LFCPS Exercise Class 4

Differential Invariants

Exercise 1. Prove the following formulas using differential invariants, differential cuts, and differential weakening as required:

1. $\omega \geq 0 \wedge x=0 \wedge y=3 \rightarrow\left[\left\{x^{\prime}=y, y^{\prime}=-\omega^{2} x-2 \omega y\right\}\right] \omega^{2} x^{2}+y^{2} \leq 9$
2. $x y^{2}+x \geq 7 \rightarrow\left[\left\{x^{\prime}=-2 x y, y^{\prime}=1+y^{2}\right\}\right] x y^{2}+x \geq 7$
3. $x \geq 2 \wedge y=1 \rightarrow\left[\left\{x^{\prime}=x^{2} y+x^{4}, y^{\prime}=1+y^{2}\right\}\right] x^{3} \geq 1$
4. $x \geq 2 \wedge y \geq 2 \wedge z=1 \rightarrow\left[\left\{x^{\prime}=x^{2} z+x^{4}, y^{\prime}=y^{2}+y^{4} z, z^{\prime}=z^{2}+1\right\}\right] x^{3} \geq 1 \wedge y^{3} \geq 1$
5. $x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0$

Exercise 2. Simplify the following formulas using the rules for the differential operator:

1. $\left(\left(v^{2}+w^{2}<r^{2} \wedge v \leq 0\right) \vee v=0\right)^{\prime}$
2. $\left(x^{2}+2 x<0 \vee(x \neq 0 \wedge x>1)\right)^{\prime}$

Exercise 3. Prove that the following $d L$ formula is a sound axiom:

$$
\left[x^{\prime}=f(x)\right](e)^{\prime}=0 \rightarrow\left(\left[x^{\prime}=f(x)\right] e=0 \leftrightarrow e=0\right) .
$$

Exercise 4. Prove or disprove the following proof rule:

$$
\frac{F \wedge Q \vdash\left[x^{\prime}:=f(x)\right](F)^{\prime}}{F \vdash\left[x^{\prime}=f(x) \& Q\right] F}
$$

Exercise 5. Is the following dL formula a sound axiom?

$$
\left(Q \rightarrow\left[x^{\prime}=f(x) \& Q\right](e=0)^{\prime}\right) \rightarrow\left(\left[x^{\prime}=f(x) \& Q\right] e=0 \leftrightarrow e=0\right)
$$

Note: In this exercise class, I wrongly claimed that

$$
\left.\left(1=0 \rightarrow\left[x^{\prime}=0 \& 1=0\right](0=0)^{\prime}\right) \rightarrow\left(\left[x^{\prime}=0 \& 1=0\right] 0=0 \leftrightarrow 0=0\right)\right)
$$

is a counter example to show that the dL formula in exercise 5 is not an axiom. However, recall the following definition of the box modality:
"A box modal formula $[\alpha] P$ is true in state ω iff its postcondition P is true in all states ν that are reachable by running $\boldsymbol{\alpha}$ from ω. (p.144, Logical Foundations of Cyber-Physical Systems)"

Note that the constraint $1=0$ is false in all states and we have $\llbracket x^{\prime}=0 \& 1=0 \rrbracket=\emptyset$. By the definition of the box modality the formula $\left[x^{\prime}=0 \& 1=0\right] 0=0$ evaluates to true, because there are no runs of the program. Therefore, the right-hand side of the formula evaluates to true \leftrightarrow true, which is true in all states.

The following is a correct counter example

$$
\left.\left(1=0 \rightarrow\left[x^{\prime}=0 \& 1=0\right](1=0)^{\prime}\right) \rightarrow\left(\left[x^{\prime}=0 \& 1=0\right] 1=0 \leftrightarrow 1=0\right)\right) .
$$

