Towards Vector Reasoning in KeYmaeraX

Vectors for KeYmaera X

\[\|O - R + dV\|^2 = \langle dV, O - R \rangle \]

\[\|O - (V + R)\| \leq \|O - R\| + \|V\| \]
Introduction

- Hybrid systems: intersection of discrete and continuous dynamics. Model systems like self-driving cars, planes.
- KeYmaeraX: hybrid system prover that uses differential dynamic logic extended with some practical constructions.
- Vectors fundamental to physics thinking, would make it easier to express and reason about hybrid systems.
- We discuss implementation possibilities.
• Motivation
• Syntax
• Expressivity
• New lemmas
• Implementation Possibilities
 ○ Syntactic sugar
 ○ Fixed length lists
 ○ Inductively-defined structures
• Conclusion
Vectors as first class types

- Many models could be expressed more cleanly
- Classical physics proofs ported over more easily with vector lemmas like triangle inequality and Cauchy Schwarz, that are non-trivial from DL constructs.
Vectors can make models and proofs more intuitive

Can choose any direction

\[
\text{StoppingDistance}(\text{vel}) < |p-o| \rightarrow
\{\text{v} := \ast; \ ?|v| = 1; \ t := 0; \}
\{?\text{StoppingDistance}(\text{vel}+a\cdot T) < |p-o|- (\text{vel}\cdot T + (\frac{1}{2})a\cdot t^2) \ \text{acc} := a; \}
++ \ \text{acc} := b;\}
\{p' = v\cdot \text{vel}, \ \text{vel}' = \text{acc}, \ t' = 1 \ & \ t \leq T\}
\text{StoppingDistance(vel) < |p-o|}\}]

Follows from 1D proof + triangle inequality

Accelerate only if can stop while traveling along a straight line to obstacle
● Motivation
● Syntax
● Expressivity
● New lemmas
● Implementation Possibilities
 ○ Syntactic sugar
 ○ Fixed length lists
 ○ Inductively-defined structures
● Conclusion
\[
\begin{align*}
v &:= \{a_1, a_2, \ldots, a_n\} \mid v_n + u_n \mid v_n - u_n \mid v \ast a \mid -v \mid v' \mid \text{var} \\
a &:= a_{\mathcal{DL}} \mid v.u \mid \text{norm}(v)
\end{align*}
\]
- Motivation
- Syntax
- Expressivity
- New lemmas
- Implementation Possibilities
 - Syntactic sugar
 - Fixed length lists
 - Inductively-defined structures
- Conclusion
Expressivity

- Can define translation to existing KeYmaeraX language
- Exactly as expressive
- Motivation
- Syntax
- Expressivity
- New lemmas
- Implementation Possibilities
 - Syntactic sugar
 - Fixed length lists
 - Inductively-defined structures
- Conclusion
Target Vector Lemmas

- Cauchy-Schwarz Inequality
 - Surprisingly powerful in proving things about how points move ‘along’ lines or away from other points in ODEs
- Triangle Inequality
- Inner product properties (linear, commutes, etc)
- Derivatives of norm / dot product
● Motivation
● Syntax
● Expressivity
● New lemmas
● Implementation Possibilities
 ○ Syntactic sugar
 ○ Fixed length lists
 ○ Inductively-defined structures
● Conclusion
Syntactic Sugar:
Cheap, but ineffective

\[(X*X)*(Y*Y) \geq (X*Y)^2\]

Vs

\[(x1*x1+x2*x2+x3*x3)*(y1*y1+y2*y2+y3*y3) \geq (x1*y1+x2*y2+x3*y3)^2\]
• Motivation
• Syntax
• Expressivity
• New lemmas
• Implementation Possibilities
 ○ Syntactic sugar
 ○ Fixed length lists
 ○ Inductively-defined structures
• Conclusion
Fixed-length lists:
Nice, but missing something

New Axioms!

\begin{align*}
{x,y}*a &= \{x*a, y*a\} \\
{x,y}*\{a,b\} &= x*a + y*b \\
{x,y} + \{a,b\} &= \{x+a, y+b\} \\
\vdots \\
{x,y,z}*a &= \{x*a, y*a, z*a\} \\
\vdots \\
{x,y,z,t,o,O,m,a,n,y} &= \ldots \\
\end{align*}

New Unifier Problems

Is

\begin{align*}
\{x+54, y-12, z*92+x\}*\{a, b, c\} &= \text{similar to the form} \\
\{x,y,z\}*\{a, b, c\} &= x*a + b*y + c*z
\end{align*}
Fixed-length lists:
Nice, but missing something

\[(X^2)(Y^2) \geq (XY)^2\]

AXIOM CORE
(soundness critical, do not touch)

Derivable Axioms & User Lemmas
● Motivation
● Syntax
● Expressivity
● New lemmas
● Implementation Possibilities
 ○ Syntactic sugar
 ○ Fixed length lists
 ○ Inductively-defined structures
● Conclusion
Inductively-defined semantics: Promising, finite, extensible

Vector = [] | <Real> :: <Vector>

(x::y)+(a::b) = (x+y)::(a+b)
(x::y)*(a::b) = (x*y)+(a*b)
[] + [] = []
[] * [] = []
...

2 axioms / operation = 8 core

*

a+d=x1 & b+e=x2 & c+f = x3
----------------------------- {=}*3
{a+d,b+e,c+f} = X
----------------------------- {+}*3
{a,b,c}+{d,e,f} = X
Easy to chase
Inductively-defined semantics:
Promising, finite, extensible

User lemmas without modifying the core:

- Prove, potentially using induction
 - Powerful enough to prove triangle inequality and Cauchy-Schwarz
 - Simpler proofs same way
 - Captures important meaning
- Save lemma as tactic
- Use as normal
- Prove to core via repeated application
 - Complex matching axioms only required in tactics
 - Core only needs a slightly stronger uniform substitution

\[
\begin{align*}
((a :: x) \cdot (a :: x))((b :: y) \cdot (b :: y)) - ((a :: x) \cdot (b :: y))^2 &= (a^2 + x \cdot x)(b^2 + y \cdot y) - (ab - x \cdot y)^2 \\
&= a^2b^2 + a^2(x \cdot x) + b^2(y \cdot y) + (x \cdot x)(y \cdot y) - a^2b^2 - 2ab(x \cdot y) - (x \cdot y)^2 \\
&\geq a^2b^2 - a^2b^2 + (x \cdot y)^2 - (x \cdot y)^2 + a^2(y \cdot y) + b^2(x \cdot x) - 2ab(x \cdot y) \\
&= (a \cdot y - b \cdot x) \cdot (a \cdot y - b \cdot x) \geq 0
\end{align*}
\]
● Motivation
● Syntax
● Expressivity
● New lemmas
● Implementation Possibilities
 ○ Syntactic sugar
 ○ Fixed length lists
 ○ Inductively-defined structures
● Conclusion
Conclusion

- Proposed vector types, syntax
- Identified some useful vector lemmas, case studies
- Explored implementation choices with partial subset implementation
- Future work: implement, identify more lemmas and case studies
Vectors for KeYmaera X

\[\|O - R + dV\| = \langle dV, O - R \rangle \]

\[\|O - (V + R)\| \leq \|O - R\| + \|V\| \]

Thank you

Aditi Kabra
akabra@cs.cmu.edu

Chris Lambert
cslamber@andrew.cmu.edu