Assignment 1: Introduction to Hybrid Programs 15-424/15-624/15-824 Logical Foundations of Cyber-Physical Systems TA: Katherine Cordwell (kcordwel@cs.cmu.edu)

Due Date: Thursday, September 12th, 11:59PM (no late days), worth 60 points

- 1. Terms, formulas, hybrid programs, oh my! For each of the following, determine if the expression is a (syntactically) well-formed dL term, a well-formed dL formula, a well-formed hybrid program, or none of the above (i.e., it is not well-formed). In the case that the expression is none of the above, give a short explanation why.
 - (a) $z := x^5 1$
 - (b) $?(x \cdot y \cdot z > \frac{3}{4})$
 - (c) x
 - (d) $42 + 6 \cdot 9$
 - (e) [g := 42]
 - (f) $z + 1 := x^5$
 - (g) $x := y + 1 \cup; x = y'$
- 2. **Operator precedence.** Adopting a set of operator precedence rules helps reduce the number of parentheses (or braces) needed when writing down an expression. However, it is *essential* that you are familiar with these rules to avoid hours of debugging/misunderstanding in your labs/theory assignments!

For convenience, here is a cheatsheet for the operator precedence rules in dL. Refer back here whenever you are not sure about how to parse a given expression.

- In the theory assignments and the textbook, parentheses (·) are used to disambiguate terms, formulas and programs. For clarity, we will always write braces around differential equations, like this: $\{x' = v, v' = a\}$ and $\{t' = 1 \& t \leq T\}$. In KeYmaera X (and in your lab assignments), parentheses (·) are used for terms and formulas, but braces $\{\cdot\}$ are used to group programs.
- Unary operators always bind stronger than binary operators. This **includes the first-order and modal quantifiers**. Examples:

$$- \forall x P \land Q \equiv (\forall x P) \land Q \text{ (similarly for } \exists x),$$

 $- [\alpha] P \wedge Q \equiv ([\alpha] P) \wedge Q \text{ (similarly for } \langle \alpha \rangle),$

$$- \neg P \land Q \equiv (\neg P) \land Q,$$

- $\alpha; \beta^* \equiv \alpha; (\beta^*).$
- The arithmetic operators have their usual precedence from mathematics.

- The binary logical connective \land binds stronger than \lor , which in turn binds stronger than $\rightarrow, \leftrightarrow$. To avoid confusion, there is no default binding precedence between \rightarrow and \leftrightarrow . Explicit disambiguating parentheses are required when these appear in sequence. Examples:
 - $P \land Q \lor R \equiv (P \land Q) \lor R$
 - $-P \rightarrow Q \leftrightarrow R$ is considered illegal, and must be disambiguated either as $(P \rightarrow Q) \leftrightarrow R$ or $P \rightarrow (Q \leftrightarrow R)$.
- Hybrid program operator ; binds tighter than \cup . Example:

 $-\alpha;\beta\cup\gamma\equiv\{\alpha;\beta\}\cup\gamma$

• All arithmetic operators $+, -, \cdot$ associate to the left. All logical and program operators associate to the right. In particular, implication (\rightarrow) associates to the right. Examples:

$$-a - b - c \equiv (a - b) - c$$

$$-P \rightarrow Q \rightarrow R \equiv P \rightarrow (Q \rightarrow R).$$

$$-\alpha; \beta; \gamma \equiv \alpha; (\beta; \gamma).$$

Although many of these operators satisfy an associativity law (e.g., a + (b + c) = (a+b)+c), it is important to know their default associativity because that is also how KeYmaera X parses expressions.

For this question, you will practice applying the above precedence rules. For each formula/program below, add parentheses/braces indicating the correct binding for the connectives.

(a) $[y := 5]x = 3 \lor x = 5 \to x + 1 = 6$

(b)
$$\exists x \, x = 5 \rightarrow x + 1 = 6 \rightarrow x = 1$$

(c)
$$[x := 5; y := y + x \cup \{x' = v, v' = a \& v = -1 \lor v = 1 \land v = 2\}]x > 0$$

3. Evolve nondeterministically! This question will test your understanding of nondeterministic evolution.

$$\beta \stackrel{\text{def}}{\equiv} x := x_0; v := v_0; t := 0; \{ x' = v, v' = a, t' = 1 \& v \ge 0 \}; ?v = 0$$

Intuitively, hybrid program β first sets the initial values of x, v to x_0, v_0 , and the initial value of the clock variable t to 0. It then runs the differential equations (where a is a constant acceleration) subject to the evolution domain constraint $v \ge 0$. Finally, it tests that v = 0 at the end of the run.

(a) Assume that $a < 0 \land v_0 \ge 0$. At the end of a run of hybrid program β , what is the value of t as a function of x_0, v_0 , and a?

Let us modify our program a little by removing the test:

$$\gamma \stackrel{\text{def}}{\equiv} x := x_0; v := v_0; t := 0; \{ x' = v, v' = a, t' = 1 \& v \ge 0 \}$$

- (b) Again assuming that $a < 0 \land v_0 \ge 0$, what are the possible values of v at the end of a run of γ ? What about the possible values of t?
- (c) Suppose we assume instead that $a < 0 \land v_0 \leq 0$ (v_0 is less than or equal to zero). What are the possible values of v and t at the end of a run of β ?
- (d) Let us consider some dL formulas that use the above programs β and γ . For each of the following formulas, state whether the formula is valid and give a brief explanation why. (The antecedents correspond to the various sign assumptions on *a* and v_0 from the previous parts of this question.)

i. $a < 0 \land v_0 \ge 0 \rightarrow [\beta]v = 0$ ii. $a < 0 \land v_0 < 0 \rightarrow [\beta]v = 0$ iii. $a < 0 \land v_0 < 0 \rightarrow [\beta]v = 0$ iv. $a < 0 \land v_0 \ge 0 \rightarrow [\gamma]v = 0$ v. $a < 0 \land v_0 \ge 0 \rightarrow [\gamma]v = 0$ v. $a < 0 \land v_0 \ge 0 \rightarrow [\gamma]v = 0$

Hint: Carefully review the semantics of differential equations with evolution domain constraints $\{x' = f(x) \& Q\}$.

- 4. Search for the truth! Determine whether each of the following formulas is valid/ satisfiable/unsatisfiable. If the formula is satisfiable, describe the set of states in which it is satisfiable. If it is unsatisfiable, briefly explain why.
 - (a) $\forall x \langle \{x' = c\} \rangle x > 0$
 - (b) $[?x \ge 0; x := -x]x < 0$
 - (c) $\langle \{z' = -c \& z > 0\}; \{z' = c \& z < 0\} \rangle z = k$
- 5. Find a program!
 - (a) Write down a program α that makes the following formula satisfiable, but not valid: $[\alpha]z > 5$
 - (b) Write down a program α that makes the formula $\forall x \forall y \langle \alpha \rangle x = y$ valid. The program may mention x but not y.
- 6. Define an operator! As we've seen in class, the primitive operators of hybrid programs can be used to define more complex operators. Define an *n*-ary nondeterministic switch statement with a fallback program β . This statement should run program α_i if formula P_i is true, for $1 \le i \le n$. If multiple P_i 's are true, $1 \le i \le n$, then it chooses

nondeterministically between the corresponding α_i 's. If none of the P_i 's is true, then it runs β . In pseudocode, this could be written as:

```
switch {

case P_1 : \alpha_1

case P_2 : \alpha_2

:

case P_n : \alpha_n

default : \beta

}
```