
Verified Cruise
Control on RC
Vehicle

Shashank Ojha and Yufei Wang

1/17

Objective

● Implement a verified model (static POV system) on real hardware

● Fill the gap between theory & practice

2/17

Motivation

● Cruise Control system is useful in practice:

○ A stepping-stone towards self-driving cars

○ Long straight highway trucking

3/17

Summary of Deliverables

● Formal model and proof of system in KeYmaera X

● Implementation of model on an RC vehicle

● Video and Live Demos

4/17

Formal Model and Proof

5/17

Assumptions

6/17

● One-dimensional road

● Static Obstacle

● Constant accelerate with rates acc = {A, 0, -B}

● LIDAR sensor measures the obstacle distance

● ODOM sensor measures the car’s velocity

● Asynchronous read from the sensors & control

Formal Model

Estimate Obstacle Distance

if (in_sensor_range(obstacle)):

sensed_dist = LIDAR_reading

else:

sensed_dist = sensor_range

Estimate Vehicle Velocity

sensed_vel = ODOM_reading

Control Decision

if (safe(A)):

acc = A

elif (safe(0.0)):

acc = 0.0

else:

acc = -B

Dynamics

{ obstacle_dist’ = -v, v’ = acc, t’ = 1 & v ≥ 0 & t ≤ CTRL_T }

7/17

Timeline of Events

Control

Control

Velocity
Update

Velocity
Update

Obstacle
Distance
Update

Obstacle
Distance
Update

t

Control must make a
decision based on stale

data about the velocity and
obstacle distance

8/17

ub_v = sensed_vel + A * ODOM_interval

lb_obstacle_distance =
sensed_distance - (ub_v * LIDAR_interval + 0.5 * A * LIDAR_interval^2)

ODOM_interval

LIDAR_interval

Safety Condition

Distance Traveled
until next Control

Decision

Stopping
Distance

Buffer
Distance

Distance to obstacle

We must have
distance left over in
order to accelerate

safely

9/17

Safety condition is based on sensed parameters, NOT the true values

def safe(a) : lb_obstacle_distance >= ub_v * CTRL_T + 0.5 * a *
CTRL_T^2

 + (ub_v + a * CTRL_T) / (2 * B)
 + (BUFFER_DIST)

ub_v = sensed_vel + A * ODOM_interval

lb_obstacle_distance =
sensed_distance - (ub_v * LIDAR_interval + 0.5 * A *
LIDAR_interval ^2)

Implementation

10/17

RC Vehicle

Hardware:

● LIDAR sensor: 5.6m range, 10Hz
● ODOM sensor: 30Hz
● Max velocity: 6m/s

Software:

● ROS

● Subscribe to get sensor data

● Publish to command velocity

11/17

Implementation Challenges
● Cannot command acceleration directly

○ Approximate acceleration control by velocity control

12/17

V_command = V_old_commanded + A * ε

Implementation Challenges

13/17

● Very noisy ODOM sensor: imprecise V_odom

○ Maintain an analytic velocity V_command

○ Use max(V_command, V_odom) to upper bound the real velocity

● Steering linkage was also damaged

○ Manually adjust for bias with software

14/17

http://www.youtube.com/watch?v=3nwXbXQN-8c

Live Demo

15/17

Challenges Ahead

● Move from static obstacle to dynamic obstacle model (need another car)

○ Need to approximate POV’s velocity

● Update hardware: ODOM sensor, direct acceleration control

● Incorporate feedback from sensors to lower the disparity between

commanded controls and actual dynamics

● Model other dynamics such as drag and friction forces

16/17

Huge Thanks to

17/17

● André Platzer

● Katherine Cordwell

● Aman Khurana

