
Exercise 6: Comprehensive CPS Correctness

1 Uniform substitution

Problem 1. Give the result of applying the uniform substitution rule US with
substitution

σ = {a 7→ {x′′ = −g&x ≥ 0}, b 7→?x = 0; v := −cv, p(x̄) 7→ 2gx ≤ 2gH − v2}

to

1. [a ∪ b]p(x̄) ↔ [a]p(x̄) ∧ [b]p(x̄)

2. [a; b]p(x̄) ↔ [a][b]p(x̄)

3. [a∗]p(x̄) ↔ p(x̄) ∧ [a][a∗]p(x̄)

4. [a∗]p(x̄) ↔ p(x̄) ∧ [a∗](p(x̄) → [a]p(x̄))

About admissible substitutions that bind free-ish variables: In items (2) to
(4) the given uniform substitution binds free variables. Indeed applying σ to
[a][b]p(x̄) results in

[x′′ = −g&x ≥ 0][?x = 0; v := −cv]2gx ≤ 2gH − v2.

Here the x introduced in ?x is free in σ(b). Since we are applying the substitu-
tion σ in a context where x was bound (by x′′ = . . .), a free variable is introduced
in a context where it is bound. What is more x is also free in σ(p(x̄)), despite
x becoming bound in a context in which p(x̄) appears. Yet the uniform sub-
stitution is still admissible! This is worrying when you remember, that ‘if you
bind a free variable, you go to logic jail’. But what we this slogan means by free
variables is not quite what we might guess. A good intuition is that the free
variables of a substitution are the free variables of the right-hand side minus the
free variables of the left-hand side. For instance, for σ = {p 7→ x ≥ 0}, we have
FV (σ) = FV (x ≥ 0)\FV (p) = {x}\∅. Indeed, there are two mechanisms that
allow a uniform substitution to bind (what looks like) free variables, which we
explain in the following.

First recall the formal definition of an admissible substitution. A substitu-
tion σ is U -admissible for φ if U ∩ FV (σΣ(φ)) = ∅. Perhaps counter-intuitively,
the free variables of a substitution are defined as FV (σ) =

⋃
f∈σ FV (σf(·)) ∪⋃

p∈σ FV (σp(·)). In particular in our example FV (σa) = ∅. Regarding our in-
tuition, this is because FV (a) = V meaning all variables. Hence σ is vacuously

1

{x}-admissible for ?x = 0; v := −cv and the substitution does not clash at this
point. This is one mechanism by which a substitution may introduce (some-
thing like) free variables in a context in which they are bound. A slogan might
be: ‘only variables introduced by substituting predicate or function symbols can
cause a clash’.

This does not explain why the substitution does not clash when substituting
p(x̄). (Although this is probably the more familiar case.) As the notation x̄ is an
abbreviation for the list of all relevant variables, FV (p(x̄)) = V, so our intuition
says such a substitution has no free variable. Indeed, this is acceptable, since
what σ really contains is the map p(x̃, g̃, H̃, ṽ) 7→ 2g̃x̃ ≤ 2g̃H̃ṽ2.1 The actual
variables x, g,H and v are then reintroduced when applying σ to p(x̄), since

σ(p(x̄)) = σ(p(x, g,H, v))

= {x̃ 7→ σ(x), g̃ 7→ σ(g), H̃ 7→ σ(H), ṽ 7→ σ(v)}(σp(x̃, g̃, H̃, ṽ)).

Hence FV (σp) = ∅. In particular x is not free here. So this substitution will
not clash if applied to a formula in a context where x is bound. A slogan might
be: ‘variables mentioned as arguments of predicate and function symbols can
not cause a clash’.

Problem 2. Let p an arity 0 predicate symbol. Give a uniform substitution σ
for which it is necessary for soundness that US clashes when being applied to

p → [a]p

A uniform substitution may be σ = {p 7→ x ≥ 0, a 7→ x := −1}. It is
soundness critical that this substitution clashes, for otherwise (since p → [a]p is
an axiom) we could prove x ≥ 0 → [x := −1]x > 0. But this is invalid.

Problem 3. Give the result of applying uniform substitution rule US with sub-
stitution σ = {c() 7→ x−y, p(·) 7→ (· ≥ yz)} on the following formulas or explain
why and how US clashes:

1. [x := c()]p(x) ↔ p(c())

2. [z := c()]p(u) ↔ p(u)

3. [y := c()]p(y) ↔ p(c())

For each formula, there is one admissibility condition which happens when
substituting the box. This means σ should be {x}-admissible (resp. {z}, {y}-
admissible) for p(x) (resp. p(u), p(y)). In all cases, we only need to look at
the free variables introduced by σ(p(·)), that is {y, z}. Thus the substitution
succeeds in the first case, and clashes in the latter two.

Problem 4. Prove the following using uniform substitutions

x = x0 ∧ y = y0 → [x := x+ y][y := x− y][x := x− y]x = y0 ∧ y = x0

1This is what the x̄ notation means. Here the -̃variables are really 0-ary function symbols.

2

First we might try to cut in the following formula

[x := x+ y][y := x− y][x := x− y]x = y0 ∧ y = x0

↔ [y := x+ y − y][x := x+ y − y]x = y0 ∧ y = x0

and attempt to show the formula by deriving it from the assignment axiom

[x := c()]p(x̄) ↔ p(c())

with the uniform substitution

σ = {c() 7→ x+ y, p(x̄) 7→ [y := x− y][x := x− y]x = y0 ∧ y = x0}.

However this can not work. The substitution will clash here, since we will need
to replace the free occurrence x in x := x−y by x+y. Since we are substituting a
function symbol that mentions a free variable (x) that is bound in this position,
this causes a problem. Instead what we need to do is cut in the instances of the
assignment axiom going from the inside out. Then we can use the contextual
equivalence proof rule to replace for example [x := x− y]x = y0 ∧ y = x0 by
x− y = y0 ∧ y = x0 in context.

2 ModelPlex

Problem 5. Consider a water tank with current water level x and maximum
water level m. The controller is triggered after ε time units and can choose any
flow −1 ≤ f ≤ m−x

ε .

1. Prove that the tank never overflows.

2. Find the monitor specification conjecture, i.e. what the monitor should be
equivalent to.

3. Find the monitor specification for the water tank.

When looking for a monitor, it is critical to consider what assumptions
you make and what variables you choose to monitor. For a system on Earth,
it is reasonable to assume that the gravitational constant g is positive. But
remember that the more assumptions you add, the weaker the resulting proof
is.

Monitoring intuitively answers the question: “Is the system’s data consistant
with my model?”. If true, then the proof of safety for the model entails that
the system is currently safe. Comparing the current value x+ with the previous
value x, this corresponds to the dL formula ⟨(ctrl; plant)∗⟩x = x+ if considering
multiple loops or ⟨ctrl; plant⟩x = x+ if you are monitoring every controller step.
We call this formula the (model) monitor conjecture. It is true when the relation
between x and x+ can be explained with one iteration of the model, thus that
the system is in a safe state.

For the water tank, we make the assumption that the time ϵ is non-zero
to handle the division. The model monitor specification conjecture is then as
follows:

3

<

f:=*;?(-1 <=f&f<=(m-x)/eps);

t:=0;{x’=f,t’=1&x>=0&t<=eps}

>(x=xpost & t=tpost & f=fpost)

Once simplified to a first order formula (so that it can be checked in real
time), we obtain the following monitor specification:

xpost = fpost*tpost + x & m >= x + fpost*eps & x >= 0 &

fpost >= -1 & xpost >= 0 & tpost >= 0 & eps >= tpost

If we did not add the assumption about ϵ, we would need to change the
specification, adding ... & eps != 0. KeYmaera X is able to prove that the
conjecture is “almost” equivalent to the stronger monitor. More precisely, the
only struggle is with the division, i.e. proving f<=(m-x)/eps -> eps != 0. So the
monitor is still sound.

Remark: A stronger controller can also be defined to check whether the
relation between x and x+ can be explained with one iteration of the controller,
called controller monitor. Thus we might want to check the formula ⟨ctrl⟩x =
x+. However, this is not sound. Consider the following provable formula x ≥
0 → [(v := ∗; {x′ = v&v ≥ 0})∗]x ≥ 0. The conjecture above is not sufficient
to ensure safety as it is the domain of the ODE that prevents any negative
value of v. A sound controller monitor conjecture for this model would be
⟨ctrl;dom⟩x = x+ where “dom” is the domain of the plant, so the controller
would be ⟨v := ∗; v ≥ 0⟩(x = x+ ∧ v = v+).

3 Virtual substitution

Problem 6. Normalize the following formulas

1. ∃xx2 = a ∨ b > 0

2. ∃xx2 = a ∨ x2 > b

3. ∃x ((∃y x5 > y4) ∧ ∀z (z + a ≤ b → z5 ≥ a))

Problem 7. Substitute the square root expression ε into the formula F , i.e.
compute F ε

x . Then find an equivalent formula in the language of real arithmetic.

1. F ≡ 3x2 > 2x ∧ x ̸= 3 and ε ≡
√
2/2

2. F ≡ 4x3 < a ∧ ax ̸= 0 and ε = a+
√
a

Problem 8. Consider polynomials p = ax2 + bx+ c and q = dx+ e. When do
p = 0 and q = 0 have simultaneous solutions?

Problem 9. Let p, q be as before. When does the system p = 0, q > 0 have a
solution?

Problem 10. Use Virtual substitution to eliminate the quantifier in

∃x (ax+ b ≤ 0 ∧ cx− d < 0)

4

