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Objective 

● Implement a verified model (static POV system) on real hardware

● Fill the gap between theory & practice
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Motivation

● Cruise Control system is useful in practice:

○ A stepping-stone towards self-driving cars

○ Long straight highway trucking
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Summary of Deliverables 

● Formal model and proof of system in KeYmaera X 

● Implementation of model on an RC vehicle 

● Video and Live Demos
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Formal Model and Proof
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Assumptions
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● One-dimensional road

● Static Obstacle

● Constant accelerate with rates acc = {A, 0, -B}

● LIDAR sensor measures the obstacle distance

● ODOM sensor measures the car’s velocity

● Asynchronous read from the sensors & control



Formal Model 

Estimate Obstacle Distance

if (in_sensor_range(obstacle)):

sensed_dist = LIDAR_reading

else:

sensed_dist = sensor_range

Estimate Vehicle  Velocity

sensed_vel = ODOM_reading

Control Decision

if (safe(A)):

acc = A

elif (safe(0.0)):

acc = 0.0

else:

acc = -B

Dynamics

{ obstacle_dist’ = -v, v’ = acc, t’ = 1 & v ≥ 0 & t ≤ CTRL_T }

7/17



Timeline of Events
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Control must make a 
decision based on stale 

data about the velocity and 
obstacle distance
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ub_v = sensed_vel + A * ODOM_interval 

lb_obstacle_distance = 
sensed_distance - (ub_v * LIDAR_interval + 0.5 * A * LIDAR_interval^2)

ODOM_interval

LIDAR_interval



Safety Condition

Distance Traveled 
until next Control 

Decision

Stopping 
Distance

Buffer 
Distance

Distance to obstacle

We must have 
distance left over in 
order to accelerate 

safely
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Safety condition is based on sensed parameters, NOT the true values

def safe(a) : lb_obstacle_distance >= ub_v * CTRL_T + 0.5 * a * 
CTRL_T^2

  + (ub_v + a * CTRL_T) / (2 * B)
   + (BUFFER_DIST)

ub_v = sensed_vel + A * ODOM_interval 

lb_obstacle_distance = 
sensed_distance - (ub_v * LIDAR_interval + 0.5 * A * 
LIDAR_interval ^2)



Implementation
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RC Vehicle

Hardware:

● LIDAR sensor: 5.6m range,  10Hz
● ODOM sensor: 30Hz
● Max velocity: 6m/s

Software:

● ROS

● Subscribe to get sensor data

● Publish to command velocity
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Implementation Challenges
● Cannot command acceleration directly

○ Approximate acceleration control by velocity control
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V_command = V_old_commanded + A * ε



Implementation Challenges
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● Very noisy ODOM sensor: imprecise V_odom

○ Maintain an analytic velocity V_command

○ Use  max(V_command, V_odom) to upper bound the real velocity

● Steering linkage was also damaged

○ Manually adjust for bias with software



14/17

http://www.youtube.com/watch?v=3nwXbXQN-8c


Live Demo
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Challenges Ahead

● Move from static obstacle to dynamic obstacle  model (need another car)

○ Need to approximate POV’s velocity 

● Update hardware: ODOM sensor, direct acceleration control

● Incorporate feedback from sensors to lower the disparity between 

commanded controls and actual dynamics

● Model other dynamics such as drag and friction forces
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