Recitation 5: Time-Triggered Control and Differential Invariants
15-424/15-624/15-824 Logical Foundations of Cyber-Physical Systems
Notes by Yong Kiam Tan, edits by Katherine Cordwell (kcordwel@andrew.cmu.edu)

1 Announcements

e Theory 3 is now available.

e Theory 2 will be graded soon, watch on Piazza for announcements when feedback is
available.

2 Review: Lab 1 Veribot

In recitation we discussed common mistakes on the assignments, but we will not give out
solutions in the recitation notes. If you have questions, come talk to us.

3 DMotivation and Learning Objectives

For the first half of this recitation, we will work on changing the event-triggered model from
the last recitation into a time-triggered one. Recall that at the end of last recitation, we
considered refining the event-triggered model to be more realistic by making the players
unable to react when the velocity of the ball is too high. Time-triggered control is another
refinement of the event-triggered model: it models the periodic nature of the controller (in
this case, the players).

Both the event- and time-triggered controllers were proved by solving the differential
equations. For more complicated ODEs we will not, in general, be able to solve them
directly. The second half of the recitation starts looking at differential invariants, which is
a proof technique for proving properties about differential equations without solving them.

4 Time-Triggered Ping Pong

As a reminder of the model from last week, the players Forrest and Dan are at positions
l,r respectively, the ball’s position is & and its velocity is v. The goal is to show the safety
postcondition [< x < r, i.e., the ball stays between the two players no matter how many
times the players hit the ball.

To simplify matters, we shall forget about the players Forrest and Dan, and instead think
of both players as controlled by a central computer which is hitting the ball. This computer
has a control loop that runs every 1" > 0 seconds, which allows it to fire the ping pong
paddles to hit the ball back from either the left or right boundaries. One possible shape for
a model of such a controller is:

(Ctrl; Plant)”

1

where C'trl models some discrete decisions made by the controller, Plant models the continu-
ous physics that happens when the controller is sleeping, and the loop models the controller’s
periodic behavior.

Our plant model for continuous physics is relatively simple. We will just need to add a
timer to the motion equation for the ball:

Plant £ t .= 0;{ =v,t' =1&t < T}

Contrast this with last week’s event-triggered model, where we added a choice between
two differential equations to account for the event when z = [V x = r. Here, there is only
one system of differential equations, where the continuous physics is allowed to run for any
duration 0 < ¢t < T'. This non-determinism means that the time bound T should be more
accurately thought of as an upper bound on how long the controller can sleep. This makes
physical sense: we can never be exactly precise about how long a controller will sleep for,
but we will certainly often be able to give a limit on the duration. Like last week, our goal
is to prove a formula of the form:

Pre — [(Ctrl; Plant)* |l < x <r

where Pre, Ctrl are the parts of the time-triggered model that we will determine next.

4.1 Time-Triggered Control (Single Control Cycle)

Thinking about worst-case scenarios is useful when designing time-triggered controllers.
Here, one way of figuring out the ping pong controller is to put ourselves in its shoes and
ask the following question:

“If I waited another control cycle of 7" seconds, would it be too late to react?”

If we let Plant execute, then (in the worst case) the controller might only be able to
react 1" seconds later. The controller must therefore ensure that whatever control decision it
makes would allow it to react safely in the next cycle even in this worst case. To understand
the potential issues, let us first remove the loop and focus on one control cycle:

Pre — [Ctrl; Plant|]l < x <r

To get us started, here is the controller from last week:

Ctriepent dEefifm:l/\v <0Vz=rAv >0 then v:=—v
Note: Remember that “if P then o” can be expressed in hybrid programs
as 7P;a U 7=P. The 7-P is very important for avoiding an overly constrained
controller /vacuous behavior. I didn’t do a good job of addressing this in class,
so please ensure that you see why.

Exercise 1:
Is this controller safe for our time-triggered model?

Answer: It is clearly not going to be safe. For example, if = was already very close but not
equal to r, and it was flying with velocity v > 0 then this controller we will not react. In
that case, if + vT > r then the ball could have violated the right bound before we next
get a chance to react.

Similarly, if the ball was flying with velocity v < 0, and x + vT" < [, then the ball could
leave the left bound. Therefore, our first fix to the controller shall be to make sure that we
react in either of the scenarios described above:

C’trldzefifx—i—vT<l/\v§0v:L’+vT>r/\v20thenv::—v

Notice that adding time-triggered control has forced us to make our physical interpreta-
tion of the model more realistic. We previously said that the players were exactly standing
at positions x = [and x = r and could only hit the ball at those positions. As we just saw,
however, it is impossible to make such a system safe with time-triggered control — we must
react earlier than when the ball is already at the boundaries.

Now that we have a candidate controller, let us start with a simple precondition where
the ball is initially between the two boundaries and flying towards the right boundary, i.e.,

PredEEflngT/\vZO/\T>O

Exercise 2:
Is the system safe?
Answer: Not quite. The problem is that the ball could already be traveling so fast that, for
example, if we hit it back near the right boundary, it will leave the left boundary before we
can react!

This is not a problem that can be solved directly by changing the controls.E] We already
know from our earlier argument that the controller must react and hit the ball when it is too
close to the right boundary. Thus, we will need additional assumptions about the system.

Exercise 3:

What assumptions should we add to the system?

Answer: Suppose that the ball is heading towards the right boundary with v > 0. By the
earlier argument, we may be hitting the ball as early as when it is at position » —vT. Next,
the ball will fly with negative velocity towards the left boundary but we the controller may
not get to respond until 7" seconds later. Thus, the ball might reach » — 20T and so in order

for the system to be safe, we need to assume that the boundaries are at least separated by
[<r—20T.

4.2 Time-Triggered Control (Loop)

Given the above controller and assumptions for a single control cycle, it is time to see if our
reasoning also works when we add back the loop. To be precise, here is the formula with all

1Unless we also allow the controller to set velocity explicitly rather than just flipping its direction.

the abbreviations completely expanded out:

[<x<rAv>0AT >0AI+20T <r
[(ifx+vT<l/\vSO\/x—l—vT>r/\v20then U= —0;
ti=0;{z' =v,t' =1&0<t<T})]

[<z<r

Exercise 4:

Is the controller (and preconditions) safe for the time-triggered model (with loops)? If so,
what loop invariant should we use in its proof?

Answer: Yes, the loop invariant is | < = < r Al + 2|v|T < r. This model is rather special
because we only needed to look ahead for one control cycle. In general, you may need to
consider the effect that delaying your reaction for one control cycle could have on safety for
the entire loop.

Note: In class, we noted that the time-triggered car model in Lab 2 is indeed
an example where you need to consider the effect of your control decision for all
future loop iterations. Intuitively, this is because controlling acceleration has an
“inertial” effect on velocity.

Note: In class, we briefly looked at a model of the new time-triggered controller
in KeYmaera X. The model is called rec5time in the archive. We went through
the proof very quickly, so maybe you will want to go through it more slowly on
your own.

The proof of this time-triggered controller (and last week’s event-triggered controller)
both make use of KeYmaera X’s built-in ODE solving capabilities. Unfortunately, not many
ODEs are solvable in closed form with polynomial solutions (if they are solvable at all). The
ones that do, like in our current ping-pong model, are rather boring from a modeling per-
spective. Further, although KeYmaera X’s ability to solve ODEs has improved significantly
from previous versions, dL provides much more efficient ODE reasoning techniques for ODEs
than directly solving them.

As a sneak preview, the archive has a proof of the same model but only replacing the
tactic that solves ODEs with differential invariants. Try out both proofs on your machine
and see if there is a difference in speed. On the TA’s machine, they are both quite fast (but
again, the differential equations are quite simple here, so solving them doesn’t introduce a
huge burden).

We could also imagine refining our model of physics to account for air resistance when
the ball is in flight, for example by adding a drag on the velocity:

' =v,v = —kv?

Exercise 5:
If you are feeling brave, solve the above ODEs explicitly for the closed form general solution.
To simplify matters, take kK = 1 and the initial velocity vg > 0.

4

Answer:
Solving for velocity first yields:
-]_ —|— ’Uot

v(t)
Solving for position yields:
x(t) =In (vot + 1) + xg

Notice that the solutions are much complicated than what we started with: they are not
even expressible using polynomials. If you thought solving these equations was complicated,
think about how you could formally convince a computer that these are the solutions, and
that these solutions imply your safety property!

In fact, if vg < 0, then the solution above does not even exist for all time. Fortunately,
for us, that situation is not physically possible because air resistance acts in the opposite
direction to velocity. However, it is yet another reason why simply attempting to solve the
ODEs symbolically for a global solution will not work.

We will not (yet) be able to prove properties for the more advanced model of physics but
we will start getting there by looking at differential invariants.

5 Differential Invariants

The central insight behind the ODE reasoning principles in dL is that we can work directly
with the differential equations rather than their solutions. In order to do this formally, we
will need a way to work syntactically with derivatives.

5.1 Syntax and Semantics

Let us start by extending the syntax of dL terms with a case for differential variables 2’ and
one for differential terms (e)”:

en=--|2'| (e

Of course, once we add syntax, we also need semantics—that is, we need some meaning
for w]z'] and w[(e)’], where w is an arbitrary state. But this isn’t actually so easy. We want
differential terms and variables to have a meaning that corresponds to the reason we added
them in the first place—so, for example, intuitively we want (e)’ to take the value of the
derivative of term e along the solution to a differential equation.

A question immediately arises: which ODE are we talking about? We are defining the
semantics of terms w(e] with respect to some given state w without reference to any specific
ODE. Should we re-define our semantics to account for ODEs? Well, then which ODE should
we use for the ordinary terms that do not mention any derivatives? The solution to all of
these questions is to move to a differential-form understanding of the differential terms.

The key insight is to insist that states give value to the differential variables /. (That is,
we can look up the value of 2’/ in w in the same way that we can look up the value of variable
x in state w.) Then we’ll define the semantics of the w((e)’] using the w[z] as building
blocks.

Moreover, whenever we have an ODE in mind, we want the states along the solution to
capture the meaning of the relevant differential variables in a meaningful way—i.e. a way
that is directly given by the ODE. This is rigorized in the semantcs of ODEs.

[' = f(z) & Q)] = {(w,v) : (0) = w except at 2’ and ¢(r) = v for a solution ¢ : [0,7] = S
of duration r satisfying ¢ = 2'=f(z) A Q, }

where ¢ = 2’'=f(2) A Q means for all times 0<z<r, ¢(z) € [[2'=f(z) A Q]] with ¢(z)(a") =
%(z) and ¢(z) = ¢(0) except at x, 2’

Let’s break this definition down a bit and see what it tells us about the meaning of dif-
ferential variables (with some color-coding!):

e As before, variables that aren’t changing in the ODE are constant

e The initial value of 2/ in w doesn’t matter because we don’t really know anything about
what z/ means in an arbitrary w. It’s only once we're along the solution ¢ that 2’ has
a meaning connected to the ODE—so in ¢(0), 2’ suddenly takes a meaning connected
to the ODEs.

e The initial value of x does matter—that’s our initial condition. So ¢(0) and w must
agree on the value of x.

e 1/ has the meaning we want along the ODE—this is captured in ¢ | 2'=f(z) A Q.

e The value of z is updated per the value of 2’ along ¢

e Oh, and we have a domain constraint () which behaves as usual.

To recap: we're treating w[z'] = w(a’) as a variable lookup, and saying that these '
take on special meaning in states along a solution to an ODE (per the above definition of
the semantics of ODEs). In an arbitrary state, we can’t really ascribe any significance to
the value of w(z’). And now that we really know what the differential variables mean, we’re
ready to turn to differential terms. The semantics of a differential term is defined as follows:

ol©1=Y) D)

zeVv

Let us break down the various parts of this definition step-by-step.

1. Differential variable lookup w(z').

To formally understand this, we will now require that states w not only map variables
x to real values, but also all of their corresponding primed symbols variables x’ to real
values as well. Thus, w(z’) simply means look up the value of variable 2 in state w.

6

2. Partial derivative %.

Recall that [e] is a function S — R it therefore makes sense for us to consider its
partial (spatial) derivatives with respect to the input Coordinatesﬁ It is just like any

def
other multivariate function, e.g., f : R? — R = 22 + 9%, with a—i = 2, g—£ = 2y, where

P
%, % are both functions R?> — R.
y

All of the partial derivatives, %, are again functions § — R.

3. Evaluating partial derivative at w, i.e., M(w).

oz
As we have just seen, 86[[;]] : S — R maps an input state to a real value.

4. w(z') - %(w)

Given that both w(z’) and %(w) are real values, it now makes sense for us to talk
about their product, which will be another real number. We will better understand
the use of this product shortly.

5. ey w(@) - A (w)

Finally, all of the above was done for a single variable x € V. The semantics of w[(e)’]
is to sums over all possible variables. This is well-defined because there are only finitely
many variables that can be mentioned in any term e. The spatial derivative % for
variables z not mentioned in e is simply 0 and can be dropped from the sum.

5.2 The Differential Lemma and the Differential Assignment Lemma

Solutions of differential equations are where our new understanding of differential terms will
be put to use. Consider a solution ¢ : [0,7] — S with 7" > 0 and ¢ = {2/ = f(2)} A Q.
Since each time ¢(t) is a state, it makes sense to consider the value of the term e along
the solution as a function of time: ¢(¢)[e]. Now, let us consider the time derivative of this
function, which tells us how the value of e changes along the solution:

dp(t)[e]
dt
By applying the multivariate the chain rule, for time 7:
do(®)[e] 5~ 9lel dp(t)(x)
i 0= e e
But by definition of a solution, we already know %(7) = p(7)(2'), and so:
do(t)|e Jle ,
WOl) = 5 A o)) - o))
eV

2Provided that the [e] is sufficiently smooth so that all of its partial derivatives exist.

7

Finally, by definition, the RHS is the differential term (e)’ evaluated at o(7):

WO () — oy per)

The last equality yields the crucial differential lemma, i.e., that the value of the differential
e’ coincides with the time-derivative of the value of e along solutions of an ODE.

This lemma gives us license to work directly with differentials when we want to reason
about the derivatives of terms along solutions to an ODE. Differentials are useful because
they have a well-defined semantics that is independent of the ODEs.

Note: In class we didn’t talk about the derivation of the differential lemma.
In addition to the differential lemma, we have the differential assignment lemma: If

¢ Ea'=f(x) NQ then ¢ = P < [2/ := f(z)]P.

Question: Why does this make sense?
Answer: Intuitively, we’ve just seen how along solutions, differentials mean what we ex-
pect them to. Slightly more rigorously, this again comes from the semantics of ODEs.

Question: Why is this useful?
Answer: Very informally, we may find it helpful to remove the funny primes because that
helps us safely elide the ODEs.

5.3 Examples

Note: This section gives more details than we had time for in recitation.

Let’s do some concrete examples! Say we have the ODE 2/ = 1 and initially x = 0.

Say that we want to evaluate 2’ in the state ¢(k), where ¢ is the (unique, global) solution
to ' = 1. Well, we know that ¢(k)[[z]] = ¢(k)(z’), because as discussed before, differential
variables are treated like variables (i.e. their evaluation in a state is just variable lookup).
Now, using the semantics of differential equations, ¢(k) € [[z = 1]], so ¢(k)(2') = 1.

How do we calculate what ¢(k)(z) is? We know from the semantics of differential
equations that %(k) = 1. Because k was arbitrary, this tells us that % =1, or
o(t)(x) =t, so ¢(k)(z) = k. Another way of calculating ¢(k)(z) would be to notice that the
solution to the ODE is ¢(t) = {x — t}, so ¢(0)(x) =0, ¢(1)(z) = 1, ¢(t)(x) = ¢, etc—and
so in particular, ¢(k)(z) = k. Notice that these calculations give the same value (as they
should—it’s a good sanity check).

Now let’s say that we want to evaluate the term (x?+2x)" in the state ¢(k). One way is to

use the differential lemma: ¢(k)[[(2?+22)']] = “OE22l (1) Now, (t)[[a*+22]] = ¢(t)()-
o(t)(x)+2¢(t)(z), and we've just calculated that ¢(t)(z) = t. So ¢(t)[[x*+2z]] = t?+2t, and
now plugging this into the differential lemma, %:Hx”(k) = d(til—?t)(k) = (2t+2)(k) =
2k + 2.

Or, if we didn’t use the differential lemma, we could instead apply the definition directly

and caleulate ¢(k)[[(?+22)]] = 6(k)(2')- L5206 (k)). Here, to be fully precise, [[2?+2x]]

is a function from the set of states to R, so its derivative is also a function from the set of
states to R which we are evaluating at the particular state ¢(k). In ¢(k), x evaluates to k,
so when we evaluate the function w — 2w(x) + 2 at ¢(k) we get 2k + 2—which aligns with
our previous calculations.

5.4 Differential Axioms

Lemmas are great, but what’s even more useful? AXIOMS, of course! The differential axioms
of dL allow us to manipulate differential terms. Given the differential lemma, the shape of
these axioms should be unsurprising, because they remind us precisely of the standard rules
for working with derivatives:

C())

/

+) (f) +(9)
9 =) -g+f (9
)' f’g f(g)’

(
(
(
(

f
f-

Using these axioms in the concrete example we’ve just discussed in Section 5.3 gives:
o(k)[[2z - 2" + 22']] = 2¢(k)[[z]] - ¢(k)[[z'] + 2¢(k)[[z’]]. Remember that we know that
o(k)[[2']] = ¢(k)(«") and we previously calculated that ¢(k)(z’) = 1 and ¢(k)(x) = t.

Plugging these in gives ¢(k)[[(z*+2x)"]] = 2k+2, which agrees with our previous calculations.
In addition, the following differential effect axiom is sound:

(DE) [z = f(2) &Q}P & [{2" = f(z) & Q}][2":= f(x)| P

Axiom [DE] allows us to replace the postcondition P on the left with a box differential
assignment [2':= f(z)]P. Tt is sound because we required that the differential variables x’
take on the values of the RHS along solutions of an ODE. Intuitively, DE is much like the
differential assignment lemma, but as an axiom.

We also have the DI axiom:

(DI) ([2' = f(x)le =0 4> e = 0) = [2" = f(x)](e) =0

Intuitively this is saying that if the rate of change of e along the differential equation is
0, then e stays constant. You could actually replace the 0’s on the LHS with any constant c.
Note: We will cover the [DE| axiom (and the [DI axiom) in more detail next week
after the lectures on the rest of the ODE axioms.

5.5 Differential Invariants - Equations

We can now put the development of differentials to use. The main proof rule for working
with them is called differential invariants. Skipping ahead to the proof rule:

F 2= f(x)](e) =0
e=0F[{z/= f(x)}le=0

This rule intuitively says that if we want to prove an invariant e = 0 for the ODE
x' = f(x), then all we need to do in the “inductive step” is to prove that its derivative along
the solution is always 0. Note: You can think of differential equations as loops that
happen continuously, and of differential invariants as the continuous analogue of
loop invariants.

Note: The rest of these notes give more details than we had time for in
recitation.

Let us zoom in on our proof of the time-triggered ping-pong model and see how differential
invariants could be used in its proof. We are going to prove:

(dL.)

r=x0,t=0F[{z' =v,t' =1}z — (xo +vt) =0

Here is a proof:

*
& Fo—(040+v) =
=] F o =)t =12’ — (:co—i—v’t—i—vt’):O

F [=0t = 1] (v — (wg +vt)) =0
@x—(xo—l—vt)—OI—[{x’—v t'=1}x — (zo + vt) =
r=2x0,t=0F[{2' =0v,t' =1}z — (xg+ vt) =

0
0

This shows that if x = x¢,t = 0 initially, then — (zo + vt) = 0 is an invariant of the
differential equation. Taking a step back, we have simply solved the ODEs using[dIl In fact,
KeYmaera X essentially does this reasoning internally, but the reason our proof was much
faster is that it bypasses all of the additional manipulation that KeYmaera X has to do for
solving an ODEs in general.

However, can be used to prove properties of ODEs beyond just their solutions. In
class, we already saw how to prove circular invariants, but [dI] applies beyond just circles. As
an example, consider the following system:

, —x+3y , —3dr+y
Tr = 7y =
4 4

Here is a plot of it:

10

N
)
—_—

=
WS—

"N

|
—_
T T T
—

/7%
f
W
N\
Y

/"
f
|

\
\

The solutions of this system always trace out a rotated ellipse in the plane. One such
solution starting from the point x = 0,y = 1 is plotted in red.

It is certainly possible to find the general solution for this differential equation, which
will be a complicated expression involving sums of sines and cosines. The point, however,
is that we will very often not need to know the solution precisely, but rather only need to
know properties of the solution.

More concretely, let us suppose that our initial state is the red point above, and we want
to show that the solution never reaches an unsafe state where y > %

We can now prove this safety property using Idl using the fact that the ellipse in red is
given by the equation 3(z% + y?) — 2zy — 3 = 0.

Here is the proof:

*
320 =EF 4 2y=TEY) — (=Y + =) = 0
=l E o= =Y = 32w + 2yy') — 2’y +ay') =0
o= =l = 2R (3% + %) — 20y —3) =0
M2 +y?) — 20y —3=0F [{o/ = =%y = B2 + y?) — 20y —3 =0
i r=1ly=0F[{a'= ="y = 3% +y°) — 20y —3=0
r=1Ly=0F {2 = =3y = BEy], < 3

In the step, we have strengthened the postcondition because 3(z*+y?) —2zy—3 =0
implies y < % (this can be seen from the plot). In the [cufl step, we proved that the initial
point x = 0,y = 1 lies on the ellipse.

We then used Idll which produced a rather complicated-looking arithmetic term at the
end. Fortunately, after a little bit of algebra (or asking Mathematica), all of the terms cancel
so that the final premise closes by real arithmetic. Even though the math was a little hairy,
it was still far better than solving the ODE and then analyzing its solution. In fact, our

11

proof only used the fact that the initial point lies on the ellipse. We could have proved this
safety property for all points on the ellipse.

Exercise 6:

Work through the proof yourself from another initial point, say z = 1,y = 1.

Answer: The equation of the associated ellipse is 3(z% + 3?) — 22y — 4 = 0. Make sure to try
the calculation after the [dI_] step yourself. Notice that the calculation after the [dI_] steps
are almost exactly identical. Why? (We will see more of this in lectures next week).

Solve the ODE explicitly for a closed form solution and compare its complexity to the proof
1 . t t . t
x(t) = 1 —V2zgsin | —= | + 4z cos [—= | + 3v/2yosin
SSin(%)

we did above.
V2 V2)
When yo = 0,29 = 1, y(t) = — NG , which takes on the maximum value 2~ ~ 1.06 < 1.5.

Exercise 7:
Answer: Here is the solution from Mathematica.
7)
(t) = 1 (—3\/53@ Sin(t >+\/§ sin(t)+4 COS(t))
) 4 0 \/5 Yo \/§ Yo \/§
2v/2

12

	Announcements
	Review: Lab 1 Veribot
	Motivation and Learning Objectives
	Time-Triggered Ping Pong
	Time-Triggered Control (Single Control Cycle)
	Time-Triggered Control (Loop)

	Differential Invariants
	Syntax and Semantics
	The Differential Lemma and the Differential Assignment Lemma
	Examples
	Differential Axioms
	Differential Invariants - Equations

