Recitation 5: completed
Recitation 5

Announcements

- New quiz submission system

Today

- Key YmaeraX demo: a time-triggered controller
- dI and differentials

Appetizer: a variance iricil

Question:
Is this axiom sound?

$$
\left[x^{\prime}=f(x) \& a\right] P \leftarrow \forall^{\vdash} \geqslant 0 \quad[x:=y(t)] P
$$

$$
\left[x^{\prime}=f(x) \& Q\right] \text { true (weakening) }
$$

$$
\leftarrow \forall^{t} \geqslant 0 \quad(\underbrace{\left(\forall 0 x s i t \quad[x:=y(t)] Q_{i}\right.}_{\text {covariant position }}) \rightarrow[x:=y(t)] P)
$$

- To read after the digression below

Digression: variance
P is said to be stronger than Q, ff $P \rightarrow O$ is valid. Example:

- An stronger than A
- Av weaker than A
- $x=0$ stranger than $x \geqslant 0$

$$
\mathrm{P}^{+} \wedge \mathrm{O}^{+}
$$

$$
P^{+} \vee Q^{+}
$$

$\neg P^{-}$

$$
[\alpha] P^{+}
$$

$\langle\alpha\rangle P^{+}$

$$
\forall \times P^{+}
$$

$$
P \longleftrightarrow Q \quad \underset{\substack{\text { neither variant } \\ \rightarrow \text { invariant }}}{\substack{\text { ar covariant }}}
$$

$$
\left(P^{+} \rightarrow C^{-}\right) \rightarrow R^{+}
$$

Trick: if you weaken a sound axiom, 1 it is still going to be sound.

KeYmaera X demo

Setting: 1D ping-pong controller

Event-triggered controller

See code (Finishing from last time)

Time-triggered controller

zane where the controller must read t

We must have
We must have
$r-2 v T \geqslant l$
$\ell-2 u T \leqslant r$
$\Rightarrow 2 v T \leqslant r-l$

$$
\Rightarrow \quad 2(-v) T \leqslant r-l
$$

$2|v| T \leqslant r-l$

Differential Invariants

Consider the system: $\left\{\begin{array}{l}x^{\prime}=-y \\ y^{\prime}=x\end{array}\right.$

We want to prove:

$$
\begin{gathered}
x^{2}+y^{2}-1=0 \rightarrow \\
{\left[x^{\prime}=-y, y^{\prime}=x\right]} \\
x^{2}+y^{2}-1=0
\end{gathered}
$$

Solution 1:

- Solve the ODE:

$$
x(t)=\cos (t+\varphi), \quad y(t)=\sin (t+\varphi)
$$

- $x^{2}+y^{2}-1=\cos ^{2}(1+\varphi)+\sin ^{2}(1+\varphi)-1=0$

BUT: $\partial \mathcal{L}$ does not have trig functions.
Also, it want always be possible to solve ODEs.

Solution 2: dI

$$
\frac{\vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[\left\{x^{\prime}=f(x)\right\}\right] e=0} \quad d I=
$$

$$
\begin{aligned}
& \frac{*}{1} 2(-y) x+2 y x=0 \\
& \frac{R}{\vdash\left[x^{\prime}:=-y\right]\left[y^{\prime}:=x\right] \quad 2 x^{\prime} x+2 y^{\prime} y=0} \\
& \vdash\left[x^{\prime}:=-y\right]\left[y^{\prime}:=x\right] \quad\left(x^{2}+y^{2}-1\right)^{\prime}=0
\end{aligned} \quad \therefore^{\prime},+^{\prime}, \ldots \times 2,
$$

$$
x^{2}+y^{2}-1=0 \vdash\left[x^{\prime}=-y, y^{\prime}=x\right] \quad x^{2}+y^{\prime}-1=0
$$

Bonus (anticipating lecture 11)

$$
\frac{e=0 \vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[\left\{x^{\prime}=f(x)\right\}\right] e=0}
$$

Is this sound?
(oops!)

$$
\frac{*}{x^{2}=0 \vdash 2 x=0} \mathbb{R}
$$

$$
x^{2}=0 \vdash\left[x^{\prime}=1\right] x^{2}=0
$$

Differentials

So many primes everywhere...
We should add them to the syntax and give them a semantics.

$$
e:=c|x| x+y|x \cdot y| x^{\prime} \mid(e)^{\prime}
$$

Semantics

$$
\omega\left[x^{\prime}\right]=\omega\left(x^{\prime}\right) \quad \text { State }=\operatorname{Var} \cup \operatorname{Var}{ }^{\prime} \rightarrow \mathbb{R}
$$

$$
?, \overbrace{\pi-m!}^{\in \mathbb{R}} \text { makes no sense! }
$$

$$
\omega \llbracket(e)^{\prime} \rrbracket=\frac{d(\omega \mathbb{L} \rrbracket)}{\partial t}
$$

$$
\omega \llbracket\left(e^{\prime}\right) \rrbracket=\sum_{x} \omega\left(x^{\prime}\right) \frac{\partial \llbracket e \rrbracket}{\partial x}(\omega)
$$

$$
\llbracket(\overbrace{x^{2}+y^{2}}^{e})^{\prime} \rrbracket=?
$$

$$
\llbracket e \rrbracket=\underbrace{}_{\underbrace{\overbrace{\left[x^{2}+y^{2} \rrbracket\right.}^{F}}_{\text {state } \rightarrow \mathbb{R}}: \quad \mathbb{R}^{2} \rightarrow \mathbb{R}} \quad(x, y) \mapsto x^{2}+y^{2}
$$

$$
\begin{aligned}
& \omega\left[e^{\prime}\right]=\frac{d(F(x(t), y(t)))}{d t}=\frac{d F}{d t} \text { for short } \\
& \frac{d F}{d r}=\underbrace{\frac{\partial x}{d t}}_{x^{\prime}} \underbrace{\frac{\partial F}{\partial x}}_{2 x}+\underbrace{\frac{d y}{d t}}_{y^{\prime}} \underbrace{\frac{\partial F}{\partial y}}_{2 y} \\
& \Rightarrow \omega \llbracket\left(x^{2}+y^{2}\right)^{\prime} \rrbracket=\omega\left(x^{\prime}\right) \cdot \underbrace{\omega[\omega\left(y^{\prime}\right) \cdot \underbrace{\omega \llbracket y \rrbracket}_{\frac{\partial \llbracket \llbracket \rrbracket \rrbracket}{\partial y}(\omega)})}_{\frac{\partial \llbracket[2 x \rrbracket}{\partial x}(\omega)} \\
& =\sum_{x} w\left(x^{\prime}\right) \cdot \frac{\partial[e]}{\partial x}(w)
\end{aligned}
$$

Next steps

- Updating the ODE semantics
- Differential lemma

If we do not have time to cover this, the textbook has great explanations (~ 3 pages)

$$
\begin{aligned}
& (\omega, v) \in \llbracket x^{\prime}=f(x) \& a \rrbracket \\
& \Leftrightarrow \\
& \exists \varphi:[0, T] \longrightarrow \underbrace{\text { State }} \\
& \text { s.). } \varphi(t) \in \underbrace{\llbracket x^{\prime}=f(x) \wedge a \rrbracket}_{\text {FORMULA }} \forall^{t} \\
& \text { (not HP) }
\end{aligned}
$$

If φ is a trajectory respecting all these conditions. Hen for any term e :

$$
\varphi(t) \llbracket e^{\prime} \rrbracket=\frac{d(\varphi(\vdash) \mid L \downarrow)}{d t}
$$

aKa: prime terms have the right value along the ODE trajectory.

