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Abstract

A lot of work has been done to model an efficient and provably safe cruise control
system for vehicles. Nevertheless, there is still a large gap between the theoretical
models and the physical reality of implementation that allows us to actually see
the benefits of the research in the real world. We strive to take an intelligent cruise
control model and implement it in an RC Vehicle traveling on a one-dimensional
path. Due to limitations in hardware and time constraints, however, we had to
modify the models from previous research and focus on a static obstacle model.
We have proofs of our modified models and a working demo of the static obstacle
model on an RC car. The work done in this project sheds light on some of the
challenges in implementation and hardware when converting a theoretical model to
a viable product. While our project focused on a static model, the work is not too
far from a dynamic obstacle model.

Figure 1: Cruise control image taken from Aréchiga et al. [1]
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1 Introduction

A lot of work has been done in Cyber Physical Systems to prove the safety of dynamic systems that
interact with the world. This is especially true for autonomous vehicles. One such example is an
intelligent cruise controlled system. This system involves two vehicles: a lead vehicle denoted as
the primary other vehicle (POV) and a follower vehicle denoted as the subject vehicle (SV). The
objective of this system is to allow the SV to follow behind the POV efficiently while also ensuring
the safety of both vehicles. The POV vehicle is free to accelerate and brake as it wishes. There
already exists models and proofs for this system, but there is a significant amount of additional work
needed to actually implement this in real hardware.

The motivation of this project is that it is not enough to simply have proven models. There is generally
a gap between theory and real systems that must be closed before we can enjoy the benefits of the
research already done. Implementing the theoretic models in real hardware has its own challenges.
For example, the sensors might not be perfect and might only have access to some of the information
required in the model. Besides, there are also challenges on the embedded systems side to manage
all the low level hardware needed to operate the vehicle. It’s clear that there are many challenges to
overcome.

We choose the theme of this project to be the Cruise Control System because of its broad applicability
in self driving vehicles. There are various levels of autonomy ranging from level 0 (L0) to level 5
(L5). L0 vehicles have no automation capabilities, whereas L5 vehicles are perfectly autonomous.
Everything in between is a stepping stone towards L5. A vehicle capable of some automation in
certain circumstances is generally referred to as L2. This will be most similar to the SV in the project.
On the other hand, a very capable autonomous vehicle but restricted to certain types of roads and
weather is referred to as L4. This is most similar to what some of the most popular self driving
companies are trying to build today and to the POV vehicle in our project (Hyat and Paukert [3]).

It is generally a lot more expensive to build a higher level autonomous vehicle due to the additional
amount of sensors and other hardware required. Therefore, one common cost cutting strategy is to
build one L4 vehicle capable of analyzing all the road conditions and traffic signals to make decisions,
while having a much cheaper L2 vehicle simply follow the lead vehicle only making decisions based
on what the acceleration of lead vehicle is. This is especially valuable in trucking where a lot of the
travel is on long straight highways. There is no need to build expensive L4 trucks if some of the
trucks can just make do by following a lead. Beyond shipping, a verified cruise control system is also
valuable for commercial use in long road trips.

Our work is done on a small RC robot vehicle as a proof of concept for the verified cruise control
system. It is a stepping stone towards the larger sedan and trucking models. The main content of our
work is summarized as follows:

• We setup a real RC vehicle, and derived a model for it to safely avoid a static obstacle, while
incorporating the asynchronous feature of the sensor updates into the model;

• We proved the derived model to be safe using KeYmaera X;
• We implemented the derived model on the real RC vehicle, adjusting all the gaps between

the theoretic model and the real hardware on the car, and recorded a demonstration of the
implemented car successfully detecting the obstacle and safely stopping.

2 Related Work

2.1 Formal Model

ICC ≡ (ctrl; dyn)∗

ctrl ≡ POVctrl||SVctrl;
POVctrl ≡ (apov := ∗; ?(−B ≤ apov ≤ A))
SVctrl ≡ (asv := ∗; ?(−B ≤ asv ≤ −b))
∪(?Safeε; asv := ∗; ?(−B ≤ asv ≤ A))

∪(?vsv = 0); asv := 0)
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Safeε ≡ psv + v2sv
2b + (Ab + 1)(A2 ε

2 + εvsv) < ppov +
v2pov
2B

dyn ≡ (t := 0; t′ = 1,

p′sv = vsv, v
′
sv = asv, p

′
pov = vpov, v

′
pov = apov

&(vsv ≥ 0 ∧ vpov ≥ 0 ∧ t ≤ ε))

Formal dL model from Aréchiga et al. [1].

A great amount of research on intelligent cruise control systems has already been done by Aréchiga
et al. [1]. They have a formal model of the scenario in dL - a modeling language for cyber physical
systems - and have also proved it to be safe. The exact model is shown above. In this model, we
have a lead vehicle denoted as the primary other vehicle (POV) and a follower vehicle denoted as
the subject vehicle (SV). The model is simply an infinite loop between a discrete controller and the
dynamics of the physical world. The controller allows the POV to brake at a maximum rate of −B or
accelerate at a maximum rate of A. These constraints on the POV model the real world limits in our
motor and braking systems. The controllers allow for the SV vehicle to brake or accelerate within
the same limits, but also enforce the condition that the chosen acceleration is safe and the velocity is
non-negative.

If we assume that sensor update delay is bounded by ε, the safety condition we check for is that if we
were to accelerate at a given acceleration, then after ε time we can still apply the maximum brakes
such that we do not collide with the POV. It essentially ensures there is enough distance to accelerate
for ε time and then brake to a stop.

There is no efficiency condition in the above model, but if there were one, it’d essentially ensure that
the distance between the POV and SV vehicle never gets greater than some large max distance δ.
Another assumption of this model is that is exists in a 1 dimensional space. This simplification is
valid as most applicable conditions of cruise control is on long straight roads.

After the controls have set the accelerations of the POV and SV respectively, the model simulates the
dynamics using ordinary differential equations (ODEs) obeying the laws of physics. This process
loops indefinitely.

2.2 Assumptions

A list of all the assumptions made in the above model is summarized below for convenience:

• The vehicles move on a 1-dimensional straight road.
• The POV vehicle can choose to accelerate or brake arbitrarily.
• Both vehicles can only accelerate within a range −B < 0 < A.
• SV has a sensor that can get access of POV’s position and velocity, but not acceleration

directly. The sensor is not perfect, and has an update delay of ε.

Most of the above assumptions are made to model the real world limitations of hardware. However,
the last assumption does not hold for our real RC vehicle, as its LIDAR sensor actually only gives us
the distance to the obstacle instead of POV’s position. Besides, since we could not find another car,
we do not need all assumptions for the POV and we focus on a static obstacle model.

3 The Remote Control Vehicle

3.1 Hardware

The RC vehicle we decided to use for this project is pictured in Figure 1. It was taken from Professor
David Held’s lab in Carnegie Mellon’s Robotics Institute. The following is a basic description for the
hardware of the RC vehicle [4]:

The rear-wheel drive front steering vehicle is capable of driving with speed of up
to 6 m/s forward and 3 m/s backwards and achieving steering angles of 30 degrees
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Figure 2: Side and Top Views of the RC Car

on either side. It achieves localization reasonably well using data from the Hall
effect sensors on the motor as odometry (ODOM), IMU, LIDAR and the camera
on the Jetson developer kit with optic flow. It can be teleoperated or controlled by
a software giving it navigation commands.

This RC car will act as the SV. Unfortunately, we were not able to get another vehicle to act as the
POV. Additionally, we were not able to use some random other object because it is too hard to enforce
that a random object to move at some constant acceleration with limits on its braking and acceleration
rates. Thus, we focused on the static obstacle case using a stack of boxes as the POV. This proved to
be challenging enough with the time we had.

Some important values that affect our controller are summarized below:

• LIDAR sensor update frequency: 10Hz

• LIDAR sensor scan range: 5.6 meters

• ODOM sensor update frequency: 30Hz

Unfortunately, the vehicle was recently involved in a serious crash, and as a result a lot of the sensors
and controls became error-prone. The heaviest hit was on the ODOM sensors. The data sensed by the
ODOM sensors were too noisy to be of any use. As a result, we estimated the velocity of the vehicle
using other means in our code (more details provided in section 5.2). In addition, the steering linkage
of the vehicle was also damaged resulting in the car taking biased left turn even when we commanded
it to go straight. We had to correct for this manually as well. See comments in code for details on
how this was done.

3.2 Software

The vehicle runs Robot Operating System (ROS), which allows us to connect to the Nvidia chip
on the vehicle and command it. In order to remotely control the vehicle, both the remote computer
and the vehicle need to be connected to the same WIFI network. More instructions on software
dependencies and the setup process can be found in the GitHub repository at Khurana [4].

A lot of the software we needed were already setup in the repository. The communication between
different sensors and the central ROS system are modeled as a subscriber-publisher model. For
example, with a couple of command line commands, we can subscribe to the ODOM sensor topic
which gives us the car’s localization information such as the relative position of the vehicle to where
the system boots up and linear velocity on each axis of the space. In addition, we can also subscribe
to the LIDAR sensor topic to get the distance to objects within the LIDAR sensor’s effective range.
Lastly, there is also topic that we can send commands to control the vehicle’s velocity. Unfortunately,
currently there is no way to command the acceleration of the vehicle directly. This was a major
limitation that we have to deal with (more details in section 5.1), and it again shows the gap between
theory and implementation.
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4 The Proposed Model

4.1 Detailed Model in dL

There are a lot differences between the model in the research by Aréchiga et al. [1] and our model.
The most important difference is that Aréchiga et al. [1] does not take into account different feedback
rates of the car’s different sensors, e.g., the LIDAR sensor and the ODOM sensor. The different
update rate of the sensors essentially make the whole system running asynchronously, and we have to
ensure safety under this practical setting. Another difference is that Aréchiga et al. [1] looks at the
system with respect to the absolute positions of the SV and POV. In contrast, our sensors give the
distance to an obstacle relative to the car’s current position. To fix these differences, we propose the
following model.

/* Exported from KeYmaera X v4.7.4 */

Theorem "Cruise Control Static"

Functions
Real A; /* Robot’s max acceleration */
Real B; /* Robot’s max braking */
Real ctrlT; /* Time-trigger limit on evolution */
Real scanT; /* Time interval to update obstacle position from sensors */
Real vPublishT; /* Time interval to publish robot’s velocity from sensors */
Real distBuffer; /* Buffer distance between robot and obstacle */

/* Max range of LIDAR sensor. This is used as the default value of the
obstacle range when an object isn’t detected. */

Real sensorRange;

End.

ProgramVariables
Real v; /* Linear velocity of robot */
Real a; /* Linear acceleration of robot */

Real obstacleDist; /* Distance to obstacle */
Real sensedDist; /* Estimated distannce to obstacle based on sensor */
Real sensedV; /* Estimated velocity of robot based on sensor */

Real t; /* Time */

Real worstCaseV; /* Temporary variable to upper bound current velocity */
Real worstCaseDist; /* Temporary variable to lower bound current obstacle distance */

End.

Problem
(

A > 0 &
-B < 0 &
ctrlT > 0 &
scanT > 0 &
vPublishT > 0 &
distBuffer > 0 &
sensorRange > 0 &
v >= 0 &
sensedV = v & /* Assume initial sensor value is accurate */
scanT < ctrlT &
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vPublishT < ctrlT &
/* The obstacle must be further than the buffer + current stopping distance */
obstacleDist >= v^2 / (2*B) + distBuffer &
sensorRange >= v^2 / (2*B) + distBuffer

) /* Initial conditions */
->
[

{
{

{?(obstacleDist <= sensorRange);
sensedDist := *; ?((sensedDist-obstacleDist) <= (v * scanT + 0.5 * A * scanT^2)

& obstacleDist < sensedDist);
}
++
{?(obstacleDist > sensorRange);

sensedDist := sensorRange;
}

}

sensedV := *; ?((a > 0 & (v-sensedV) <= A * vPublishT & sensedV < v) |
(a < 0 & (sensedV - v) <= B * vPublishT & sensedV > v) |
(a = 0 & sensedV = v));

worstCaseV := (sensedV + A*vPublishT);
worstCaseDist := sensedDist - (worstCaseV * scanT + 0.5 * A * scanT^2)

/* Discrete control of robot */
{

?(worstCaseDist > (worstCaseV * ctrlT + 0.5 * A * ctrlT^2) +
(worstCaseV + A*ctrlT)^2 / (2*B) +
distBuffer);

a := A;
++
?(worstCaseDist > (worstCaseV * ctrlT) +

(worstCaseV^2 / (2*B)) +
distBuffer);

a := 0;
++

a := -B;
}

t := 0;
/* Distance between robot and obstacle is decreasing at the same rate the

robot is moving at */
{
obstacleDist’ = -v,
v’ = a,
t’ = 1 &
t <= ctrlT & v >= 0 /* Differential Equations */

}

}*@invariant(obstacleDist >= (v)^2 / (2*B) + distBuffer &
sensorRange >= (v)^2 / (2*B) + distBuffer &
v >= 0) /* Loop Invariant */

](obstacleDist >= (v)^2 / (2*B) + distBuffer & v >= 0) /* Post Condition */
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End.

The model above is written in dL, the differential dynamic logic. The benefits of dL is that we can
prove our programs to be safe using the KeYmaera X theorem prover developed at Carnegie Mellon
University. Please refer to Platzer [6] for more information. We now explain each part of the model
in detail.

4.2 Explanation of the Model

4.2.1 Asynchronous Updates Between the Sensors and the Controller

One key feature, illustrated in Figure 3, of the model that makes it more practical is that it considers
the asynchronous updates between different sensors and the control (which is common in real world),
and the time delays between these events. Specifically, we will have two sets of values, one set is
the sensed values (e.g., sensed obstacle distance sensedDist and sensed car velocity sensedV),
and another set is the real values (e.g. obstacleDist and v). Our controller is solely based on the
sensed values, and the safety conditions are based on the real values. Therefore, one key thing for
the model is to use the sensed values to derive correct bounds for the real values, and design a safe
controller based on these bounds. We explain this in more detail below.

Figure 3: Timeline of events

As shown, the model is based on three critical time intervals: ctrlT, scanT, and vPublishT. Each
time interval is used for a different asynchronous event. The ctrlT interval denotes the time passed
between consecutive control decisions. scanT denotes the interval that the car’s scanner sensor
updates the distance to the obstacle. vPublishT denotes the interval that the car’s odom sensor
updates the car’s velocity. It’s important to note that the control time interval is the largest of the
three, and the controller loop is based on that interval.

The model aligns with the real implementation that the robot stores the sensed distance and velocity
in memory, denoted as sensedDist and sensedV. At the beginning of each control loop, the robot
first reads the sensedDist variable from the memory and uses it to bound the real distance to the
obstacle, denoted as obstacleDist. There are two cases. The first case is that there is no obstacle
within the LIDAR sensor’s effective range (denoted as sensorRange). In that case, the LIDAR
sensor has stored nothing in sensedDist, and we simply assume the worst case that the obstacle is
right at the edge of the sensor’s range, i.e., we set sensorDist exactly to be sensorRange.

The second case is that the obstacle is within the sensor’s effective range, so a certain value is stored in
the variable sensedDist. However, since the LIDAR sensor updates sensedDist asynchronously
with the controller, the value in sensedDist is stale or outdated at the time of the control decision.
As the time interval for the LIDAR sensor update is scanT, we know that sensedDist is at most
scanT out-of-date, and during this time the vehicle is still moving forward. Therefore, the actual
distance between the vehicle and the obstacle must be strictly less than sensedDist, i.e., we have
obstacleDist < sensedDist. In addition, we can also derive a lower bound for obstacleDist
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since in scanT time the car could have moved at most (when it’s accelerating) v ∗ scanT+ 0.5 ∗ A ∗
scanT2, so we have sensedDist− obstacleDist ≤ v ∗ scanT+ 0.5 ∗ A ∗ scanT2.

Similarly, the value of sensedV stored by the car’s odom sensor is also stale at the time of the
control decision, but we can use it to bound the car’s real velocity v. Recall that the time interval that
odom sensor updates sensedV is vPublishT, so sensedV is at most vPublishT time out-of-date.
During that time, if the car is accelerating (i.e., a > 0), then its real velocity v could be bounded as
sensedV ≤ v ≤ sensedV+A · vPublishT; if the car is braking, then the real velocity is bounded
as sensedV−B · vPublishT ≤ v ≤ sensedV; and if the car is either not braking or accelerating,
the real velocity should just be the sensed velocity and we have v = sensedV.

4.2.2 Controller Design

For the controller, we need to make sure that the control decision is safe for the true obstacle
distance and true vehicle velocity based on the sensed values. The key idea here is just to use
the bounds we derived above in the control strategy. In other words, in the controller, we use
worseCaseV = sensedV+ A · vPublishT as a upper bound for the real velocity v by assuming the
car is accelerating with rate A for the vPublishT time since we last got the sensed value sensedV.
We then use worseCaseDist = sensedDist − (worstCaseV · scanT + 0.5 · A · scanT2) as a
lower bound for the real obstacle distance obstacleDist, again by assuming the car is accelerating
with rate A for the scanT time since we last read the sensed data sensedDist. Figure 3 shows the
asynchronous behaviour between the sensor updates and the controller decisions more visually.

The rest of the logic for the controller is pretty simple: for acceleration (a = A) or moving at a
constant velocity (a = 0), we check that the vehicle would still be able to break safely after ctrlT
time. See Figure 4 for pictorial explanation. To write this mathematically, we use kinematics to
predict the distance traveled by the car in ctrlT time using our worstCaseV, so we can get an upper
bound for the real distance the car would have traveled. We then add the distance required to safely
stop after we have accelerated with the desired acceleration rate (A or 0) for the control time ctrlT.
This calculation is also based on kinematics. Lastly, we add the desired buffer distance between the
vehicle and obstacle to the previous two distances to get the total required distance in order to safely
accelerate or remain at a constant velocity. If the total required distance as calculated is smaller than
the lower bound for the obstacle distance worstCaseDist, then we can safely command the desired
acceleration rate.

Figure 4: Safety condition required

The control is then followed by the ODE dynamics, which models the physics of the situation. This
part is fairly simple. The vehicle is moving forward with velocity v. Since the obstacle is not moving,
this is the same thing as viewing the distance between the vehicle and obstacle is decreasing with
velocity −v. In addition, we know v is changing at the commanded acceleration rate a. Time is of
course increasing at unit rate. We then add the domain constraint v ≥ 0 to ensure that in real world
braking does not make the vehicle travel backwards. Lastly, we add another constraint t ≤ ctrlT for
our time-triggered controller.
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4.3 Proof

As mentioned above, the proof of the model was done using KeYmaera X, a theorem proving software
(Platzer [6]). Most of the proof was able to auto prove, but we had to split up the cases in order to
speed things up. Specifically, we used induction to prove our invariants in the model which implied
the postcondition. We proved the invariants for the acceleration (a = A), constant velocity (a = 0),
and braking (a = −B) cases separately. The braking case was able to prove automatically. For the
other two cases, depending on whether we were in range or not, we had to cut in information. For
example, if we were in range, the sensedDist was set to some value less than sensorRange, since
obstacleDist ≤ sensorRange. Thus sensedDist was bounded by a function of obstacleDist.
Now, when we tried to prove the invariant sensorRange ≥ v

2B + distBuffer, KeYmaera X was
having trouble since the safety condition we checked was with respect to sensedDist which again
was bounded by a function of obstacleDist. However, since we know the robot is in range, we
know that sensorRange is just a strictly higher bound. So we cut in the same safety condition but
replacing obstacleDist with sensorRange. This allowed KeYmaeraX to prove the invariant. A
similar cut was used when trying to prove the other invariant obstacleDist ≥ v

2B + distBuffer
when the robot was not in range. Beyond these cuts, the only other trick we used was hiding irrelavent
assumptions to speed up the auto prover. The full proof can be found in our deliverables.

5 Implementation on Real RC vehicle

In this section, we first talk about two differences in our real implementation and the proved model,
and then present the demo of the implemented system.

5.1 Approximation of Acceleration Control by Velocity Control

One of the major issues we hit when implementing our models on the real RC car is that we could
not control its acceleration directly. Instead, we could only command the velocity of it. A model
based on pure velocity control of the car is impractical and less useful. Thus, we tried our best to
command the acceleration of the car based solely on the ability to control its velocity to implement
our acceleration based model. We approximate the acceleration control by high-frequency velocity
control. Specifically, if the controller decides to accelerate with a value A, then every ε seconds we
send a command to the car to update its velocity based on the following equation:

vcommand = vold commanded +A · ε (1)

This equation essentially approximates the acceleration with a piece-wise constant velocity, as shown
in Figure 5.

Theoretically, such an approximation can achieve arbitrary small error compared with the real
acceleration as long as the velocity update interval ε is small enough. However, in practice, we found
the car’s acceleration approximated in such a way seems always being smaller than the real one.
This is perhaps due to that we are updating the velocity at a very high frequency, e.g., we set ε to be
0.05 seconds in our program, thus the car is required to increase the velocity by A · ε in that short
period of time, which might be unachievable by the physical hardwares of the car. Nevertheless, the
approximation trick makes it possible to implement our acceleration-based model using just velocity
control and produce a demo.
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Figure 5: The visual of using a piece-wise constant function (periodic update of the velocity) to
approximate the linear acceleration. The approximation is more precise with smaller ε.

.

5.2 Noisy ODOM Sensors

As mentioned in section 3.1, the RC car was recently in a crash, so its ODOM sensor is partially
damaged. As a result, we found the sensed velocity returned by the ODOM sensor to be very
noisy and inaccurate. To compensate this, we decided to not use the ODOM sensed velocity at
all. Instead, we maintain an analytic velocity of the car based on our acceleration approximation
technique (i.e., vcommand in equation 1). We update this analytic velocity every ε seconds, based
on the current acceleration chosen by the controller. The controller’s decision is then based on this
analytic value of velocity. Since the car cannot really accelerate fast enough to the commanded
analytic velocity, the analytic velocity is always a upper bound for the car’s real velocity (i.e., we
always have vcommand > vreal), so the controller should still be safe. If we are breaking, then the
reverse is true: vcommand < vreal. To account for this, we compute vcommand −B ∗ vPublishT to
get an upper bound for the velocity. Note that the entire run of the robot relies on these theoretical
bounds instead of the sensors. Any differences in the true velocity and and theoretical bounds add up
over time, which may have led to slightly poor behavior.

5.3 Demonstration of the Implemented Model

We implemented the model with the above two adjustments to suit the real hardware we have and
recorded a demo of the RC car successfully detecting the obstacle in front of it and safely stopping.
The clipped pictures from the demo is shown in Figure 6. The full video can be found in our
deliverables. From Figure 6, we can see that while our robot does stop before hitting the obstacle,
it doesn’t exactly obey the model as it gets closer to the obstacle than desired. This is due to the
acceleration approximation technique described earlier, as the car cannot really brake fast enough as
we command it to be. (To ensure safety, we compensate this drawback by using an empirically large
enough distance buffer). This shows the importance of correct hardware and attention to all details in
the implementation when building a provably safe vehicle in the real world.
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Figure 6: Clips from demo video (read left to right followed by top to bottom)

6 Discussion

This project was a great demonstration highlighting the gap between theory and implementation.
Even with a modified model, we had trouble implementing exactly that on real hardware due to
limitations on what was available. We hit many roadblocks such as the inability to control acceleration
directly, unusable odometry feed, and biased steering controls. Despite these difficulties, we were
still able to successfully deploy a model that could prevent collision autonomously.

Nevertheless, its also important to acknowledge some of the objectives we were not able to meet. As
seen in the demo, our robot violated the desired model by stopping too close to the obstacle. There
should have been a much larger buffer distance between the two objects. In addition, we had set out
to solve the cruise control problem with a dynamic obstacle in front of the robot. Due to the limited
access to hardware we had, however, we couldn’t implement this model. It’s also important to note
that we ran into unexpected challenges in the static obstacle model itself, so we were also constrained
on time had we even had to access another lead vehicle.

The challenges faced in the static obstacle model shined lots of light about the work that still needs to
be done to build this research into a viable product. Primarily, safety critical systems need to be made
starting at the hardware stage. Even our full sized vehicles on the road today aren’t programmed to
maintain a constant acceleration. This makes it hard to implement provably safe models. Thus, as
this projects demonstrates, certain abilities need to be implemented at the embedded systems layer in
order to better align the theoretical model with implementation details. In addition, more accurate
odometry and steering can also play a huge role during implementation.
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Lastly, we found that the discrepancy between the commanded controls and the true behavior can
play a big role in the amount of error we see. There may always be other external factors such as
friction or drag constantly leading to different dynamics than those commanded. For example, the
controller might command the vehicle to travel at 5 m/s, but due to the external factors it may only
reach a velocity of 4.9 m/s. We actually saw this in our vehicle because of of some parts on the rear
dragging on the floor. In this case, the ODE of the model does not perfectly capture all the physics
occurring in the real world. This is even more important for larger vehicles traveling outdoors in
windy and/or snowy conditions. Therefore, it is very important to look into runtime validation, i.e.,
to inject monitors, including control monitors, plant monitors, and fallback controls to our execution.
One approach to do so may be to leverage the the ModelPlex [5] feature of KeYmaera X to generate
a verified sandbox controller with such monitors [2]. This is definitely an area of work that needs to
be looked further into.

Nevertheless, the work done so far is promising. It suggests that with enough research, more complex
models can also be achievable. There are just a few milestones in hardware and modeling that need
to be solved first.

7 Deliverables

In summary, the deliverables for this project were:

• A model of the static obstacle system in KeYmaera X along with its proof
• The code implementing the above model
• A video demo of the above code running on a physical RC vehicle

8 Work Division

Equal work was performed by both project members.
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