
Assignment 4: ODEs, Games, and Nondeterministic Assignments
15-424/15-624/15-824 Logical Foundations of Cyber-Physical Systems

TA: Katherine Cordwell (kcordwel@cs.cmu.edu)

Due Date: Friday, Oct 25th, 11:59PM (no late days), worth 60 points

1. Easy as π. In class, we have started looking at some more interesting differential
equations with curved motion. Use this new knowledge to create a hybrid program
which has no transcendental literals or trigonometric functions (e.g., π, e, sin, cos),
but at the end of execution has the exact value of π in a variable named pi. Does this
mean that we can now use π in hybrid programs? If so, should we? Explain.

2. Taylor series. When an ODE cannot be solved exactly, a useful technique is to use
a Taylor series approximation to get an upper or lower bound on the solution instead.
Prove the following formula using the proof rules and axioms of dL:

x = 1 ∧ t = 0→ [{x′ = x, t′ = 1 & x ≥ 1}]x ≥ 1 + t+
t2

2

Recall that the solution of the ODE x′ = x (with initial value x0 = 1) is x(t) = et, so
the above formula expresses a lower bound for et (for all t ≥ 0).

3. Exploring differential ghosts. For this question, we shall investigate an invariant
for the following system of differential equations:

αU
def≡ {x′ = x− y3, y′ = x3 + y}

For your convenience, αU is plotted in Figure 1. The origin is an equilibrium of αU ,
i.e., a solution that starts at the origin will stay at the origin for all time. It follows
that x4 + y4 = 0 is an invariant of the system.

(a) Try to prove the invariant for αU using differential invariants only, i.e., attempt
to prove the formula:

φU
def≡ x4 + y4 = 0→ [αU]x4 + y4 = 0

Highlight where your proof fails, and intuitively explain why it failed with refer-
ence to Figure 1.

(b) Differential invariants may have failed us, but fortunately φU can be proved using
differential ghosts. We have started the proof for you:

1© 2©
[]∧,∧L,∧Rpremise z(x4 + y4) = 0 ∧ z > 0 ` [αU , z

′ = ??]
(
z(x4 + y4) = 0 ∧ z > 0

)
dA x4 + y4 = 0 ` [αU]x4 + y4 = 0
→R ` x4 + y4 = 0→ [αU]x4 + y4 = 0

1

Figure 1: A plot of αU .

This derivation uses the differential auxiliaries (dA) rule which, as we saw in
class, is derived using differential ghosts. First, fill in premise and explain why
it is provable in real arithmetic.

(c) Now, fill in ?? and complete the proof of 1©, i.e., prove:

z(x4 + y4) = 0 ` [αU , z
′ =??]z(x4 + y4) = 0

with ?? appropriately filled in.

(d) Complete the proof from 2©, i.e., prove:

z > 0 ` [αU , z
′ =??]z > 0

with ?? appropriately filled in.

Hint: Use another differential ghost.

4. Ghostly proof rules. Recall the differential auxiliaries (dA) proof rule which can
be derived from the differential ghosts axiom:

(dA)
` F ↔ ∃y G G ` [{x′ = f(x), y′ = a(x) · y + b(x) &Q}]G

F ` [{x′ = f(x) &Q}]F

This proof rule says that we can add an extra ghost variable y that follows a new
differential equation y′ = a(x) · y + b(x) that is linear in y. The extra variable can be

2

used to rewrite the invariant F in a way that makes it more amenable to proof using
the other proof rules of dL.

In class, we saw how to use the following special instance of dA to prove interesting
properties in the case where F ≡ p > 0 is a strict inequality:

(dA>)
py2 > 0 ` [{x′ = f(x), y′ = a(x) · y + b(x) &Q}]py2 > 0

p > 0 ` [{x′ = f(x) &Q}]p > 0

Notice that we have omitted the left premise of dA in dA> because p > 0↔ ∃y py2 > 0
is a provable formula of real arithmetic.

(a) In the same style as dA>, write a proof rule called dA≥ that would (soundly)
allow you to prove properties of the form F ≡ p ≥ 0. Briefly argue why your
proposed proof rule is sound.

(b) To test out your proposed dA≥ proof rule, use it to prove the following property:

x ≥ 1 ` [{x′ = 2− 2x}]x ≥ 1

5. Games and winning. Answer these 3 questions for each of the following formulas:

• For which starting states does Angel have a winning strategy? (Recall that 〈α〉φ
means Angel has a strategy to win into φ for hybrid game α)

• Briefly describe Angel’s winning strategy from those starting states.

• (Only applies to games where Angel has a winning strategy in at least one state).
Say we let Demon pick one occurrence of one hybrid program operator and
flip it between being an Angel or Demon operator, e.g. replacing one α ∪ β with
α ∩ β or vice-versa. Can Demon can make it so that Angel never has a winning
strategy in any state?

(a) A warm-up: 〈(x := 0 ∩ x := 1)×〉x ≥ 0

(b) Ups and downs:

〈
(
(x := x+ 1 ∪ {x′ = v}d); (y := y − 1 ∪ {y′ = w}d)

)∗〉|x− y| ≤ 1

(c) A chase: 〈(w :=w ∩ w :=−w); (v := v ∪ v :=−v); {x′ = v}d; {y′ = w}〉x < y

Hint: Try to give an intuitive reading to the hybrid games before thinking of Angel’s
strategies.

6. Games and proofs. Consider the following formula:

x = 0 ∧ i = 0→ 〈(i := i+ 1; ({x′ = 1} ∩ {x′ = 2}))×〉(x ≥ 2 · i ∧ x ≤ 4 · i)

3

(a) First, give an intuitive explanation of what this formula says.

(b) Prove this formula using the axioms and proof rules of dGL.

Hint:

• All the Demon operators like α× and α ∩ β can be defined using the dual
operator αd. We strongly recommend you rewrite the above formula using
the dual operator to avoid silly mistakes.

• Make sure to double-check that you have the right player making the choices
at each point in the game.

• Most proof rules that we had for hybrid programs also work for hybrid games.
The exceptions are given in LFCPS Chapter 17.

• “Most proof rules” includes the induction rule for loops.

7. Games and invariants. Define:

α1 ≡ {x′ = v, v′ = a, t′ = 1 & t ≤ T}
α2 ≡ {x′ = v, v′ = −B, t′ = 1 & v ≥ 0}

Consider the following game:

α ≡ t := 0; a := ∗; ?(0 ≤ a ∧ a ≤ A);T := ∗d; ?(T > 0)d; (α1 ∪ α2)

The rules of the game can be read as follows:

• First, Angel picks an acceleration: a := ∗; ?(0 ≤ a ∧ a ≤ A)

• Next, Demon picks a positive timestep: T := ∗d; ?(T > 0)d

• Then, Angel then gets to either accelerate with acceleration a, or apply the brakes
at −B indefinitely until a stop.

Demon has a strategy to make the following formula valid, i.e. to win the game by
preventing Angel from reaching the station, even though Angel is in control of the loop
(α∗):

A > 0 ∧B > 0 ∧ v = 0 ∧ x < station→ [α∗]x < station

What is Demon’s invariant? Briefly explain why the invariant works.

∗
Rx = 0, i = 0 ` x ≥ 2i ∧ x ≤ 4i 1© 2©

loop x = 0, i = 0 ` [(i := i+ 1; (x′ = 1 ∩ x′ = 2)d)
∗
](x ≥ 2i ∧ x ≤ 4i)

〈d〉 x = 0, i = 0 ` 〈((i := i+ 1; (x′ = 1 ∩ x′ = 2)d)
∗
)d〉(x ≥ 2i ∧ x ≤ 4i)

x = 0, i = 0 ` 〈(i := i+ 1; (x′ = 1 ∩ x′ = 2))×〉(x ≥ 2i ∧ x ≤ 4i)

Since the loop invariant is the postcondition, the postcondition branch 2© closes by id
(proof omitted). For the remaining premise (〈∩〉 step can be expanded further):

4

x ≥ 2i, x ≤ 4i ` 〈x′ = 1〉(x ≥ 2(i+ 1) ∧ x ≤ 4(i+ 1)) x ≥ 2i, x ≤ 4i ` 〈x′ = 2〉(x ≥ 2(i+ 1) ∧ x ≤ 4(i+ 1))
〈∩〉 x ≥ 2i, x ≤ 4i ` 〈x′ = 1 ∩ x′ = 2〉(x ≥ 2(i+ 1) ∧ x ≤ 4(i+ 1))
〈;〉,〈:=〉 x ≥ 2i, x ≤ 4i ` 〈i := i+ 1; (x′ = 1 ∩ x′ = 2)〉(x ≥ 2i ∧ x ≤ 4i)

[d] x ≥ 2i, x ≤ 4i ` [i := i+ 1; (x′ = 1 ∩ x′ = 2)d](x ≥ 2i ∧ x ≤ 4i)

Final premises are similar, so just one is given here. Final step closes by QE in both
cases by evolving the ODE forwards for the appropriate length of time.

∗
Rx ≥ 2i, x ≤ 4i ` ∃t ≥ 0 (x+ t ≥ 2(i+ 1) ∧ x+ t ≤ 4(i+ 1))
〈′〉x ≥ 2i, x ≤ 4i ` 〈x′ = 1〉(x ≥ 2(i+ 1) ∧ x ≤ 4(i+ 1))

5

