then αd is chess where the players

switch sides. If α, instead, describes the hybrid game corresponding to your lab 5 robot
model where you are controlling a robot and your course instructors are controlling the
roguebot, then αd describes the dual game where you take control of the roguebot and
the course instructors are stuck with your robot controls.

The dual operator d is the only syntactic difference of dGL for hybrid games com-
pared to dL for hybrid systems [Pla08, Pla12a], but a fundamental one [Pla13, Pla14],
because it is the only operator where control passes from Angel to Demon or back.
Without d all choices are resolved uniformly by Angel without interaction. The pres-
ence of d requires a thorough semantic generalization throughout the logic to cope with
such flexibility.

5 Differential Game Logic

Hybrid games describe how the world can unfold when Angel and Demon interact
according to their respective control choices. They explain the rules of the game how
Angel and Demon interact, but not who wins the game, nor what the respective objec-
tives of the players are.3 The winning conditions are specified by logical formulas of
differential game logic. Modal formulas 〈α〉φ and [α]φ refer to hybrid games and the
existence of winning strategies for Angel and Demon, respectively, in a hybrid game α
with a winning condition specified by a logical formula φ.

Definition 2 (dGL formulas). The formulas of differential game logic dGL are defined
by the following grammar (φ, ψ are dGL formulas, p is a predicate symbol of arity
k, θi are (polynomial) terms, x a variable, and α is a hybrid game):

φ, ψ ::= p(θ1, . . . , θk) | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∃xφ | 〈α〉φ | [α]φ

Other operators >,=,≤, <,∨,→,↔,∀x can be defined as usual, e.g., ∀xφ ≡ ¬∃x¬φ.
The modal formula 〈α〉φ expresses that Angel has a winning strategy to achieve φ in hy-
brid game α, i.e. Angel has a strategy to reach any of the states satisfying dGL formula

3Except that players lose if they disobey the rules of the game by failing their respective challenges.
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φ when playing hybrid game α, no matter what strategy Demon chooses. The modal
formula [α]φ expresses that Demon has a winning strategy to achieve φ in hybrid game
α, i.e. a strategy to reach any of the states satisfying φ, no matter what strategy Angel
chooses.4 Note that the same game is played in [α]φ as in 〈α〉φ with the same choices
resolved by the same players. The difference between both dGL formulas is the player
whose winning strategy they refer to. Both use the set of states where dGL formula
φ is true as the winning states for that player. The winning condition is defined by
the modal formula, α only defines the hybrid game form, not when the game is won,
which is what φ does. Hybrid game α defines the rules of the game, including condi-
tions on state variables that, if violated, cause the present player to lose for violation
of the rules of the game. The dGL formulas 〈α〉φ and [α]¬φ consider complementary
winning conditions for Angel and Demon.

6 Demon’s Controls

Angel has full control over all choices in each of the operators of hybrid games except
when the operator d comes into play. All choices within the scope of (an odd number
of) d belong to Demon, because d makes the players switch sides. Demon’s controls,
i.e. direct controls for Demon, can be defined using the duality operator d on Angel’s
controls.

Demonic choice between hybrid game α and β is α ∩ β, defined by (αd ∪ βd)d, in which
either the hybrid game α or the hybrid game β is played, by Demon’s choice. The choice
for the ∪ operator belongs to Angel, yet since it is nested within d, that choice goes to
Demon, except that the d operators around α and β restore the original ownership of
controls. Demonic repetition of hybrid game α is α×, defined by ((αd)

∗
)d, in which α is

repeated as often as Demon chooses to. Again, the choice in the ∗ operator belongs to
Angel, but in a d context goes to Demon, while the choices in the α, β subgames under-
neath stay as they were originally thanks to the additional d operators. In α×, Demon
chooses after each play of α whether to repeat the game, but cannot play indefinitely
so he has to stop repeating ultimately. The dual differential equation (x′ = θ&H)d fol-
lows the same dynamics as x′ = θ&H except that Demon chooses the duration, so he
cannot choose a duration during which H stops to hold at any time. Hence he loses
when H does not hold in the current state. Dual assignment (x := θ)d is equivalent to
x := θ, because it never involved any choices to begin with. Angel’s control operators
and Demon’s control operators correspond to each other by duality:

4It is easy to remember which modal operator is which. The formula 〈α〉φ clearly refers to Angel’s
winning strategies because the diamond operator 〈·〉 has wings.
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� Angel Ops

∪ choice
∗ repeat
x′ = θ evolve
?H challenge
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x′ = θd evolve
?Hd challenge
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d

7 Operational Game Semantics (informally)

Treatment of a proper semantics for differential game logic will be deferred to the next
lecture. A graphical illustration of the choices when playing hybrid games is depicted
in Fig. 1. The nodes where Angel gets to decide are shown as diamonds �, the nodes
where Demon decides are shown as boxes �. Circle nodes are shown when it depends
on the remaining hybrid game which player it is that gets to decide. Dashed edges in-
dicate Angel’s actions, solid edges would indicate Demon’s actions, while zigzag edges
indicate that a hybrid game is played and the respective players move as specified by
that game. The actions are the choice of time for x′ = θ&H , the choice of playing the
left or the right game for a choice game α ∪ β, and the choice of whether to stop or
repeat in a repeated game α∗. This principle can be made rigorous in an operational
game semantics [Pla13], which conveys the intuition of interactive game play for hy-
brid games, relates to game theory and descriptive set theory, but is also beyond the
scope of these lecture notes. Observe how all choices involve at most two possibilities
except differential equations, which have an uncountably infinite branching factor, one
option for each duration r ∈ R.

As an example, consider the filibuster formula:

〈(x := 0 ∩ x := 1)∗〉x = 0 (1)

It is Angel’s choice whether to repeat (∗), but every time Angel repeats, it is Demon’s
choice (∩) whether to play x := 0 or x := 1. What is the truth-value of the dGL formula
(1)?

The game in this formula never deadlocks, because every player always has a re-
maining move (here even two). But it may appear as if the game had perpetual checks,
because no strategy helps either player win the game; see Fig. 2. How could that hap-
pen and what can be done about it?

Before you read on, see if you can find the answer for yourself.
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Figure 1: Operational game semantics for hybrid games of dGL
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Figure 2: The filibuster game formula 〈(x := 0 ∩ x := 1)∗〉x = 0 looks like it might be
non-determined and not have a truth-value (unless x = 0 initially) when the
strategies follow the thick actions. Angel’s action choices are illustrated by
dashed edges from dashed diamonds, Demon’s action choices by solid edges
from solid squares, and double lines indicate identical states with the same
continuous state and a subgame of the same structure of subsequent choices.
States where Angel wins are marked � and states where Demon wins by �.
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The mystery of the filibuster game can be solved when we remember that the game
still ultimately ought to stop in order to be able to inspect who won the game. Angel is
in charge of the ∗ repetition and she can decide whether to stop or repeat. The filibuster
game has no tests, so the winner only depends on the final state of the game, because
both players are allowed to play arbitrarily without having to pass tests in between.
Angel wins a game play if x = 0 holds in the final state and Demon wins if x 6= 0 holds
in the final state. What do the strategies indicated in Fig. 2 do? They postpone the
end of the game forever, hence there would never be a final state in which it could be
evaluated who won. That is, indeed, not a way for anybody to win anything. Yet, Angel
was in charge of the repetition ∗, so it is really her fault if the game never comes to a
stop to evaluate who won, because she has to call it quits at some point. Consequently,
the semantics of hybrid games requires players to repeat as often as they want but
they cannot repeat indefinitely. This will be apparent in the actual semantics of hybrid
games, which is defined as a denotational semantics corresponding to winning regions.
Thus, (1) is false unless x = 0 already holds initially.

The same phenomenon happens in

〈(x := 0;x′ = 1d)
∗〉x = 0 (2)

in which both players can let the other one win. Demon can let Angel win by choosing
to evolve for duration 0. And Angel can let Demon win by choosing to stop even if
x 6= 0. Only because Angel will ultimately have to stop repeating does the formula in
(2) have a truth-value and the formula is false unless x = 0 already holds initially.

It is of similar importance that the players cannot decide to follow a differential equa-
tion forever (duration∞), because that would make

〈(x′ = 1d;x := 0)
∗〉x = 0 (3)

non-determined. If players were allowed to evolve along a differential equation forever
(duration∞), then Demon would have an incentive to evolve along x′ = 1d forever in
the continuous filibuster (3), because as soon as he stops, Angel would would win
because of the subsequent X := 0. But Angel cannot win without Demon stopping.
Since Demon can evolve along x′ = 1d for any finite amount of time he wants, he will
ultimately have to stop so that Angel wins and (3) is valid.

8 Summary

This lecture saw the introduction of differential game logic, which extends the famil-
iar differential dynamic logic with capabilities of modeling and understanding hybrid
games. Hybrid games combine discrete dynamics, continuous dynamics, and adversar-
ial dynamics. Compared to hybrid systems, the new dynamical aspect of adversarial
dynamics is captured entirely by the duality operator d. Without it, hybrid games are
single-player hybrid games, which are equivalent to hybrid systems.

After this lecture showed an informal and intuitive discussion of the actions that
hybrid games allow, the next lecture gives a proper semantics to differential game logic
and their hybrid games.
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Exercises

Exercise 1. Single player hybrid games, i.e. d-free hybrid games, are just hybrid pro-
grams. For each of the following formulas, convince yourself that it has the same mean-
ing, whether you understand it as a differential dynamic logic formula with a hybrid
systems or as a differential game logic formula with a hybrid game (that happens to
have only a single player):

〈x := 0 ∪ x := 1〉x = 0

[x := 0 ∪ x := 1]x = 0

〈(x := 0 ∪ x := 1); ?x = 1〉x = 0

[(x := 0 ∪ x := 1); ?x = 1]x = 0

〈(x := 0 ∪ x := 1); ?x = 0〉x = 0

[(x := 0 ∪ x := 1); ?x = 0]x = 0

〈(x := 0 ∪ x := 1)∗〉x = 0

[(x := 0 ∪ x := 1)∗]x = 0

〈(x := 0 ∪ x := x+ 1)∗〉x = 0

[(x := 0 ∪ x := x+ 1)∗]x = 0

Exercise 2. Consider the following dGL formulas and identify under which circum-
stance they are true?

〈(x := x+ 1; (x′ = x2)d ∪ x := x− 1)
∗〉 (0 ≤ x < 1)

〈(x := x+ 1; (x′ = x2)d ∪ (x := x− 1 ∩ x := x− 2))
∗〉(0 ≤ x < 1)

Exercise 3. The following dGL formula characterizes a one-dimensional game of chase of
a robot at position x and a robot at position y, each with instant control of the velocity
v among a,−a, 0 for x (Angel’s choice) and velocity w among b,−b, 0 for y (Demon’s
subsequent choice). The game repeats any number of control rounds following Angel’s
choice (∗). Angel is trying for her robot x to be close to Demon’s robot y. Under which
circumstance is the formula true?〈(

(v := a ∪ v :=−a ∪ v := 0);

(w := b ∩ w :=−b ∩ w := 0);

x′ = v, y′ = w
)∗〉

(x− y)2 ≤ 1

Exercise 4 (*). The following dGL formula characterizes a two-dimensional game of
chase of a robot at position (x1, x2) facing in direction (d1, d2) and a robot at position
(y1, y2) facing in direction (e1, e2). Angel has direct control over the angular velocity ω
among 1,−1, 0 for robot (x1, x2) and, subsequently, Demon has direct control over the
angular velocity % among 1,−1, 0 for robot (y1, y2). The game repeats any number of
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control rounds following Angel’s choice (∗). Angel is trying for her robot to be close
to Demon’s robot. Is the following dGL formula valid? Can you identify some circum-
stances under which it is true? Or some circumstances under which it is false? How
does this formula relate to lab 4?〈(

(ω := 1 ∪ ω :=−1 ∪ ω := 0);

(% := 1 ∩ % :=−1 ∩ % := 0);

(x′1 = d1, x
′
2 = d2, d

′
1 = −ωd2, d′2 = ωd1, y

′
1 = e1, y

′
2 = e2, e

′
1 = −%e2, e′2 = %e1)

d
)∗〉

(x1 − y1)2 + (x2 − y2)2 ≤ 1
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[Pla11] André Platzer. Stochastic differential dynamic logic for stochastic hybrid
programs. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors,
CADE, volume 6803 of LNCS, pages 431–445. Springer, 2011. doi:10.1007/

978-3-642-22438-6_34.
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