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Abstract

We investigate distributed formation control
of drones, specifically coordinating a swarm
of drones to form the outline of an image or
shape. We develop a controller that navigates
each drone to its final position in the formation
in three dimensional space. Given a set of
randomly generated starting points for a fixed
number of drones, we determine the final
location of each drone using a point assignment
algorithm for collision avoidance. An event-
triggered controller verified in KeYmaera X
then directs each drone to its final position. The
controller was successfully proved for a triangle
formation with three drones. A preprocessing
step was used to discretize the outline of an
image into the final set of points. Additional
models were created for more complex shapes
and increased numbers of drones. Due to chal-
lenges posed by the large number of branches in
KeYmaera X as the number of drones increased,
we were unable to complete the proofs for the
more complex shapes.

1 Introduction

Utilizing multiple drones, or unmanned aerial
vehicles (UAVs), for applications such as search
and rescue and delivery of goods allows drones
to perform more challenging tasks over larger
areas than they would otherwise be unable to
perform alone. One application of interest are
light shows which rely on the formation con-
trol of drones, similar to the 2017 Super Bowl
Halftime performance by Lady Gaga which used
hundreds of drones to form an American flag,
along with other shapes!. In this project, we
develop a model for the coordination of a swarm

Lhttps://www.therobotreport.com/lady-gaga-300-
intel-drones-and-the-super-bowl/

of drones to form arbitrary shapes or the outline
of images or objects. Each drone must safely
move from an initial position to a designated
ending position. We first start with arranging
three drones in a triangle, and then attempt to
increase the number of drones and complexity
of the shapes used. Demonstrating the drones
can safely form a predetermined shape is nec-
essary for controlling drone swarms of arbitrary
size and final shape.

We determine the final location for each drone
by optimally assigning points based on a modi-
fied version of the Jonker-Volgenant Algorithm
[1]. An event-triggered controller verified in
KeYmaera X then directs each drone from its
initial position to its prescribed final position.
It is inefficient to direct one drone at a time to
its final destination, so each drone runs its own
instance of the controller and moves towards its
respective destination simultaneously. Finally,
we present an example walkthrough of the entire
process, beginning with discretizing the outline
of an image to obtain the set of final locations,
assigning each drone to its final location, and
moving each drone to its final position using the
controller in KeYmaera X.

2 Related Work

Formation control has typically been grouped
into leader-follower, behavioral, and virtual
structure. The leader-follower approach desig-
nates drones as leaders or followers, while virtual
structure views the formation as a rigid body|[2].
An example of a behavioral approach is guiding
the drones from initial points to ending points
by arranging multiple UAVs in a shape such as
a circle or polygon[3]. Each drone moves to the
nearest ending position on the shape of inter-
est. Control can also be split into centralized or
decentralized control. In centralized control, a
ground controller tells the drones how to navi-
gate to their final positions[4]. In a distributed



approach, each drone navigates to its assigned
position via an individual controller[5]. In this
paper, we use behavior-based distributed forma-
tion control.

An important factor to consider in forma-
tion control is collision avoidance, which ensures
each drone can safely travel to its final position.
In this paper, we utilize a modified version of
the Jonker-Volgenant Algorithm (see Section 3).
The assignment problem has been studied exten-
sively in multi-robot task allocation problems[6]
and also in more specific settings where commu-
nication between robots is limited|7].

We believe that this project is sufficiently
novel compared to prior work 23 in the Logical
Foundations of Cyber-Physical Systems course,
due to the use of distributed control for a
drone swarm, the development of an collision-
avoidance algorithm for a drone swarm, and
the novel application to which these technolo-
gies will be applied. In this paper, we present a
novel approach to distributed formation control
of drones where we implement the controller in
differential dynamic logic, and formally verify it
in KeYmaera X.

3 Point Assignment

Our distributed controller relies on a careful al-
location of image points to drones as a collision
avoidance strategy. When considering assign-
ments of drones to image points, if the paths
of two drones cross, we can swap the assigned
points for these drones, resulting in an assign-
ment of points in which each drone has to travel
a shorter distance and there is no potential for
drone collision. We consider this new assign-
ment of points more optimal than the original
assignment. Intuitively, the problem of assign-
ing image points to drones so no paths inter-
sect can be reformulated as minimizing the sum
of path distances. The solution to this point
assignment problem can be found by finding a
minimum weight matching in a complete bipar-
tite graph. This is a combinatorial optimiza-
tion problem, specifically the balanced assign-
ment problem. Given a number of agents at ar-
bitrary starting positions and a number of end-
ing positions, we want to minimize the total dis-
tance traveled by the agents. We assume the
final points are known beforehand. See Figure
1.

can
the

The assignment problem
be solved in Python using
scipy.optimize.linear_sum_assignment
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Figure 1: Top: Non-optimal point assignment,
with total distance of 29. Bottom: Optimal
point assignment, with minimized total distance

of 20.

function and is implemented with a mod-
ified Jonker-Volgenant algorithm with no
initialization[8]. Given an Ng - No matrix of
costs, where Ng is the number of rows and
N¢ is the number of columns, the algorithm
solves the assignment problem by solving each
subproblem when Np = 1,2,... and using the
complementary slackness theorem to ensure the
globally optimal solution is reached at each
step[8].

Since the number of drones and the number of
final points is always the same by assumption,
the number of points in this assignment prob-
lem is always even. Since the number of points
is even, the only situation in which this point as-
signment algorithm will fail is in the case where
we have two drones that lie on the same line as
both possible destination points. For example,
if Ry is the starting position for drone 1, Rs is
the starting position for drone 2, and points By
and Bs are the possible final positions. Since
these points all lie on a line, every assignment of
starting points to final positions results in an in-
tersection of paths. * This case is avoided in the
context of image formation since all final points
are on the same plane and no drones start on
the image formation plane. Therefore, it cannot
be the case that two drones are on the same line

Shttps://lfcps.org/course/1fcps20/projects/aabedon.pdf an-even-number-of-nodes-without-intersection



as two destination points.

As a result of using this algorithm, it is
essential that each drone travels in a straight
line from its starting position to its ending
position. This condition is necessary to preserve
safety. A Python script, point_assn.py,
implements the point assignment using
scipy.optimize.linear_sum_assignment
and is included as a deliverable. An original
goal was to implement the point assignment in
KeYmaera X, however, the Jonker-Volgenant
algorithm is O(n?®) and KeYmaera X does not
support matrix operations or array-style data
structures so the algorithm would likely have to
be reimplemented for every drone swarm size.

4 Modelling

This section introduces the event-triggered °
models used to formally verify the distributed
drone formation controller. This section will jus-
tify modelling decisions after an introduction to
the variables used in the triangle model for three
drones. Later subsections will motivate and dis-
cuss a semantic proof for reducing the complex-
ity of the model and then walk through a proof
of the validity of this three drone model.

4.1 Distributed Control

The models included in the deliverables simu-
late the distributed control of a drone formation
using a single model. This counter-intuitive ap-
proach is required since if each drone were given
its own model, each drone would have to simu-
late the entire swarm locally and would not be
able to exchange position and velocity informa-
tion with the other drones in the formation in
real time. The provided models implement dis-
tributed control in a single model by keeping the
discrete control of each drone separate from that
of the others and by allowing all the drones to
share a continuous evolution. With each con-
trol loop iteration, all drones make their deci-
sions and then the model allows the entire sys-
tem to evolve in unison. Through experimen-
tation, it was found that this combined drone
evolution is prohibitively complex even for small
drone formations of only two drones. As a re-
sult, a semantic proof is presented in Section 4.9
that shows that proving safety conditions with
a model that separates each drone’s continuous

5An event-triggered model was used due to the com-
plexity of the model and the difficulty of proving a time
triggered controller that is able to stop a drone within
a predetermined range of its final position. An event-
triggered controller also leaves the control logic of the
controller more apparent, but more difficult to imple-
ment in the real world.

evolution implies the safety of the more com-
plex combined evolution model. This semantic
proof allows the use of simpler models which
scale more efficiently as the size of the drone
formations increases. °

4.2 Assumptions

We make the following simplifying assumptions
on the drones themselves and their physical en-
vironment for ease of modelling:

e Independence of control in all dimensions.
This is a necessary assumption since the
drones must be able to freely move in all
dimensions; we cannot restrict physics.

e Knowledge of the exact position and veloc-
ity of other drones in the system (perfect
sensing and communication). This is a use-
ful assumption for formation control.

e No latency in communication between
drones. This is a useful assumption to en-
sure that formation control is not affected
by unstable communication.

e Control of drones is stable (changes in direc-
tion will not destabilize the drones). This
is a necessary assumption to ensure unsta-
ble control will not cause drones to inadver-
tently collide or prevent them from reaching
their final location.

e Assume drones have infinite battery life.
This assumption is necessary to simplify
modelling.  Without this assumption a
drone will need to periodically return to the
ground.

e No environmental factors, including wind
and air resistance. This is a useful assump-
tion since the drones will be operating at
slow speeds.

e No downdraft from neighboring drones.
This is a necessary assumption because
downdraft may cause the drone to desta-
bilize.

e All drones start on the ground and the x-
coordinate for the 2D plane where the im-
age will be formed is greater than the ini-
tial x-coordinates for all of the drones in the
swarm. Each drone’s initial position differs
from its final position in all dimensions.

e All drones are initially stationary and have
an initial velocity of 0.

6See the provided deliverables which provide exam-
ples of combined and separate evolution for a model for
2 drones in 2 dimensions.



4.3 Constants and Variables

The constants used in the model are:

e imagePlaneX - The x-coordinate of the 2D
plane where the image will be formed. The
final position for all drones will have their
x-coordinate equal to imagePlaneX.

e MAXACCEL - The maximum acceleration of a
drone in a single dimension.

e MAXBRAKE - The maximum braking of a
drone in a single dimension.

The variables used in the model are listed below,
using the variables for drone 1 as an example.
The same variables are also used for drones 2 and
3. For each drone, the number in the variable
name indicates which drone the variables belong
to. For example, xposl and imageDest1lY is
for drone 1 while xpos2 and imageDest2Y is for
drone 2.

e xposl, yposl, zposl- The position of the
drone in the x-, y-, and z-dimensions, re-
spectively.

e xvell, yvell, zvell - The velocity of the
drone in the x-, y-, and z-dimensions, re-
spectively.

e xaccell, yaccell, zaccell - The accel-
eration of the drone in the x-, y-, and z-
dimensions, respectively.

e xfinall, yfinall, zfinall - The final
position of the drone in the x-, y-, and z-
dimensions, respectively.

e imageDestlY, imageDestl1Z - The y- and
z-coordinate, respectively, of the destina-
tion point.

e xmultl, ymultl, zmultl - The accelera-
tion scaling factors in the x-, y-, and z-
dimensions, respectively. These are used to
ensure the drones travel in straight lines.
This follows from the point assignment al-
gorithm.

4.4 Preconditions

The following conditions must be met:

4.4.1 Constant Conditions

e MAXACCEL > 0, MAXBRAKING > O

e imagePlaneX = 0 - The image plane lies at
x=0.

4.4.2 Drone Initial Conditions

imageDestlY = 236, imageDestlZ =
201, imageDest2Y = 122, imageDest2Z
= 2, imageDest3Y =6, imageDest3Z =
201 - The coordinates of the destina-
tion points for each drone determined
by the point_assn.py. See Section 5.1.
These final points for the drones in the
triangle_3_Proof .kyx model are used as
an example.

xposl = -914.72643558, yposl

= -34.23173635, zposl = O,

xpos2 = -671.81134155, ypos2

= -274.26203647, zpos2 = 0,

xpos3 = -488.59935271, ypos3 =
-373.29266142, zpos3 = 0 - The co-
ordinates of the starting positions for
each drone, randomly generated by
point_assn.py. See Section 5.1. These
initial points for the drones in the
triangle_3_Proof.kyx model are used as
an example.

xfinall = imagePlaneX, xfinal2 =
imagePlaneX, xfinal3 = imagePlaneX
- The final position of each drone in the
x-dimension lies on imagePlaneX.

xvell = 0, yvell = 0, zvell = 0, xvel2
= 0, yvel2 = 0, zvel2 = 0, xvel3 =
0, yvel3 = 0, zvel3 = 0 - The initial
velocity of each drone is 0.

xposl < xfinall, xpos2 < xfinal2,
xpos3 < xfinal3 - The starting position
of each drone in the x-dimension is less
than the final position of each drone in the
x-dimension.

yfinall = imageDestlY, yfinal2 =
imageDest2Y, yfinal3 = imageDest3Y

- The final position of each drone in the
y-dimension is imageDest*Y, where *
represents the number assigned to each
drone.

zfinall = imageDestlZ, zfinal2 =
imageDest2Z, zfinal3 = imageDest3Z

- The final position of each drone in the
z-dimension is imageDest*Z, where *
represents the number assigned to each
drone.

yposl != yfinall, ypos2 != yfinal2,
ypos3 != yfinal3 - The starting position
of each drone in the y-dimension differs
from the final position of each drone in the
y-dimension.



e zposl < zfinall, zpos2 < zfinal2,
zpos3 < zfinal3 - The starting position
of each drone in the z-dimension is less
than the final position of each drone in the
z-dimension since each drone starts on the
ground (zposl = 0, zpos2 = 0, zpos3
= 0) and a drone’s final position cannot be
on the ground.

e For each drone (using drone 1 as
an  example), ymultl = (yfinall -
yposl) / max(abs(xfinall - xposl),
max (abs(yfinall - yposl), zfinall
- zposl)), xmultl = (xfinall -
xposl) / max(abs(xfinall - xposl),
max (abs(yfinall - yposl), zfinall
- zposl)), zmultl = (zfinall -
zposl) / max(abs(xfinall - xposl),
max (abs(yfinall - yposl), zfinall -
zposl)) - ymultl, xmultl, and zmultl
are found by taking the difference between
the drone’s final and starting positions in
a given dimension, and dividing by the
maximum absolute value of the difference
between the drone’s final and starting
positions over each dimension. This is
done so the dimension that is furthest
from its final point accelerates at a rate
of MAXACCEL while in all other dimensions
the drone accelerates at a fraction of this
acceleration. This allows each drone to
travel in a straight line while not exceeding
its maximum acceleration in any direction.

4.4.3 Drone Safety Conditions

The following safety conditions are presented for
drone 1. The same safety conditions are used
for drones 2 and 3, using different variables as
necessary. See triangle_3_Proof.kyx.

o ((yposl != ypos2) | (xposl !=
xpos2) | (zposl != zpos2)) - Drone
1 has a different initial point than drone
2. This ensures these two drones do not
collide initially.

e ((yposl != ypos3) | (xposl !=
xpos3) | (zposl != zpos3)) - Drone
1 has a different initial point than drone
3. This ensures these two drones do not
collide initially.

e Vxposl Vyposl Vzposl Vxl1 Vx2
((x1<=xfinall & x1>=xposl &
x2<=xfinal2 & x2>=xpos2) -> (x1=x2
-> yposl !=ypos2 | zposll!=zpos2)) -
Drone 1 is never at the same position as
drone 2 during its evolution from xposi

to xfinall. This safety condition fol-
lows directly from the point assignment
algorithm.

e Vxposl Vyposl Vzposl Vxl Vx2
((x1<=xfinall & x1>=xposl &
x2<=xfinal3 & x2>=xpos3) -> (x1=x2
-> yposl !=ypos3 | zposl!=zpos3)) -
Drone 1 is never at the same position as
drone 3 during its evolution from xposi
to xfinall. This safety condition fol-
lows directly from the point assignment
algorithm.

4.5 Discrete Control

Due to the distributed nature of the drone for-
mation control, each drone has the same discrete
controller but with the set of variables specific
to that drone. Discrete control for drone 1:

if ( xvell~2 / (2+MAXBRAKE) <
xfinall-xposl ) {

xaccell := xmult1*MAXACCEL;
}
else {

xaccell := -1xMAXBRAKE;
¥

if ( yvell~2 / (2xMAXBRAKE) <
abs(yfinall-yposl) ) {

yaccell := ymult1*MAXACCEL;
}
else {
if (yposl <= yfinall) {
yaccell := -1+*MAXBRAKE;
}
else {
yaccell := MAXBRAKE;
b
¥

if( zvell~2 / (2xMAXBRAKE) <
zfinall-zposl) {

zaccell := zmultl1*MAXACCEL;
}
else {

zaccell := -1xMAXBRAKE;
}

The controller controls the evolution of the
drone by altering the acceleration of the drone
in each dimension. Due to the independence of
control in each dimension, the controller sets the
acceleration for each dimension independent of
the state of the drone in the other dimensions.
If the drone is able to brake to a complete stop
before reaching its final destination, it will ac-
celerate in that dimension. Else, it will brake.
The conditionals used to check this are derived
from the kinematic equation v]% =02 +2xaxd.



Absolute values are needed in the control for the
y-dimension since the initial y position may be
greater than or less than the final y position.
They are not needed in the x-dimension since all
drones start at a negative x position and move to
the image formation plane at x=0 so the initial
X position is always less than the final x posi-
tion. Similarly for the z-dimension, drones al-
ways start on the ground, z=0, and have a final
z position strictly greater than zero.

Note that when assigning a positive accelera-
tion, the discrete controller scales MAXACCEL by
a fraction. For each drone, acceleration in each
direction is scaled so that the dimension with
the furthest distance between its initial and final
points accelerates at MAXACCEL while the other
dimensions accelerate by a fraction of this accel-
eration. This ensures that the drone will reach
its final destination simultaneously in all dimen-
sions while also not accelerating at a rate greater
than MAXACCEL. These fractions force the drone
to travel in a straight line between its initial and
final points, a requirement for the safety guar-
anteed by the point assignment algorithm.

4.6 Dynamics

The semantic proof in Section 4.9 allows each
drone to have a separate continuous evolution
due to the nature of the differential equations
and domain constraints used in the model. As
was discussed in Section 4.1, these separate con-
tinuous evolutions for each drone decreases the
model complexity significantly and allows the
number of branches needed to prove the model
to scale linearly with the number of drones in
the model rather than combinatorially.

Within this drone-specific continuous evolu-
tion, there are eight differential equations joined
by choice operators. These differential equations
are needed to maintain fidelity to the physical
world by allowing the model to evolve even when
it has violated the domain constraint of the ini-
tial differential equation. The domain constraint
for the first differential equation states that

& xvell~2 / (2*MAXBRAKE) <=
xfinall-xposi

& yvell~2 / (2*MAXBRAKE) <=
abs(yfinall-ypos1)

& zvell~2 / (2xMAXBRAKE) <=
zfinall - zposl

Intuitively, these three conditions state that
the drone is able to come to a complete stop be-
fore reaching its final destination in each dimen-
sion. This property follows from the kinematic
equation, vj% = v} + 2% ax*d. These conditions
are needed to stop the continuous evolution of

the drone and allow it to begin braking so the
controller can guarantee that the drone will not
overshoot its final location.

Since there are three domain constraints, we
must have 8 differential equations to cover all
their combinations. We cannot use a constraint
of the form

& (xvell~2 / (2+#MAXBRAKE) >=
xfinall-xposl
| yveli~2 / (2+«MAXBRAKE) >=

abs(yfinall-ypos1)

| zvell~2 / (2*MAXBRAKE) >=
zfinall - zposl)

to maintain this physical fidelity since this will
fail to detect multiple events. In other words, if
zvell? /(2xMAX BRAKE) >= x finall —xposl
is already true, this domain constraint will fail to
stop the continuous evolution when yvell1?/(2 x
MAXBRAKE) >= yfinall — yposl becomes
true and the drone controller will miss this event
and overshoot in the y-dimension.

Note the relation between the domain con-
straints of these differential equations and the
conditionals used in the discrete control, dis-
cussed in Section 4.5. When the domain
constraint wzvell?/(2 * MAXBRAKE) <=
x finall —xposl stops the evolution of the drone,
the conditional that guards acceleration in the
discrete control for that dimension, zvell?/(2 *
MAXBRAKE) < zfinall — xposl becomes
false, causing the drone to brake in that dimen-
sion. In this way, the domain constraints and
the discrete controller work together to prevent
the drone from overshooting its destination in
each dimension.

Also note that all differential equations have
overlapping domain constraints in order to al-
low the model to transition between them as
needed. All differential equations also have the
domain constraint that the drone’s z-coordinate
is greater than or equal to 0. This constraint is
a result of the fact that drones cannot go under-
ground.

The differential equations used in this con-
tinuous evolution are very straightforward and
model linear motion in each dimension. We are
able to model each of these dimensions sepa-
rately for each drone due to the assumed in-
dependence of control in all dimensions for the
drones.

Within the continuous evolution for each
drone, the differential equations themselves are
the same and allow the position and velocity of
the drone to evolve in each dimension accord-
ing to the accelerations selected by the discrete
control for each drone.



4.7 Loop Invariant

The following components of the loop invariant
are presented for drone 1. A similar invariant is
used for drones 2 and 3, using different variables
as necessary. See triangle_3_Proof .kyx.

e xvell? / (2+«MAXBRAKE) <= xfinall -
xposl - At velocity xvell and position
xposl, the drone can brake and will not
pass its final position on the image plane
xfinall.

e yvell? / (2%MAXBRAKE) <= abs(yfinall
- yposl) - At velocity yvell and posi-
tion ypos1, the drone can brake and not
overshoot its final position on the image
plane. Since there is no constraint in the
y-dimension that yposl < yfinall, an
absolute value must be used.

e zvell? / (2*MAXBRAKE) <= zfinall -
zposl) - At velocity zvell and position
zpos1, the drone can brake and will not
pass its final position zfinall.

e zposl >= 0 - In the z-dimension, the drone
is either at or above the ground.

e Vxposl Vyposl Vzposl Vxl1 Vx2
((x1<=xfinall & x1>=xposl &
x2<=xfinal2 & x2>=xpos2) -> (x1=x2
-> yposl !=ypos2 | zposll!=zpos2)) -
Drone 1 is never at the same position as
drone 2 during its evolution from xpos1 to
xfinall. This safety condition follows di-
rectly from the point assignment algorithm.
algorithm.

e Vxposl Vyposl Vzposl Vx1 Vx2
((x1<=xfinall & x1>=xposl &
x2<=xfinal3 & x2>=xpos3) -> (x1=x2
-> yposl !=ypos3 | zposl!=zpos3)) -
Drone 1 is never at the same position as
drone 3 during its evolution from xpos1 to
xfinall. This safety condition follows di-
rectly from the point assignment algorithm.
algorithm.

4.8 Postconditions

4.8.1 Image Formation Condition

The following conditions for image formation are
presented for drone 1. Similar conditions are
used for drones 2 and 3, using different variables

as necessary. See triangle_3_Proof .kyx.

e (xfinall = xposl -> xvell = 0) &

(yfinall = yposl -> yvell = 0) &
(zfinall = zposl -> zvell = 0) -

When the drone is at its final position on
the image plane, its velocity is 0.

e zposl >= O - In the z-dimension, the drone
is either at or above the ground.

4.8.2 Safety Condition

The following safety conditions are presented for
drone 1. Similar conditions are used for drones
2 and 3, using different variables as necessary.
See triangle_3_Proof .kyx.

o ((yposl != ypos2) | (xposl !=
xpos2) | (zposl != zpos2)) - For
drone 1 and drone 2, the position differs
in either the x, y, or z dimension. This
ensures a collision does not occur between
drones 1 and 2.

o ((yposl != ypos3) | (xposl !=
xpos3) | (zposl != zpos3)) -  For
drone 1 and drone 3, the position differs
in either the x, y, or z dimension. This
ensures a collision does not occur between
drones 1 and 3.

4.9 Semantic Proof
4.9.1 Proof Motivation

As was discussed in Section 4.1, this seman-
tic proof is used to demonstrate that a safety
proof for a model which separates the continuous
evolutions of each drone implies the safety of a
model which allows all drones to evolve together.
The separation of this continuous evolution al-
lows the monotonicity proof rule to be applied
to separate the drones and allow the model to
scale more efficiently as the number of drones
increases. This proof demonstrates that the dif-
ferential equations for any pair of drones in the
model can be separated, given the set of assump-
tions below.

4.9.2 Proof Overview

Show [{dcl; de2; plant }*| P+[{dcl; plant1; de2; plant2}*| P

under the following assumptions:

1. dcl and dc2 are hybrid programs which per-
form discrete control decisions. V/(del) N
V(de2) = 0.7 Let z = V(dcl) and y =
V(de2).

2. plant is a hybrid program consisting of a
differential equation, [z’ = f(2)&Q1AQ2] P,
in which the set of variables z = z U y.%
V(Q1l) C z and V(Q2) C y. Further, let
2’ = f(x) be a simple differential equation
that can be decomposed into functions of z

"Define V(z) = FV(x) U BV (x).
81 is a disjoint union.



and y using restrictions on the domain of f.

f‘z kez
In other words, f(k) = f‘y key
flpo k@

3. Let plantl be a hybrid program consisting
of a differential equation, V(plantl) C z.
Let plant2 be a hybrid program consisting
of a differential equation, V(plant2) C y.

Proof:

(Recall that a state w is a mapping from
variables to real numbers, w : * — R. By
assumption 1, w : (2 Uy) — R. By restricting
the domain of w, define the states w, = w, and
wy = w, such that w = w, U w,.'° Similarly

define v = v, Uv,)

3) [2" = f(@)&Q1 A Q2] = {(w,v) : (pg U
on U p,e)(0) = wy Uw, except at (y U z)" and
(g U Ue)(r) = (v Uuy) for a solution
(pg Weon Upye) 1 [0,r] - S of any duration r

1) [del; de2; plant] P+[dcl; de2; plantl; plant2| P gatisfying (g Won Upge)| = (yuz) = (g(z) U

(by Section 4.9.3: Plant Separation Proof)

2) [del; de2; plant] P<—[dcl; plantl; de2; plant2] P

(by Section 4.9.4: Sequential Composition Re-
order)

3) [{dc1; dc2; plant}*| P —
[{dc1; dc2; plantl; plant2}*|P (by the tran-
sition semantics of loops in hybrid programs,

[a]* = [a7])
4.9.3 Plant Separation Proof

Show [z’ = f(2)&Q1AQ2]=[2" = g(2)&Q1;y" =
h(y)&Q2] assuming:

1. the set of variables r = 2 Uy
2. V(Ql) Czand V(Q2) Cy

3. Since z can be decomposed into zUy by the
first assumption, the function f : z — R,
can be expressed as f‘z G} f‘y =guh? It

follows that V(p,) € 2z and V(en) C v,
where ¢, is the solution for g and ¢y, is the
solution for h. The solution for f, ¢, can

pg(k)  kez
be expressed as: ¢(k) = ¢ on(k) key
pac(k) k¢
Proof:
1) [2" = f(2)&Q1 A Q2] = {(w,v) : (0) =

w except at ' and ¢(r) = v for a solution ¢ :
[0,7] = S of any duration r satisfying ¢|=1' =

f(2)&Q1 A Q2}

(By the semantics of continuous evolution)

2) [2" = f(2)&Qr A Q2] = {(w,v) : ¢(0) =
(wy U w,) except at 2’ and ¢(r) = (v, U vy)
for a solution ¢ : [0,7] — S of any duration r
satisfying p| = 2’ = f(2)&Q1 A Q2}

9Let the disjoint union of functions be defined as a
function that maps from the disjoint union of their do-
mains to the union of their codomains. This disjoint
union function maps its inputs to outputs according to
the domain the input is in. Since the union is disjoint,
only a single function in the union will be defined over
that domain.

h(y))&Q1 A Q2}
(By assumption 3)

) [2" = f(2)&Q1 A Q2] = {(w,v) : (g U
(0) = wy Yw, except at (y U z)" and (¢4 U
(r) = (v; Uuy) for a solution (¢, U ¢p) :
0,7] — S of any duration r satisfying (¢4 U
en)l = (YW z) = (9(2) Uh(y))&Q1 A Q2}

(pge is  undefined over the domain
x by assumption 3. For £ € o«

(pg U on U pge)(k) = (g Y pn)(K))

5) [ = F@)&@1 A Q] = {(w,0) : (15(0) =
w, except at 2’ and @4(r) = v, for a solution ¢, :
[0,7] — S of any duration r satisfying ¢,| = 2’ =
9(2)&Q1 A Q2) U (¢ (0) = w, except at y' and
on(r) = vy for a solution ¢y, : [0,r] = S of any
duration r satisfying pp| = v’ = h(y)&Q1 A Q2)}

(By the definition of set union, assumption 1,
and assumption 3)

6) [+ = f(2)&Q1 A Q2] = {(w, v) : (¢g(0) =
w, except at 2z’ and p4(r) = v, for a solution
g 1 [0,7] — S of any duration r satisfying 4| =
2 = g(2)&Q1) U (¢r(0) = w, except at y’ and
on(r) = v, for a solution ¢y, : [0,r] = S of any
duration r satisfying op| = v’ = h(y)&Q2)}

(By assumption 2, since V(Q2) C y and
V(Q2) Nz = 0, the truth value of Q2 is not
altered during the evolution of 2z’ and the
domain constraint ()2 does not restrict the

evolution of 2’ !!. Similar reasoning for ; and
Yy

7) [+ = f(2)&Q1 A Qo] = {(w, 1) : (p4(0) =
w except at 2’ and ¢4(r) = p for a solution

g : [0,7] = S of any duration r satisfying ¢4| =
7 = g(2)&@Q1), (1, v) : (pn(0) = p except at 3’
and ¢p(r) = v for a solution ¢y, : [0,7] — S of
any duration r satisfying | = ' = h(y)&Q2)}

(Define state p = wfg(z), 1 has the same

values for all variables except for those in set z.

10Since states are functions, the definition of a disjoint
unions of states is the same as the definition of a disjoint
union of functions.

M Definition 2.6, page 51 [9]



This defines a piecewise evolution from w to v in
which the variables in y are held constant in the
evolution from w to p and then the variables in
z are held constant in the evolution from u to
v. Formally, V(p,) Ny =0 and V(pp) Nz =0.)

8) [+ = f@)&Qi A Q] = [ =
9(2)&Qu:y = h(y)&Qs]

(By the semantics of sequential composition)

4.9.4 Sequential Composition Reorder

Proof of Lemma 1 in Appendix C of "Tactical
Contract Composition for Hybrid System
Component Verification"[10].

This proof shows: [a;f]¢ < [B;alé under
the assumption that BV (a) N V(8) = 0 and
BV (B8) NV (a) = 0. Hybrid programs dc2 and
plantl meet the requirements for « and § in
this proof since BV (de2) NV (plantl) = () and
BV (plant1) NV (dc2) = 0 since the sets of vari-
ables y and z are disjoint.

4.9.5 Proof Applicability Justification

For each of the following assumptions made in
this semantic proof, we will demonstrate that
any two drones in a given model meet these as-
sumptions. Due to each drone running an inde-
pendent instance of the discrete control outlined
in the model, demonstrating that these assump-
tions hold for a single pair of drones implies that
these assumptions hold for each pair of drones
in a more complex model. As a result, we can
safely apply this semantic proof to those more
complex models in order to simplify their proofs.

1. Assumption 1 holds since the discrete con-
trol for each drone relies only on the current
position and velocity of the drone and up-
dates the acceleration of only that drone.

2. For assumption 2, consider plant, from a
two drone, two dimensional model with
combined domain constraints for the two

drones:

xposl’ = xvell, xvell’ = xaccell,
yposl’ = yvell, yvell’ = yaccell,
xpos2’ = xvel2, xvel2’ = xaccel2,
ypos2’ = yvel2, yvel2’ = yaccel2
xvell? / (2*MAXBRAKE) <=

xfinall-xposi

yvell? / (2*%MAXBRAKE) <=
abs(yfinall-yposl)
xvel2? / (2*MAXBRAKE) <=
xfinal2-xpos2

yvel2? / (2%MAXBRAKE) <=
abs(yfinal2-ypos2).

All other differential equations in this model
are included to maintain fidelity to the
physical world. = The differential equa-
tion in this code segment can be decom-
posed into two differential equations, one
for each drone, such that there are no inter-
dependencies. In other words, restricting
the equations relating to drone 1 to vari-
ables related to drone 1 and similarly re-
stricting the equations relating to drone 2 to
variables related to drone 2 does not alter
the solution for this differential equation.
The evolution for drone 1 in the x and y
dimensions is independent of the evolution
of drone 2.

A similar property holds for the domain
constraints. Since the domain constraints
for the x and y dimensions for the first drone
do not include any variables for the second
drone and vice versa, they meet the assump-
tion that V(Q1) N V(Q2) = 0.

3. For assumption 3, consider the differential
equations below. Each only contains vari-
ables pertaining to their respective drones
and the intersection of their sets of variables

is empty.

plant1:

{xpos1’ = xvell,
xvell’ = xaccell,
yposl’ = yvell,
yvell’ = yaccell

& xvell~2 / (2+«MAXBRAKE) <= xfinall-xposl
& yvell~2 / (2*MAXBRAKE) <= abs(yfinall-ypos1)

plant2:

{xpos2’ = xvel2,
xvel2’ = xaccel2,
ypos2’ = yvel2,
yvel2’ = yaccel2

& xvel2~2 / (2#MAXBRAKE) <= xfinal2-xpos2
& yvel2~2 / (2+MAXBRAKE) <= abs(yfinal2-ypos2)

4.10 Model Proof

Given the model preconditions outlined in Sec-
tion 4.4, the proof relies heavily on the use
of monotonicity to separate drones and on the
safety guarantees from the point assignment al-
gorithm.

Following the application of the loop proof
rule, the "Init" branch largely proves by id
and the braking condition of the loop invariant
proves since the initial velocity of the drone
is 0 in all dimensions. The "Post" branch



proves by auto due to the aspect of the loop
invariant which guarantees that the drone is
able to come to a complete stop without passing
the image plane and the guarantee from the
point assignment algorithm that the paths
of two drones never intersects. Proving the
"Step" branch requires multiple applications
of monotonicity to separate each drone into
its own branch. Each of these branches are
then unfolded and proved. In each of these
single drone branches, the postconditions to
be proven can be broken down into safety
invariants, image formation invariants, and in-
variants for other drones. The safety invariants
are the conditions of the form: V xposl V
yposl V zposl V x1 V x2 (x1<=xfinall &
x1>=xposl & x2<=xfinal2 & x2>=xpos2 ->
(x1=x2 -> yposl!=ypos2|zposl!=zpos2))
For each drone branch, there is one of these
conditions for each of the other drones in the
formation. These safety invariants prove by
Godel vacuous since their correctness follows
directly from the point assignment algorithm.
The image formation invariant is of the form:

xvell~2/(2*¥MAXBRAKE () )<=xfinall-xpos1

This invariant ensures that the drone is able to
stop without overshooting its final destination.
The proof for differential equations whose
domain constraints are of this same form are
straightforward to prove by differential weaken-
ing and can be proven by auto. The more diffi-
cult branches are those for differential equations
whose domain constraints are of the form:

xvell~2/(2*MAXBRAKE() ) >=xfinall-xposl

for one or more dimensions.

While auto is generally able to prove these
branches, the manual approach is to cut
(((xvell?/(2 x MAXBRAKE()) = zfinall —
xpos] into the sequent and then apply a differ-
ential cut to make this same formula a domain
constraint. This formula is guaranteed to hold
since whenever a differential equation of this
form occurs, the discrete control for the drone
will be braking and the drone never reaches the
(((zvell?/(2 x MAXBRAKE()) > zfinall —
xposl part of the domain constraint.

Finally, the invariants for other drones prove
by Goédel vacuous since they either do not men-
tion variables for this drone, or they leave these
variables free.

The auto tactic is relied on heavily through
the proof for these models due to the large num-
ber of branches involved in even simple models.
While these branches can be proven manually,
relying on the auto tactic allowed a more time
efficient approach to proving these models.
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Figure 2: Left: Dis-

Original image.
cretized image, blue points with grey back-
ground.

Right:

Due to the semantic proof provided in Sec-
tion 4.9, the guarantees of the point assignment
algorithm, and the ability to reduce the proof
of the controller into a number of single drone
branches, the proof for two drones is functionally
the same as the proof for a model with any larger
number of drones. The only difference between
the two drone proof and the larger swarm proof
is the number of branches and the number of
safety invariants to prove for each drone. Simi-
larly, due to the use of the point assignment algo-
rithm, the proof tactics remain the same regard-
less of the shape being formed by the drones.

5 Example Walkthrough

This section will provide a walkthrough of the
pipeline developed in order to discretize images,
run the point assignment algorithm, and for-
mally verify that the resulting controller can be
executed safely. Specifically, this example will
have three drones safely arrange themselves in a
triangle.

5.1 Image Discretization and
Point Assignment Implemen-
tation

Given an image, we first run a preprocess-
ing step which discretizes the outline of the
image into points. These points determine
the possible final locations for the drones. A
Python script, discretize_image.py, imple-
ments this functionality using OpenCV. We ap-
proximate the boundary polygon of a shape us-
ing cv2.approxPolyDP, which uses the Douglas-
Peucker algorithm|11].

See Figure 2 for the original image, as
well as the discretized image output by
discretize_image.py. The points output by
discretize_image.py are then input to the
point assignment script, point_assn.py, in or-
der to assign each drone its final location.

point_assn.py first randomly generates
starting points for each drone and then calcu-



lates the optimal point assignment for the drones
using the distance between each drone’s start-
ing position and each final point. These initial
points and final points are then input into the
KeYmaera X model and the proof is run. As
was discussed in Section 4.10, the proof for any
larger number of drones relies on the same tac-
tics used for proving the two drone case so the
reader is directed to Section 4.10 for an expla-
nation of the proof tactics used.

The verified triangle model
triangle_3_Proof.kyx is included as a
deliverable. discretize_image.py and

point_assn.py are also included as a deliver-
able.

5.2 Challenges with Model Com-
plexity

Despite only proving the model for the triangle
formation, KeYmaera X models were created for
more complex shapes including a pentagon with
5 dromes, a circle with 8 drones, and Mickey
Mouse ears with 12 drones. These models, as
well as the initial images and discretized images
for each shape, are included as deliverables. See
Figure 3 for the original image of the Mickey
Mouse ears'2, as well as the discretized image
output by discretize_image.py. These mod-
els were developed but never proved due to unex-
pected difficulties with scaling the size of models
in KeYmaera X.

Even when using the simplified models result-
ing from the semantic proof, the size of these
larger models pushed the abilities of KeYmaera
X even without expanding them into a large
number of branches. For example, the Mickey
Mouse model is over 2000 lines long. Simply
opening these large models, switching between
branches in the KeYmaera X user interface, and
performing elementary proof tactics such as the
loop invariant or composeb rule took a minute
or more to perform. With large models like
the Mickey Mouse model that require proving
a thousand or more branches, this performance
is prohibitive. It is likely that the safety in-
variants of the models could be better struc-
tured to be less redundant but this does not re-
move the core of the issue. Even models like
the pentagon with five drones would have likely
taken significantly longer to prove than the three
drone triangle model, since while the number of
branches scales roughly linearly with the num-
ber of drones, the performance of the KeYmaera
X application quickly degrades around 5 drones
due to the size of the model.

12https: //commons.wikimedia.org
/wiki/File:Mickey Mouse head and ears.svg
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Figure 3: Left:
cretized image, blue points with grey back-
ground.

Original image. Right: Dis-

In order to address some of these performance
issues, these larger models were tested on an
Amazon Web Services instance ' as well as
on the author’s local machine but the perfor-
mance improvement was not sufficient to allow
the proving of these larger models in a reason-
able time frame.

6 Discussion

In this project, we learned about collision avoid-
ance algorithms as well as how to construct effi-
cient models and proofs that allow the verifica-
tion of large and complex models. Throughout
this project, we also learned about the limita-
tions of KeYmaera X as the number of drones
in the model increased. Despite running into
these limitations, we achieved three of the four
milestones originally outlined in the project pro-
posal: 1) setting up the environment for one
drone, 2) getting two drones to safely arrange
themselves in an arbitrary line, and 3) scaling
to multiple drones on simple shapes. Due to
challenges with model complexity, we were un-
able to complete the last milestone: scaling to
more complex shapes (see Section 5.2).
Another goal outlined in the proposal was
to utilize a simulation of the drone swarm to
demonstrate the efficacy of our controller in
forming shapes and to aid in the development
and design of the controller as the swarm size in-
creases. Two simulation programs were consid-
ered, Gazebo and AirSim, which are both recom-
mended for Ubuntu. Gazebo is primarily used
with additional drone simulator packages, most
of which contained instructions for older ver-
sions of Ubuntu, before 18.04 LTS. Thus, AirSim
was selected. Building Unreal Engine, which is
needed for AirSim, took half a day before the
virtual hard disk dedicated to the program ran
out of space. Due to time constraints, the simu-
lation component was removed from the project.

13Tested on an AWS machine with 36 CPUs, 72 GiB
RAM, and a 25 Gbps network bandwidth



This project leaves a number of topics open to
future work, primarily improvements on model
efficiency and on the collision avoidance algo-
rithm. Interesting future work could include
proving efficiency proprieties in addition to the
safety conditions proved in this project, prov-
ing a time-triggered controller rather than the
event-triggered one presented in this paper in
order to make the ideas in this paper more con-
crete and realistic to implement, or utilizing sim-
ulation to demonstrate the efficacy of the drone
formation control. More open-ended future work
includes: implementing strong safety conditions
that allow non-linear paths for drones between
their initial and final points or implementing
safety conditions that allow drone paths to inter-
sect without collisions due to the time at which
those paths intersect; or working on approaches
to reduce the branching factor as the number of
drones in the model increases in order to make
complex models tractable to prove. A final ques-
tion for future work would be to implement the
point assignment algorithm, a form of combina-
torial optimization, in KeYmaera X in order to
allow the assignment of drones to final locations
to occur at runtime rather than as a preprocess-
ing step.

7 Deliverables

The deliverables for this project include:

7.1 KeYmaera X Models, Initial
Images, Discretized Images

7.1.1 Two Drones, Two Dimensions
(2_drone 2 dimensions folder)

e two_drone_combined.kyx, KeYmaera X
model for the 2 drone case in 2D (model not
proved). See Section 4.9 for more details.

e two_drone_independent.kyx, KeYmaera
X model for the 2 drone case in 2D (model
not proved). See Section 4.9 for more de-
tails.

7.1.2 Triangle (triangle 3 folder)

e triangle.png, original image of a triangle

e discretized_triangle.png, discretized
image of a triangle.
e triangle_3_Proof.kyx, KeYmaera X

model for the 3 drone, triangle case along
with the proof.
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7.1.3 Pentagon (pentagon 5 folder)
e images.png, original image of a pentagon
e pentagon_5.kyx, KeYmaera X model for

the 5 drone, pentagon case (model not
proved).

7.1.4 Circle (circle 8 folder)

e circle.png, original image of a circle.

e circle_8.kyx, KeYmaera X model for the
8 drone, circle case (model not proved).

7.1.5 Mickey Mouse(mickey mouse 12
folder)

e Mickey_Mouse_head_and_ears.png, origi-
nal image of Mickey Mouse ears.

dis-

e Discretized Mickey Mouse.png,
cretized image of Mickey Mouse ears.

e mickey_mouse.kyx, KeYmaera X model for

the 12 drone, Mickey Mouse case (model not
proved).

7.2 Python Scripts

e point_assn.py for point assignment.
e discretize_image.py to discretize an im-
age. See comments in the script for the dif-

ferent settings and filenames used for each
image.

8 Contribution

Andrew Stange
e Model development and proofs

e Semantic proof and model complexity re-
duction

Allison Lo
e Image discretization
e Point assignment algorithm
e Simulation research

Both authors contributed equally to the white
paper, proposal, and final paper.
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