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Abstract

Formal Verification of Cyber-Physical Systems provides safety justification
for the modeling of the environment. However, an accurate model is usually
hard to acquire due to the exquisite nature of physics in the real world.
With the aid of model-based reinforcement learning, this paper proposes an
approach that updates model parameters and provides formal verification via
differential dynamic logic (d£). We present the learning process for a series
of common reinforcement learning tasks in Cyber-Physical Systems and
show that the safety of the model is preserved by proving the parameterized
model.

1 Introduction

Reinforcement learning (RL) has achieved impressive results in many fields, such as Atari
games [1]] and control of robots [2]. However, learning an agent usually needs a huge number
of samples [3]], which may be costly to acquire. As a result, low sample efficiency impedes
the application of RL to the real world.

Because of this issue, model-based reinforcement learning (MBRL) is becoming more and
more popular, which typically means learning a model to guide the learning process instead
of simply learning by trial and error. In fact, MBRL can enhance sample efficiency by orders
of magnitude [4].

However, an important assumption here is that the cost of each sample (episode) is constant.
This assumption is usually not true. For example, when our car crashes, the cost incurred
can be much higher than the case where our car brakes too early. Thus, incorporating safety
considerations into MBRL makes it possible to control costs more efficiently.

The complex environment and agent movement in hybrid systems can be naturally integrated
with RL in two directions. One direction is using hybrid systems to enhance the safety of RL,
which is already explored by a lot of former work. Recent work in this field includes Justified
Speculative Learning (JSL) [5], Verifiably Safe Reinforcement Learning (VSRL) [6]. But
these methods usually assume that we already have a perfect model or a group of perfect
models, which is too good to be true in practice.

Another direction is using information from RL to refine hybrid system models, which
is usually ignored. This missing link can be helpful and important especially when we
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do not have a perfect model initially. Verification Preserving Model Updates(VPMU) [7]]
already uses an ensemble of many models to make their model more generic, but this can be
inefficient when the state and action spaces are continuous and high-dimensional.

Therefore, we propose an algorithm built upon JSL, which introduces updates of model
parameters in the process of training RL models. Our approach can be viewed as an extension
of VPMU by adding the ability to select better models from infinite, continuous model space.
Specifically, we aim to make a correct but inefficient model be correct and efficient through
updates.

This paper contributes the following:

* Propose Learnable Justified Speculative Learning Algorithm that combines formal
theorem proving with model-based reinforcement learning and achieves learnable
model verification.

* Build the environment for three hybrid systems (including 1D and 2D systems)
with agents that perform common RL tasks, provide formally verified models using
automatic theorem prover KeYmaera X [[8]] and evaluate the performance of the
algorithm. We provide a discussion of the learned rewards using reinforcement
learning and updated parameters through our learnable model.

Equal work was performed by both project members.

2 Background

2.1 Differential Dynamic Logic

We introduce differential dynamic logic (d£) [9] which is designed specifically to verify
hybrid systems which interact with discrete and continuous dynamics. In d£, we use hybrid
programs (HPs) to model the controller and physical movement, which is summarized using
the syntax below:

a,Bu=xz:=e|?Q |2 = f(2)&Q | aUB | ;8] ™.
The syntax of d£ is defined as
¢ =0 ~ 02 |Vzg | 3xg |[a]d | ()| = [ d1 Ada|d1 V2| g1 — d2[d1 <> b2,
where 01, 6 are real arithmetic terms and ~ stands for real arithmetic operators.

The semantics of a hybrid program « is defined as
[a] = {(s1, s2)|s2 is reachable from s; by executing a}.

Here we only summarize an intuition of the semantics, and the formal definitions can be
found in [9]]. The semantics of d£ formulas follow naturally from first-order logic, with the
addition of [«]¢, which is true if and only if for all runs of the hybrid program «, ¢ is true;
and (a)¢, which is true if and only if there exists a run of the hybrid program « where ¢ is
true.



Table 1: Hybrid Program Semantics

Syntax Semantics

T:=e Assign the value of e to the variable z, leaving all other variables un-
changed

7Q Test if ) is true, continue running; else terminate

' = f(x)&Q Follow the system of differential equation 2’ = f(x) for a certain amount
of time when () holds true

a; B Non-deterministically run HP « or 8
a; B Sequentially run S after o
o Run o repeatedly for any > 0 amount of iterations

dL model correctness can be checked via KeYmaera X [[§]], an automatic verification tool. It
uses Bellerophon tactic language [10] to express the d£ sequent proofs.

A verified model can be expressed as
init — [{ctrl;plant}*|safe

which means under certain initial conditions (init), no matter how many times we do the
control part (ctrl) and let the system evolve (plant) alternately, the postconditions (safe) are
satisfied.

2.2 Reinforcement Learning

Reinforcement learning focuses on making decisions in an environment as an agent to
maximize rewards. Here we only consider the Markov decision process (MDP) model for
RL, which is a widely-used model.

An MDP defined on a tuple (S, A, T, R,~). S is the state space, which is all possible states
of the environment. 4 is the action space, which is all the actions that the agent can take.
T:S8 x A— P(S) is the transition function, which describes the transition probabilities
between states in any given state and action pair. R : S x A — P(R) is the reward function,
which describes the distribution of rewards that the agent can get by doing a specific action
in a specific state. v € [0, 1] is the discount factor, which describes the relative importance
of rewards between different time steps.

The goal of RL is to find an optimal policy 7 : & — P(A) for the agent. Specif-
ically, if the agent follow the policy to take actions, the expected discounted rewards
E [0 7 R(si, a;)] will be maximized.

In some cases, the interaction process may finish due to time limits or illegal actions, we
can still use this framework with an extra function done : S — Bool. The output of this
function is true if and only if the input is a terminal state. In order to cover these cases, we
defined the MDP on a tuple (S, A, T, R,~, done) in the following analyses.

2.3 Connecting Hybrid Programs to Reinforcement Learning

In this paper, we focus on one specific type of transition function, which can be decomposed
into two parts. We define 77 : S X A — Sand Ty : S — P(S),suchthat T = Th o T1. T}
describes the instantaneous and deterministic state transition right after the control decision,
while 75 describes the evolution in the environment.



We can define controller monitors and model monitors to verify the consistence between
the transition function of the RL environment and the transition in the repetition part of the
HP ({ctrl; plant}). A controller monitor CM : & x A — Bool is used to compare T with
ctrl, and a model monitor MM : S x A x § — Bool is used to compare T with plant.
Formal definitions are given in definition [[Jand definition [2]

Definition 1 (Controller Monitor). Given an MDP (S, A, T, R,~,done) and a verified
model init — [{ctrl;plant}*|safe, if CM(s,a)=True, (s,Ti(s,a)) € [ctrl] [5].

Definition 2 (Model Monitor). Given an MDP (S, A, T, R, ~, done) and a verified model
init — [{ctrl;plant}*|safe, if MM (s,a, s )=True, (T1(s,a),s’) € [plant] [5].

With such definitions, we can define when an MDP is accurately modeled by a hybrid
program, which is in definition 3]

Definition 3 (Accurate Modeling). Given an MDP (S, A, T, R,~,done) and a verified
model init — [{ctrl;plant}*|safe, if foranys € S, a € A, (s,T1(s,a)) € [ctrl]
implies (T1(s,a),s') € [plant] for any s' € S reachable from state s by doing action a in
the MDP.

The only difference between our definitions and the definitions in JSL is that we expand JSL
to the case that 75 is non-deterministic. In this way, we can deal with more generic reinforce-
ment learning models, since the transitions of the MDP are not necessarily deterministic.
Besides, if 75 maps each state to a one-point distribution, our definitions will degenerate to
cases in JSL.

Based on these observations, we can define the learning process in the non-deterministic
case, which is in definition ] Here the learning algorithm can be any RL algorithm for
policy 7 (for example, the SAC algorithm [11]]). Based on this process, we know that if the
environment model is accurate, any states s in the learning process are safe (s = safe). The
proof idea is to identify a loop invariant [5]]. The introduction of a non-deterministic transition
function will not lead to extra burdens for this proof, since we consider all reachable states
for the non-deterministic transitions in definitions.

Definition 4 (Learning Process with a Fixed Model). A sequence of tuples (s, ay, ) is
a learning process for (init, (S, A, T, R,~, done) ,learning algorithm,CM, M M) if
and only if it satisfies

ag ~ 7T(St)|{alr,G.A\actionOK(s,a,t)} (la)
St41 TQ(Tl(St, at)) (lb)
rey1 ~ R(st, at) (1¢)
i1 = learning algorithm(my, v, {(si, ai, Sit1, 75, done(s;))|i > 0,i < t,i € Z}),
(1d)

where sg =init, and

actionOK (s,a,t) = CM (s, ar) V = MM (s4—1, a1, St).

3 Related Work

Here we will talk about some work related to safe RL. Safe RL focuses on making the agent
stay in a safe space of states while still pursuing high rewards. Junges et al. purpose a method
to ensure safety by schedulers [12]. But their method relies on oracles to build schedulers,
which highly restricts its application. Trust Region Policy Optimization (TRPO) [13] is
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more practical, but it only guarantees the monotonic improvements of policy in the learning
process, which can not be a good guarantee for safety. Constrained Policy Optimization
(CPO) [14] is an extension of TRPO, which guarantees that the agent nearly satisfies some
pre-defined constraints.

Several work [5}|6] introduce formal verification of HP models to safe RL. In this way, we
can use less prior knowledge, since we have run-time verification instead of guaranteeing
safety only by design. Besides, the flexibility of HPs makes it possible to build more generic
models. Justified Speculative Learning (JSL) [5] is proposed as the first algorithm that
incorporates safety guarantees preserved throughout the learning process, by defining model
monitors to evaluate the correctness of models and controllers monitors to choose safe
actions when models are correct. As long as the world model is accurate, the trial and error
process will not lead to unsafe cases. Verifiably Safe Reinforcement Learning (VSRL) [6]]
framework extends JSL by building an end-to-end neural network to support visual inputs.
These methods can lead to higher accumulative rewards in addition to remaining safe in
the learning process. Verification Preserving Model Updates(VPMU) [[7]] deals with the
imperfection of models by using an ensemble of models, which releases the assumption of
former methods.

Our method not only uses HPs to make RL safe but also uses RL interactions to make HPs
more efficient. The latter part is a missing feedback link previously, and we can make a
virtuous cycle between formal verification and RL in this way. It can be seen as an extension
of JSL since we introduce a learnable model instead of a fixed perfect model.

Besides, our method can also be viewed as an extension of VPMU. VPMU uses a fixed
finite set of models and uses the accurate models to decide which action is safe. Our method
can deal with a continuous model space with infinite models. We only use one model in
the model space to make a decision, which is more efficient. Besides, we update the model
during training, which can be viewed as a shrink of the model space to more efficient parts.
In contrast, VPMU only uses a fixed set of models.

4 Methods

4.1 The Learnable Justified Speculative Learning Algorithm

Model

Update Filter unsafe actions

Agent

State S; | Reward R, Action A,

| Rep .
—+[ Environment H
H St+1

Figure 1: The framework of incorporating a learnable model into reinforcement learning



Our method is called Learnable Justified Speculative Learning (LJSL), which is an extension
of JSL by using learnable a world model. In the original version of JSL, we need an accurate
model of the environment, which is usually hard to acquire. Instead of having a complete
oracle, we can start with a conservative model where safety conditions are guaranteed.
After that, we modify our world model in the training process of RL, since we are getting
knowledge from interactions with the environment. This process is shown in Figure

On the basis of JSL, we need to define the learning process of our model. For parameters
0 € ©, We denote our model as inity — [{ctrly; plant}*|safe, where CMy: © x S X
A — Bool is the controller monitor, and MM : S x A x & — Bool is the model monitor.
The learning process can be definedas H : © x § x A x S — 0. In other words, we update
our model using ;1 = H (s, at, S¢+1,6;) in time step ¢, where s;, a; and s;41 are from
the transition part of RL. The whole learning process is defined in definition[5] We do not
parameterize plant and sa fe, since the physical rules and our goals are usually fixed.

Definition 5 (Interactive Learning Process). A sequence of tuples (s, a;, 7, 6) is a learn-
ing process for (initg, (S, A, T, R,~, done) ,learning algorithm,C My, M M) if and
only if it satisfies

at ~ 7t (8t)|{are AlactionOK (s,a,0,1)} (2a)
st+1 ~ To(Ti(se, ar)) (2b)
ree1 ~ R(st, ar) (2¢)
Ti41 = learning algorithm(me, v, {(si, ai, si+1, 15, done(s;))|i > 0,1 < t,i € Z})
(2d)
Or11 = H(st, ar, se41,01), (2e)

where so F=initg,, and

CLCtiOTlOK(S, a, 9, t) = CMg(et, St, at) \Y _\MM(St_l, at—1, St).

The Learnable Justified Speculative Learning algorithm is shown in Algorithm {1} The
difference between this algorithm and the JSL algorithm is that our algorithm adds the
learning of the control monitor as well as the initialization to learn a more efficient hybrid
program.

If the environment is accurately modeled by the system {ctrly; plant}* for any 6 during
the learning process, the algorithm constructs an interactive learning process. So, we will
discuss how to update 6 so that the model is always accurate, as well as the safety of the
interactive learning process in the next subsection.

4.2 Theoretical Analyses

We already know that if the environment is correctly modeled by a verified model, the
learning process is safe. To guarantee safety when the model is changing, we need to give
some constraints to /1. Here is the formal definition.

Definition 6 (Valid Update Functions). H : © x S x A x § — O is a valid update
function if and only if for any accurate model inity — [{ctrlg;plant}*]|safe
of an MDP (S, A,T,R,v,done), learning algorithm, initg@gsas) —
[{ctrly(g,s,a,5);Plant }*|safe is still an accurate model for the MDP for any non-
terminal state s € S, action a € A, and s' ~ T (s, a).

If we already have a valid update function, that is not enough to guarantee safety. When we
switch to a new model, inity does not necessarily hold. A simple case is that inity does



Algorithm 1 Learnable Justified Speculative Learning
Input: inity, (S, A, T, R,~, done), learning algorithm, C My, M M, 0y, 7
Output: 7, ¢
Initialize so such that so = initg,
history={},t=0
while !done(s;) do
if M M(s,a,s)V(s,a,s',r,d) € history then
Sample a; from m;(s¢) ’{at€A|actionOK(s,a,9,t)}
else
Sample a; from 74 (s;)
end if
st41 ~ T(s¢)
Tt41 ~ R<3t> at)
Tir1 = learning algorithm(me, v, {(si, ai, Sit+1,7i, done(s;))|0 < i < t,i € Z})
Oi11 = H(st,ae, ¢41,6;)
history = history U {(st, at, St41,7t, done(st))}
t=t+1
end while
T = Tt

0 =6,

not depend on #, and initg is invariant between loops. In this case, we can use the former
model to guarantee safety in that step, and also initialize the needed conditions for the next
model. In this way, we can successfully connect the safety proofs of sequential models. A
more generic and formal version is shown in Theorem I}

Theorem 1 (Safety of LJSL). We assume that for any 6 € ©, inity —
[{ctrlg;plant}*|(inityAsafe) is valid, and the sequence of tuples (si,a¢, T, 0:) is
a learning process for (init, (S, A, T, R,~, done) ,learning algorithm,C Mgy, M M),
where CMy and MM are the controller monitor and model monitor of initgy —
[{ctrlg;plant}*|safe. We further assume that H is a valid update function, and
inity —initp(gsa,s) holds for any non-terminal state s € S, action a € A, and
s’ ~ T(s,a). Then inity, — [{ctrly,;plant}*|safe is accurate and s; |=safe for
anyt > 0, t € Z (assuming that the agent stays in the done’ state with reward O after
entering one such state).

Proof. This theorem can be easily proved by concatenating the safety proofs for each
time step. When t = 0 or ¢ = 1, we know that the we explore safely (sg = safe and
s1 f= safe) from JSL (since there only one fixed, accurate model). Meanwhile, initg,
holds since initg — [{ctrlg;plant}*|initg/Asafe) is valid. Then we change 6 from 6
to 61. Because inityp — initp(g,sp,a0,s1)> WE know that inity, is true. Besides, since H
is valid, initg, — [{ctrly,;plant}*|safe is still an accurate model.

Similarly, we can prove that for any time step ¢ (as long as the episode is not terminated), if
inity, is true, we explores safely in that time step, and initg, ., is true. By induction, this
holds for any ¢t € Z, t > 0. we prove the theorem. O

We need to consider a lot of conditions to make LJSL safe in general cases. Here we only
consider a simplified case in experiments: the model does not fully know the ability of
the agent. For example, the driver knows the range of the acceleration of the car, but the
dispatcher does not. So the dispatcher gives strict restrictions of the speed to avoid crashes in
the beginning. But the dispatcher gradually knows that the car’s brake is much more efficient
by observations, and he adjusts the restrictions to make the system more efficient.



In this case, H only depends on the current parameter 6 and action a, where 6 is used for
modeling the action space. H is valid as long as our model can handle the actual action space,
and the action space described by 6 is not larger than the actual action space, which is not
hard to guarantee. inity — initp(g s q s for any s’ ~ T(s, a) is usually true, since when
the action space is larger (using H (0, s, a, s') instead of 6), the original initial conditions
can be released.

5 Experiments

A traditional RL problem is shortest path planning. We propose to do experiments from
Continuous Adaptive Cruise Control (CACC) to eventually solve the robot cleaner problem
in a 2D plane with obstacles (penalty) and trash (rewards). The trained model would strive
to find the shortest path where it collects all rewards without crossing obstacles, which can
be verified using dL.

We perform experiments in three environments.

1. Continuous Adaptive Cruise Control (CACC): This task consists of an agent moving
in a 1D-track, controlling the speed in response to a static obstacle in the track. The
rewards come from moving in range without crashing into the obstacle.

2. Goal Finding: This task consists of an agent in a 2D plane that moves on circular
tracks, a final goal to reach, and a set of obstacles randomly distributed in the plane.
The rewards come from successfully reaching the goal without crashing into any
obstacle.

3. Pointmess: This task builds upon Goal Finding environment, with additional positive
rewards coming from separated collectibles in the plane.

In our experiments, we use the SAC algorithm [11]] implemented by Spinning Up [15]].
We add support for using GPU to train the agent to increase the speed of training. The
environment setups are based on VSRL [6]] and OpenAl Gym.

5.1 CACC Task

To create a more challenging task, we modify the ACC problem to make the action space
continuous. Specifically, the agent can choose any action between [—A, B] (4, B > 0) as
its acceleration for the next time period (the maximum length of any time period is T"). We
need to guarantee that the position of the car stays in the region [0, 100], where (—o0, 0) is
the crash region. Here we call the modified environment the CACC environment.

To avoid crashing, we build a parameterized model with parameter A and B:

init — [{ctrl;plant}*|safe, where
2
init=2>0A (<0 — xZ;—A) ANA>OANB>0AT>O0,

ctrl={t:=0;a:=%2(a>-BANa<AA v+al <0 = z+vT +1/2aT?

T2 2
2“’*2‘2‘)) Aw<OAv+al >0 — xZ;—a)),
plant = {2’ =v,v' = a,t' =1 &t < T},
safe=z > 0.

The init part defines the ranges of constant 7" and parameters A and B, and insures that the
initial state is safe (x > 0 means the car is in the safe region, and v < 0 — x > v?/(2A)



means if the car is moving to the unsafe region, it can stop before crashing by choosing
a=A).

The ctrl part initializes the clock ¢, and assign a value in [— B, A] to acceleration a. Besides,
we need to guarantee that the acceleration is safe. If the speed is negative after time 7', we
need to guarantee that we can still stop before crashing by choosing a = A after time T'. If
the speed is positive after time 7', we need to guarantee that if the current speed is negative
(otherwise, we are moving away from the unsafe region all the time), the point where v = 0
is safe.

The plant part describes the movement with acceleration a for at most time 7', and the
safe part is simply > 0. By choosing a loop invariant z > 0 A (v < 0 — z > v?/(24)),
this model can be proved automatically by KeYmaera X [§].

Our model can execute controls successfully, because if v > 0, at least we can choose any
a € [0,A]; if v < 0, at least we can choose a = A (from the loop invariant, we know
x > v%/(2A), so we can past the test in the ctrl).

The CACC model is more realistic than the ACC model since we can choose the acceleration
from a continuous space instead of only from discrete options. This makes the proof more
difficult, but we complete the proof.

We update our model by observing the acceleration that our car can achieve. For example, if
the upper bound of acceleration A is 10, and we find that our agent successfully set its action
(acceleration) to 20, then we will update the value of A to 20. So H({A, B}, s,a,s’) =
{min(—a, A), max(a, B)}. It is obvious that all conditions in Theorem [I|are satisfied.

Results are shown in Figure 2] and Table 2| Here LJSC model (A = 10, B = 10) means
a model with A initialized to 10 and B initialize to 10 (similarly for LISC model (A =
100, B = 100)). We run 1000 steps for each model and test the performance after every
200 steps, and use 3 different seeds. The maximum episode length is 100, which means the
maximum reward for one episode is 100.

From Figure 2| (a), we can find that even if we use a very conservative LJSC model (A, B
initialized to 10), it can learn to be more efficient quickly. From Figure @] (b), we find that
LJSC models can achieve comparable rewards. From Table [2] we find that LJSC models
eliminated the crashing cases.

=)
S

—e— No model
100 LJSC model (A=10, B=10)
—e— LIJSC model (A=100, B=100)

%©
S

50

-y
S

Model Parameters

N
S

—— LIJSC model (A=10, B=10)-A
LJSC model (A=10, B=10)-B
== Ground Truth

Average Episode Return (Test)

[
S

10 10 10° 10 200 400 600 800 1000
Environment Steps Environment Steps

(a) (b)

Figure 2: (a) the learning process of parameters for an imperfect LISC model (b) test rewards
of agents with no model, an LISC model with perfect initialization (A = 100, B = 100)
and an LJSC model with imperfect initialization (A = 10, B = 10)



Table 2: Number of crashes during 1000 training steps for different models (5 runs)

Model Number of crashes
No model 28
LJSC model (A = 10, B = 10) 0
LJSC model (A = 100, B = 100) 0

5.2 Goal Finding Task

We define the task of goal finding to be an agent moving in a 2D plane on circular tracks, a
fixed position for the final goal (g, g,) and a series of obstacles | J;-_, (0bs;z, 0bs;, ) separated
randomly in the plane. The goal is for the agent to successfully reach the final goal, without
crashing into any of the obstacles. An illustration of the environment is defined below in

Figure 3]

() (b)

Figure 3: (a) An example of the environment Goal Finding (b) An example of the environ-
ment Pointmess. The star is the moving agent, the green circle is the goal, the red circles are
the obstacles, and the black crosses are pointmesses.

The agent is defined with a controller of two variables: a track radius r of the current circular
track it is on, and an acceleration a. The movement of the agent is modeled using the
following variables: the current position (x,y), a line velocity v, and the direction vector
(dz, dy). We define the agent to crash an obstacle in the sense that the distance between the
two is less than a constant buffer> 0.

For the sake of simplicity, we don’t enforce an area bound on the movement of the agent, but
it should ideally not stay too far from the goal as the reward is calculated using the distance
towards the goal.

We define the model using the following d£ formulas:
constBounds = A >0AB >0AT > 0A rpun < —buffer A ry.. > buffer A buffer >0

n
valid_env = /\{(x —dy-r— obsm)2 +(y+dx-r— obsiy)z) > buffer’A
i=1

n n
/\ /\ {(0bsiz — 0bsj;)* + (obsy, — 0bs;y)?) > butfer?
i=1j=1,ji
init = constBounds A valid_env A dz? + dy2 =1
safe(r,0bs;) = (v — dy - 7 — 0bs;z)* + (y + dx - r — 0bsyy)? > (r + butfer)?
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ctrl={t:=0;a:=x;7(—B <a < A);r:=%7("min <7 < Tmaz/
n

/\ safe(r,obs;)) Ar!l =0}

/U'dy7dy/: w71},:a7

plant = {2/ =dz - v,y = dy -v,dz’ = —
t' = 1&t < T&v > 0}

n
safe = /\{(1‘ — 0bsiz)* + (y — obsiy)?) > butffer’} Ada® +dy?> =1 Av >0,
i=1

Here constBounds summarizes initial requirements for the defined constants. We have
defined them using actual constants in the experiments, but we can prove them using broader
bounds.

valid_env requires the initial position of the agent does not crash into any obstacle. When
there’s more than one, the random obstacles must not crash into each other.

safe(r, obs;) is a bool function that takes in the radius and the position of the obstacle and
determines whether the agent will crash into the obstacle. Using this we can define ctrl,
which requires the acceleration a to be bounded, radius 7 to be bounded and the proposed
radius must satisfy the safety requirement. We won’t allow radius=0 which is undefined, and
there’s always a valid radius to choose from as 7,4, > buffer.

plant defines the actual agent dynamics within one timestep 7.

safe defines the safety requirement at the end of one loop where the current agent position
does not crash into any obstacles and adds restrictions on the model dynamics.

And this completes the model by implementing
init — [{ctrl;plant}*|safe

for Goal Finding Task. Observe that with a different number of obstacles, the KeYmaera X
implementation would be slightly different. A formal KeYmaera X proof with 2 obstacles
can be found in GoalFinding_Proof . kyx.

To prove this model, we use the loop invariant

n
/\saferobs /\dx2+dy2:1/\1120

We prove this model is safe by arguing that the controller always makes sure the agent always
stays on the track that does not coincide with any obstacle, because safe(r, obs;) is true in a
state that on the current track where the agent moves with radius r, the distance between
the current position of the agent and the position of the obstacle 0bs; = (0bs;z, 0bs;y). This
property holds after a single run of {ctrl;plant}, because the agent always stays on that
track by the definition of dynamics in the differential equation. It can be proved by the
simple dI rule.

Results are shown in Figure ] and Table[3] We have conducted experiments on environments
initialized with 1 obstacle and 10 obstacles each. We run 10000 steps for each model and
test the performance after every 2000 steps. We run the tests 3 times with random initial-
ization. Figure (b) shows the average and standard deviation. As the safety requirement is
conservative and does not take into account speed requirements, we omit the step of updating
acceleration and instead only consider the radius.
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Figure 4: (a) the learning process of parameters for an imperfect LISC model (b) test rewards
of agents with no model, an LISC model with imperfect initialization (v;,;, = —1, Ty = 1)
(c) LJISC model for environment initiated with 10 obstacles with imperfect initialization
(T"min = —1, "maz = 1) (d) test rewards of agents for models with 10 obstacles environment.

Table 3: Number of crashes during 10000 training steps for different models

Model Number of crashes
No model (1 obstacle) 8
LISC model(7.,4: = 1, "min = —1) (1 obstacle) 0
No model (10 obstacles) 72
LJSC model(ry,qe = 1, 7min = —1) (10 obstacles) 0

For the environment of 1 obstacle, there’s not much difference in gained rewards, potentially
because it’s hard to crash in such an environment even without a safety guarantee. This result
is also shown by Table[3] In comparison, the LJSC model achieves more rewards gained for
10 obstacles environment with the same amount of training steps. However, we don’t see
an upward growth trend in the learned rewards, and this might be because we consider the
distance towards the goal as a part of the reward and there are some variances. It could also
be the case that we should increase the number of training steps.

5.3 Pointmess Task

We define the task of pointmess to be a forcing reinforcement-learning upgrade upon goal
finding task, as the previous task does not enforce agents to move close to obstacles. In addi-
tion to the previous environment setting, we add m number of messes (|| (pmiz, priiy)
in the ground for the agent to pick up and gain positive reward. The agent’s dynamics stay
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the same. An illustration of the environment is defined in Figure This addition does
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Figure 5: (a) the learning process of parameters for an imperfect LISC model (b) test rewards
of agents with no model, an LJSC model with imperfect initialization (757, = —1, "inaz =
1)

Table 4: Number of crashes during 10000 training steps for different models

Model Number of crashes
No model (10 obstacle, 10 pointmesses) 49
LJSC model(ryqz = 1, rmin = —1) (10 obstacle, 10 pointmesses) 0

not affect the safety guarantee of the agents’ movement and we can use the same safety
verification as in Section 5.2.

Results are shown in Figure[5|and Table[d We have conducted experiments on environments
initialized with 10 obstacles and 10 pointmesses. We run 10000 steps for each model and test
the performance after every 2000 steps. We run the tests 3 times with random initialization
Figure [5(b) shows the average and standard deviation. We observe that the LISC model
gains more rewards with the same amount of training steps.

6 Conclusion

We have proposed the LJSC algorithm and investigated its performance on common rein-
forcement learning tasks. We have shown that we can successfully update the parameters
efficiently while preserving the safe learning guarantee. It also performs better than regular
RL without safety control.

We have learnt to model different environments and simulate agent dynamics using Python
that transforms from d£ models, and building controller monitor and model monitor as our
algorithm proposed.

However, due to lack of resources, the training is timewise-inefficient as one training epoch
on tasks Goal Finding and Pointmess would take hours. We also suspect it has not reached the
best performance based on the gained rewards. We defined the rewards that better encourage
either model to train more efficiently, but there might still be room for improvements. While
the model monitor is accurate and guarantees safety, they are inherently conservative on the
efficiency of agent movement in reaching the final goal. For example, in the goal finding
task, the agents should be able to move in tracks that even collide with the obstacles, will
not crash in the current time step. We can also improve by creating finer-grained safety
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bounds. There’s also potential to investigate the algorithm when simultaneously updating
more parameters, as well as more general usage of our theorem.

7 Deliverables

The deliverables include:

* KeYmaeraX models and proofs for 3 environments: CACC and Goal Find-

ing(=Pointmesses)

* An implementation of the algorithm and the training code in Python
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