
Keymaera Evaluator for Reliable and Robust
Cyber-physical Hybrid-program Engineering via Novel Graphics

Justin Kerr (jgkerr) and Jasmine Cheng (jacheng)

Labs in this class

P -> [H]Q
Pre-conditions

Run something
Post-conditions

Hard parts:
1. design H (controller, system model)
2. prove Q holds (safety, correctness properties)

Hybrid Program Basics
P -> [H]Q

Pre-conditions
Run something

Post-conditions

P, Q are logical formulas

Hybrid program H is made of
x:=e Assign, set state variable x to expression e
A;B Compose, A then B
A ∪ B Choice, A or B
?A Test, if A passes, the program can run
{f’=y & Q} ODE, program follows f’=y for some time while maintaining Q
A* Loop, repeat A for any number of iterations

Painful debugging
Differential drive controller from lab 4

Our project
● Debug hybrid programs through interactive execution
● Aimed at supporting course labs

Past Projects

Yu 2017
User makes all choices
Built on Keymaera X’s parser

User Flow

System Tour

Program tree

(((?canAccelerate; a:=A) ∪ a:=B); t:=0; {ODE})*

Program Traces

Given a start state,
trace = (choices list, end state)

Why?
Allows choice selection
Prune invalid runs, prevent failure at runtime
Natural tree-search structure

Program Trace Example

L, 0
L, 0.1
R, 0
R, 0.1
R, 1
R, 10

“{x’=1}” ← How long should we run an infinite ODE?
“x:=*” ← What value do we pick for a random assign?

ODE Branch based on execution time
* User annotates discretized range for branching

ODE and * trace generation

Manual Trace Selection

▷ Visualize all possible end states
▷ User selects one

Auto trace selection

“Distance” heuristic: pick traces close to post-condition truth
boundaries since we always start inside a true region

start

trace
1

trace
2

Pick this

False

True

Auto trace selection

Truth distance d: formula → real
d(e1 {<=, >=, <, >} e2) := |e1-e2|
d(e1 = e2) undefined ← ignore equality because of numerical error
d(P1 and P2) := min(d(P1), d(P2))
d(P1 or P2) := max(d(P1), d(P2))

Visualization

▷ Use choices from trace
▷ Build up a list of states by computing ODE at time

stamps
○ Runge-Kutta integration

▷ Draw robot states

Implementation

● Visualization: TKinter
● Minimal external libraries
● Parsing from scratch

Demos

Motivating labs

Lab 3: Robot on Racetracks Lab 4: Differential Drive

Manual Mode: Lab 4 Demo

Catching Modelling Errors

A. swapped x’ and y’, B. missing negative sign, C. forgetting to scale by track radius, D. typo on
dx/dy, E. swapped dx/dy, F. correct version

Catching Controller Errors

Controller deems these paths unsafe

Catching Controller Errors

Auto mode: faulty lab 4 results in
collision

Auto mode: safe lab 4, risky trajectory
for correct controller

Auto Mode: broken lab 3

Auto mode: safe lab 3

Questions?

Supplements

Future Work

1. Multi-level game tree search
2. Differential heuristic
3. User experience
4. Numerical Error

System Architecture

Handling loops

▷ Strip off top-level loop
▷ Run hybrid program inside the loop (manual or auto)
▷ Repeat

(((?canAccelerate; a:=A) ∪ a:=B); t:=0; {ODE})*

* Doesn’t allow for nested loops

