
Recitation 4: Eventful Tactical KeYmaera X Proofs
15-424/15-624/15-824 Logical Foundations of Cyber-Physical Systems

Notes by: Brandon Bohrer
Edits by: Yong Kiam Tan and (later) Katherine Cordwell (kcordwel@cs.cmu.edu)

1 Announcements

• Theory 2 and Lab 2 have been released. Read the instructions for updating KeY-
maera X and for submitting in pairs (if applicable) carefully! Also, remember betabots
are due before noon on the relevant duedate.

• Assignment 1 will be graded soonish.

2 Motivation and Learning Objectives

The topic of today’s recitation is how to do more complicated proofs in KeYmaera X, es-
pecially by writing your proofs as programs called tactics. This will be useful for Lab 2,
because some of your models will be complicated enough that simply pressing the Auto

button will not work anymore!
Note: In this recitation, we used KeYmaera X 4.7.2.

For our running example we will develop an event-based controller as discussed in Thurs-
day’s lecture, and review common modeling mistakes as they appear in event-based con-
trollers.

The scenario we will be modeling is a ping-pong match between two players: Forrest and
Dan. Forrest and Dan are both inhumanly good at ping-pong, so our safety theorem will
say that the ping-pong ball never gets past either of them. Forrest is standing on the left at
position l and Dan is standing on the right at position r and the position of the ping-pong
ball will be named x so we could start our model by saying:

Pre→ [(Ctrl; {x′ = v&Q})∗]l ≤ x ≤ r

At this point we know the safety postcondition (l ≤ x ≤ r) and at least something about
the dynamics (x′ = v where x is the ball’s position and v is the ball’s velocity). Next, we
will need to add the controller (Ctrl), domain constraint (Q), and preconditions (Pre).

Exercise 1:
Suggest some preconditions that we will definitely need in the system.
Answer: Since the loop can always run for no iterations, we will definitely at least need the
preconditions to imply the postcondition l ≤ x ≤ r. In addition, it will probably be nice if
the players were not standing on the same spot, or more precisely, l < r. For simplicity, we
shall just assume that the ball is in flight already, i.e., l < x < r, which also implies l < r.

1



Do we need any preconditions on v? The ball is going to travel both ways eventually, so
maybe we will not need a precondition. But for now we will make life simpler by assuming
Forrest hit the ball most recently, so v ≥ 0.

3 How Not To Model An Event-Driven System

Let us start with the evolution domain constraint. Our first guess might be something like
l ≤ x ≤ r. However, this is incorrect, as we saw in last week’s recitation: it is a major red
flag if you manage to prove safety while totally ignoring the controller. Your model is most
likely broken.

As an example, let us just add a totally bogus controller to the model and prove that it
is “safe”. Here is the arbitrarily chosen controller we will use:

Ctrlbad
def≡ v := v + 1 ∪ {v′ = 5}

Since this is a KeYmaera X recitation, we will do the proof in KeYmaera X. We already saw a
similar proof last week, but this time, we will do it manually and also explore KeYmaera X’s
tactics along the way. Here is the formula that we will prove valid:

v ≥ 0 ∧ l < x < r → [(Ctrlbad; {x′ = v& l ≤ x ≤ r})∗]l ≤ x ≤ r

Note: The model for this is called rec4bad1 in the posted code.
Note: Caveat – this controller was chosen so that KeYmaera X’s heuristics will
fail to complete the proof fully automatically. For simpler controllers, KeY-
maera X might even be able to prove the corresponding formula fully automati-
cally. Always be careful if your proof succeeds much faster than expected (e.g.,
instantly)!

3.1 Initial Steps

The simplest way to do manual proofs is by mousing over the formula and clicking. Note
that different sub-formulas will highlight based on where you mouse. Clicking will perform
the “most obvious” next step for the highlighted formula, The “most obvious” step is usually
what the master tactic tries when it is unfolding your formula.

In a sequent calculus, this is somewhat obvious for the propositional connectives: you
simply use the appropriate rule for that connective. Similarly, for most of the hybrid program
operators, there is really only one choice of axiom that can be applied.

In our case, the topmost logical connective in the formula that we want to prove is an
implication. KeYmaera X knows what to do for implications on the right (recall sequent
calculus from last week), and it gives us back a new goal to prove:

2



Like you would do if you proved this by hand, KeYmaera X automatically used the →R
rule. You can tell this is what it tactic did by observing the label next to the horizontal line
in the proof. The Tactic box shows that you applied the implyR tactic at position 1:

Notice that the antecedent has the conjunction v ≥ 0 ∧ l < x < r in it. We could break
this apart by clicking on it repeatedly (which would apply the ∧L rule), but this unfolding
is easy enough that KeYmaera X’s automation should be able to handle it.

By clicking the Unfold button, or simply typing in unfold, KeYmaera X will expand
away all the “easy” logical connectives/programs. Now we have three assumptions, one for
each conjunct!

But now KeYmaera X is stuck: the next proof step is not quite so obvious.

3.2 Loops Invariants

The top-level operator on our new formula is a loop (·)∗. Recall the loop rule from lecture:

(loop)
Γ ` J,∆ J ` [α]J J ` P

Γ ` [α∗]P,∆

The reason KeYmaera X got stuck unfolding the loop is because it does not know what
formula to use as the loop invariant J .

Exercise 2:
Suggest a loop invariant.
Answer: The loop invariant in this case is fairly straightforward: we are just going to use
the postcondition, i.e., l ≤ x ≤ r.
The requirements for J to be a loop invariant can be seen from the rule loop. It must:

• Imply the postcondition

• Be implied by the preconditions

• Be preserved every time you run the loop body

Note: If you pick the wrong invariant, your proof might not work even when the
theorem you want to prove is true. If you get stuck and you think the theorem
is true, try picking a new invariant and try again.

3



To hand KeYmaera X a loop invariant, right-click on the loop in the succedent and the
menu of applicable rules will appear.1 The loop induction rule should be at the top.

Notice that the J is highlighted in red. This is how KeYmaera X tells you that it needs
some input for this rule. In this case, it needs the loop invariant as input.

We can then run the loop rule by clicking on its name. This will result in 3 subgoals,
corresponding to the 3 premises of loop:

1In general, you can do this for any formula in the antecedents/succedents.

4



Notice, also that the Tactic box has been updated with a call to the loop tactic with
the loop invariant we just entered as its first argument.

We can now continue with the proof on each branch. The first two branches are pretty
trivial, they are just arithmetic questions so we can just use QE and they close immediately.

The third subgoal (showing that the invariant is preserved) looks a lot more complicated,
so we let us try and prove it manually.
Note: Usually the hard part of proving a loop invariant is showing that the body
preserves the invariant. Always try showing “precondition implies invariant”
and “invariant implies postcondition” first with master because if it fails, you
just found a mistake in your invariant for free. In fact, KeYmaera X always
arranges the subgoals so that these “easier” ones come first.

As we saw with →R, there is really only one way in which the top-level hybrid program
operator (a sequential composition) can be decomposed, using [;]. Instead of clicking through
the proof, we could again just call unfold to do all of this simple top-level unfolding for us:

The tactic also (helpfully) unfolded the choice operator and gave us two subgoals. For
this proof, however, this is slightly annoying because this means we will essentially have to
deal with the ODE twice (the same way) in both branches.
Note: Applying the most obvious top-most unfolding of your subgoals will usu-
ally work, but may not be the most efficient way of completing your proofs.

5



Recall that the point of doing this proof was to demonstrate how we did not even need
the controller at all to prove the theorem, and in fact we do not need anything except the
domain constraint. Instead of completely unfolding the proof, we can use composeb to break
up the top-level sequential composition, and then use GV from the right-click menu:

Note: Notice the Γconst,∆const in the premise of GV. In comparison to the G rule
that we saw in class, KeYmaera X does its best to preserve any constant as-
sumptions. In fact, it also does this for loop invariants. Recall from class that
it would be a massive hassle to add all of the constant assumptions to your loop
invariants all the time. Fortunately, KeYmaera X also does that for us.

After using GV, our goal looks really simple. In fact, master now will be able to finish
the proof:

But let us go one step further and see more precisely what we meant when we said that
we only needed the domain constraint. After getting rid of the forall quantifier, we are left
with a differential equation in the postcondition. In its right-click menu, you will see a rule
called dW:

6



Exercise 3:
Give an intuitive reading of this proof rule.
Answer: We have not yet seen the dW rule in class, but the menu in KeYmaera X helpfully
tells us what the rule does. In order to prove the postcondition, we could just prove it
assuming the domain constraint.
Note: KeYmaera X provides a huge library of tactics that would be impossible
to cover completely in the course. Most of these tactics contain tooltips like
the one above that concisely explains what the tactic does. Try exploring the
right-click menu and the tactic browser if you ever get stuck in a proof.

The proof is trivial after using dW. In fact, we do not even need any arithmetic. Propo-
sitional proving with prop will suffice.

3.3 Tactics

The nice thing about doing proofs by clicking around on the UI is that it is easy to get
started and easy to explore. The bad thing is that it gets really repetitive for bigger models.
Even worse, if we make a small change to our model, we do not want to have to redo the
entire proof from scratch: we want keep most of our proof the same and just change the
parts that matter.

To fix these problems, we can write our proofs as programs called tactics instead. The
Tactic box contains the tactic for the proof that we just did:

implyR(1) ; loop("l()<=x&x<=r()", 1) ; <(

QE,

QE,

composeb(1) ; GV(1) ; allR(1) ; dW(1) ; prop

)

7



As you can see, the syntax for tactics is much more intimidating for newcomers than the
UI. For this reason, you should start out using the UI for your proofs, then use tactics to
make repetitive tasks easier once you understand the structure of the proof.

What does the syntax mean anyway? The ; symbols mean “run the left tactic followed
by the right, but only if the left succeeded”. The < symbol is used whenever the proof
branches from one goal to two (or more) goals. Some tactics, like loop, have arguments,
which go in parentheses, others do not. If a tactic operates on a whole subgoal (like master

or prop) then we do not need to give it any numeric position arguments. If it operates
on one specific formula, then we have to give it a position argument saying which formula.
Thankfully, the Web UI already shows you the number for each formula, and most of the
time you will want formula number 1 (the first formula in the succedent). Some tactics like
loop take more complicated arguments like formulas: those arguments go inside quotes like
this: "ARG".

For more details on tactics combinators (;,<, etc.) see the KeYmaera X cheat sheet
http://www.ls.cs.cmu.edu/KeYmaeraX/KeYmaeraX-sheet.pdf.

Now, we have carefully done the proof so that it does not depend on the controller at
all. The exact same tactic that we have just produced should also work if we replaced the
controller with another controller. Let us try doing exactly that.
Note: The model for this is called rec4bad1 complex in the archive.

4 Another Bad Event-Driven Model

The fundamental problem with the previous model is that domain constraints are part of
our modeling assumptions. For the ODE with domain constraint l ≤ x ≤ r, our model only
has runs where the solution stays in l ≤ x ≤ r for its entire duration.

This is like saying that there is a physical constraint that x can never leave the playing
area, or that the whole universe lies between l ≤ x ≤ r. But, as we saw in last recitation,
that is not a good model of reality. In the real universe, there are places other than the ping
pong table, and we want to prove that the ball does not leave the table area.

Thinking ahead for the moment, we are interested in modelling an event-triggered con-
troller. The players Forrest and Dan (the controllers) will be hitting the ball when x = l
and x = r respectively. Thus, we will still need the domain constraint l ≤ x ≤ r in order
for physics to correctly yield to the controller when one of the events (when x = l or x = r)
happens. So let us keep the ODE that we have, but try and fix the problem that we have
not modelled the rest of the universe.

In our more advanced model, we shall add an extra ODE whose domain constraint is the
logical negation of the first ODE:

v ≥ 0∧l < x < r → [
(
Ctrlbad; ({x′ = v& l ≤ x ≤ r}) ∪ ({x′ = v&x < l ∨ x > r})

)∗
]l ≤ x ≤ r

Note: The model for this is called rec4bad2 in the archive.

8

http://www.ls.cs.cmu.edu/KeYmaeraX/KeYmaeraX-sheet.pdf


Note: In KeYmaera X input files, you can annotate loops with the @invariant(...)

annotation. These annotations are useful because they provide readers with
helpful insights into your models. In fact, KeYmaera X will also use these loop
annotations in its proof automation.
Here is the tactic that proves this new formula:

unfold ; loop("l()<=x&x<=r()", 1) ; <(

QE,

QE,

composeb(1) ; GV(1) ; allR(1) ; unfold ; <(

dW(1) ; prop,

ODE(1)

)

)

Notice that we have minimally changed the tactic for our earlier model. In fact, we only
needed to change the tactic corresponding to the part of the model which we modified. In
this case, we have two different ODEs that can be executed, so we have to deal with both
cases separately.

However, remember that we are still using the bogus controller, so why did this proof
succeed? The answer is that we have not quite split up reality correctly in our domain
constraints. If we start on the ping pong table, then the model keeps us stuck on the ping
pong table.

More formally, we should think of an event-driven model as dividing the universe into
several distinct modes or zones. The model describes where the modes are and when we can
switch between modes, but it should always be physically possible to switch between zones:
A mode that we can never get to might as well not exist. Once we have divided the world
into modes, the safety proof consists of proving that each mode is safe. The safety argument
for each mode will be based on the physics and on the invariants.

In this model, there are two modes. We will call “the ping-pong table” Mode A, and
“everywhere else” Mode B. As shown below, Modes A and B do not intersect at all (repre-
sented as a dotted line for their boundary). If we start in Mode A, the domain constraint
says we stay in Mode A as long as the ODE is running. Because Mode A does not overlap
Mode B, we will never transition to Mode B and so we never have to argue why Mode B is
safe.

9



5 A Correct Model

We have to make Modes A and B overlap just a little bit, so that the model has a chance
of even reaching either mode. This is done by turning the dotted line into a solid line, i.e.,
turning x < l ∨ x > r into x ≤ l ∨ x ≥ r:

Now we can finally try the proof with the bogus controller and the proof will no longer
work. In fact, we can use KeYmaera X to spot where the proof gets broken. Following the
proof steps similar to the ones we did before, here is one subgoal that you will reach that
will not prove successfully, because it is not valid:

From the right-click menu, we can tell KeYmaera X to solve the differential equations,
and then ask it for a counterexample:

10



What does this counterexample say? Consider the initial state where x = −12
5
, l =

−12
5
, v = −57, then we can certainly run the differential equation until the postcondition is

violated (in particular with x < l)!
Note: The model for this is called rec4bad2 fixed in the archive.
Note: There are several reasons why a subgoal cannot be proved successfully in
KeYmaera X, here is a quick checklist:

• Your original formula was not valid. This is typically the common case, and inspecting
the unprovable subgoal might allow you to figure out where your model could go wrong.
This is one of the advantages of having a computer check your proofs for you.

• You used a proof step that was not complete. In particular, you could have lost some
information when moving from the conclusion of the proof step to its premises. An
important example of this is the loop rule – you might have chosen a bad loop invariant.
When this happens, it is important to go back to your original question and see if you
could have done the proof another way e.g., using an alternative loop invariant.

• You reached the current limits of KeYmaera X’s proving capabilities. This will be-
come relevant when we start looking at more complicated differential equations. Even

11



though dL is theoretically complete for proving invariants of differential equations, the
implementation in KeYmaera X does not cover all of the cases because they will almost
never occur in practice.

• You found a KeYmaera X completeness bug. Our tactics can sometimes miss corner
cases and some proofs may fail where they should not. If you are certain that your
sequent is valid and your proof is correct but are not able to prove it in KeYmaera X,
it might simply be a bug with the implementation of the tactics. Report it to us!

Finally, it is time to add in appropriate controls to the model. For illustrative purposes,
we will assume that both players perfectly reverse the velocity of the ball when it is at their
respective positions, i.e.,

Ctrlbad2
def≡ if x = l ∨ x = r then v :=−v

Now, if we tried to prove:

v ≥ 0∧l < x < r → [
(
Ctrlbad2; ({x′ = v& l ≤ x ≤ r}) ∪ {x′ = v&x ≤ l ∨ x ≥ r})

)∗
]l ≤ x ≤ r

The proof would still fail!

Exercise 4:
Why?
Answer: The loop invariant says x could be anywhere l ≤ x ≤ r. In particular, when x = l
and the ball is traveling with velocity v ≥ 0, the controller might flip the velocity around
incorrectly.

So we need to be very careful about our controller and ensure that the players actually
hit the ball only when it is flying towards them.

Ctrl
def≡ if x = l ∧ v ≤ 0 ∨ x = r ∧ v ≥ 0 then v :=−v

The proof will still not quite work out, but for a rather subtle reason. We started off
by assuming l < x < r, which implies l < r, but KeYmaera X does not know that. In
particular, it does not know to keep the assumption l < r in the loop induction.

Exercise 5:
What breaks without this assumption?
Answer: The domain constraint x ≤ l ∨ x ≥ r is equivalent to true when l = r.

We will have to start the proof slightly differently, by using a cut to introduce the new
assumption l < r:

12



Now, the proof can be done successfully because loop helped us keep the assumption
l < r around in the proof. Now, we have:

unfold ; cut("l() < r()") ; <(

loop("l()<=x&x<=r()", 1) ; <(

QE,

QE,

master

),

hideR(1) ; QE

)

Note: The model for this is called rec4good in the archive.

Exercise 6:
Try to improve the speed of the above tactic.

6 Refining the Controller

We now have a verified controller but it is still unsatisfactory in some ways. For example, it
assumes that the players are able to react instantaneously, regardless of how fast the ball is
flying at them.

Let us try and relax this assumption by refining our controller so that the players will
only hit the ball when v2 ≤ 1, and when hit the ball it loses a fraction of its velocity given
by coefficient c:

Ctrl2
def≡ if v2 ≤ 1 ∧ (x = l ∧ v ≤ 0 ∨ x = r ∧ v ≥ 0) then v :=−cv

Note: Notice the pattern we have followed here: we first debugged and proved
a simple controller model before moving on with the verification of a more re-
fined/complex model. The simpler model debugging allowed us to catch many
basic errors which might have been more difficult to catch if we had started
straight away from the complex model.

Exercise 7:
We will need to some new assumptions on c and v initially. Suggest some possible ones.
Answer: We will certainly need v2 ≤ 1 and 0 ≤ c ≤ 1 to be true initially.

Exercise 8:
What else do we need to change in order for the proof to work?
Answer: The loop invariant will not work anymore. We need to strengthen it with an
assumption about v, namely v2 ≤ 1, so that the ball can actually be controlled by the
players.

13



Exercise 9:
Complete the proof of the new controller.
Note: The model for this is called rec4good2 in the archive.

14


	Announcements
	Motivation and Learning Objectives
	How Not To Model An Event-Driven System
	Initial Steps
	Loops Invariants
	Tactics

	Another Bad Event-Driven Model
	A Correct Model
	Refining the Controller

