
LFCPS Exercise Class 1
Verifying cyber-physical systems

Exercise 1 (Semantics Review). For each of the following dL formulas, determine whether they
are valid, satisfiable, and/or unsatisfiable:

1. [?true]true. valid (so also satisfiable)

2. [?true]false. unsatisfiable

3. [?false]true. valid

4. [?false]false. valid

5. [x′ = 1& true]true. valid

6. [x′ = 1& true]false. unsatisfiable

7. [x′ = 1& false]true. unsatisfiable

8. [x′ = 1& false]false. valid

9. [(x′ = 1& true)
∗
]true. valid

10. [(x′ = 1& true)
∗
]false. unsatisfiable

11. [(x′ = 1& false)
∗
]true. valid

12. [(x′ = 1& false)
∗
]false. unsatisfiable

13. [(x := x+ 1;x′ = −1)
∗
; ?x > 0;x′ = 2]

x > 0 valid

Exercise 2. Replace α with a concrete HP that makes the following dL formulas valid or explain
why such an HP does not exist. For an extra challenge do not use assignments in α.

1. [α]false ?false

2. [α∗]false Impossible since loops can be skipped

3. [α]x > 0 ↔ ⟨α⟩x > 0 Any deterministic program for example

4. [α]x > 0 ↔ [α]x > 1

5. [α]x > 0 ↔ ¬[α ∪ α]x > 0

6. [α]x = 1∧[α]x = 2 Any nonterminating program such as ?false

Exercise 3. Consider the bouncing ball model from the lecture. Identify all requirements that
imply the following formula, in which the bouncing ball might deflate and lie flat.[(

{x′ = v, v′ = −g&x ≥ 0}; if(x = 0) (v :=−cv ∪ v := 0)
)∗]

(0 ≤ x ≤ H)

Differential Dynamic Logic for Verification

Exercise 4. The axioms of dynamic logic are also useful to prove the correctness of discrete
programs. Find a way of proving the following formula which expresses that a triple of clever
assignments swaps the values of two variables in place:

x = a ∧ y = b→ [x := x+ y; y := x− y; x := x− y](x = b ∧ y = a)

Exercise 5 (Proof practice). Give dL sequent calculus proofs for the following formulas:

1. x > 0 ∧ v ≥ 0 → [x := x+ 1 ∪ x′ = v]x > 0

2. x2 ≥ 100 → [(?x > 0;x′ = 2) ∪ (?x < 0;x′ = −2)]x2 ≥ 100 The dL proof is easy but the model intransparently rules out the case where x = 0, which cannot happen when the precondition x2 ≥ 100 is satisfied but is still bad style.

Exercise 6. Let y(t) be the solution at time t of the differential equation x′ = f(x) with initial
value y(0) = x. The following sequent proof rule, which checks the evolution domain q(x) at the
end, is sound:

Γ ⊢ ∀t≥0
(
[x := y(t)](q(x) → p(x))

)
,∆

Γ ⊢ [x′ = f(x)& q(x)]p(x),∆

Would the following also be a sound axiom? Prove or disprove.

[x′ = f(x)&ψ]φ↔ ∀t≥0
(
[x := y(t)](ψ → φ)

)

1



Test in Modeling CPSs

Exercise 7. Correctness arguments for cyber-physical system models can only be as good as the
logic that is used to justify them, which is why it is so essential that differential dynamic logic is
sound. The proofs are also only as good as the implementation of the verification tool in which the
correctness proof was conducted, which is why it is so important that KeYmaera X has a small and
trustworthy prover microkernel. However, the cyber-physical systems themselves are also only as
safe as the model used for their verified conjectures was accurate, which is why it is so important
to exercise caution and good judgment in modeling. While modeling real systems is never easy,
some modeling pitfalls are especially important to guard against.

One source of modeling pitfalls are tests, which, after all, are assumptions on the execution of
the system. Tests are harmless when they are merely used to control which branch of execution
through the model is taken under what circumstance. Tests are significant restrictive assumptions,
however, if there is no other branch to execute if they fail, because they, thus, assume their con-
dition to hold and discard all runs that violate them. An example of a fine use of tests is the
following:

(?v ≥ 5; a := a+ 1 ∪ ?v ≤ 5; a :=−5); {x′ = v, v′ = a& v ≥ 0}

The left branch in the controller assumes that v ≥ 5 holds, which at first sounds like a significant
assumption. But its sibling, the right branch of the controller assumes that v ≤ 5 holds. Obviously,
every state will pass one of the two tests, so no run will ever be discarded by the controller. And
states that satisfy both assumptions v ≥ 5 and v ≤ 5 because v = 5 even pass both tests and may,
thus, run either branch. There is still another assumption in the model, though, that discards
runs. Can you spot it?

An example of a restrictive test is the following:

(?v ≤ 10; a := a+ 1 ∪ ?v ≤ 5; a :=−5); {x′ = v, v′ = a& v ≥ 0}

While this HP branches equally fine, the branches jointly still simply assume that the velocity v is
at most 10, and thus discard all runs of the HP from very fast initial velocities. The same problem
arises in a loop even if the initial velocity is assumed to be slow:

((?v ≤ 10; a := a+ 1 ∪ ?v ≤ 5; a :=−5); {x′ = v, v′ = a& v ≥ 0})∗

These restrictive tests silently assume slow velocities, and, thus, repetition is entirely impossible
after following the differential equation with a positive velocity for a long time.

A general rule of thumb is that tests that have a sibling that supposes the opposite, or at least
whose disjunction of tests is valid, are harmless, because they merely control which branch is chosen
when. But tests without such a sibling may be restrictive.

Which assumptions in the following HP are harmless or restrictive, respectively?

(?v ≥ 5; a := a+ 1; {x′ = v, v′ = a& v < 5} ∪ ?v ≤ 5; a :=−5; {x′ = v, v′ = a& v ≥ 5})∗

Loop Invariants

Exercise 8. Prove that every loop is its own invariant.

[α∗]φ→ [α∗][α∗]φ

Exercise 9 (Finding loop invariants). Identify loop invariants for the following hybrid programs:

1. x > 2 ∧ y ≥ 1 → [(x := x+ y; y := y + 2)∗]x > 1

2. x = −1 → [(x := 2x+ 1)∗]x ≤ 0

3. x = −1 → [({x′ = 2})∗]x ≥ −5

4. x ≥ 1 ∧ v ≥ 0 → [{x′ = v, v′ = 2}∗]x ≥ 0

2



5. x = 1 ∧ u > x→ [(x := 2; {x′ = x2 + u})∗]x ≥ 0

Exercise 10. Consider a hybrid program α and suppose φ is an invariant of α. Suppose β is
obtained from α by replacing all sub-programs γ ∪ δ by either γ or β. For example if α were
(y := 1 ∪ y := −1);x := x − 1 ∪ x := x + 1 then β could be x := x + 1 or y := 1;x := x − 1 or
y := −1;x := x− 1. Show that φ is an invariant of β.

Conversely suppose φ is an invariant of all possible β obtained in the way described. Show that
φ is an invariant of α.

Exercise 11 (Heron). Prove the following formulas

1. (z > 0 ∧ x > 0 ∧ (x− e)2 = z) → [(e := e2

2x ;x := 1
2 (x+ z

x ))
∗
](x− e)2 = z

2. (x = 2 ∧ ε = 3
4 ) → [(ε := ε2;x := 1

2 (x+ 2
x ))

∗
]|x−

√
2| < ε

Exercise 12 (A minimal model). We consider a simple flying robot modeled as a point. It can fly
choose to fly forward or backward or ascend or descend. We want to make sure the robot avoids an
obstacle located at a fixed point. Write a dL model, design a safe controller and prove its safety.
Next week you will extend this model and prove more interesting things in KeYmaeraX.

3


