
Assignment 1: Introduction to Hybrid Programs
15-424/15-624/15-824 Logical Foundations of Cyber-Physical Systems

TA: Katherine Cordwell (kcordwel@cs.cmu.edu)

Due Date: Thursday, September 12th, 11:59PM (no late days), worth 60 points

1. Terms, formulas, hybrid programs, oh my! For each of the following, determine
if the expression is a (syntactically) well-formed dL term, a well-formed dL formula, a
well-formed hybrid program, or none of the above (i.e., it is not well-formed). In the
case that the expression is none of the above, give a short explanation why.

(a) z := x5 − 1

(b) ?(x · y · z > 3
4
)

(c) x

(d) 42 + 6 · 9
(e) [g := 42]

(f) z + 1 := x5

(g) x := y + 1 ∪; x = y′

2. Operator precedence. Adopting a set of operator precedence rules helps reduce the
number of parentheses (or braces) needed when writing down an expression. However,
it is essential that you are familiar with these rules to avoid hours of debugging/
misunderstanding in your labs/theory assignments!

For convenience, here is a cheatsheet for the operator precedence rules in dL. Refer
back here whenever you are not sure about how to parse a given expression.

• In the theory assignments and the textbook, parentheses (·) are used to disam-
biguate terms, formulas and programs. For clarity, we will always write braces
around differential equations, like this: {x′ = v, v′ = a} and {t′ = 1 & t ≤ T}.
In KeYmaera X (and in your lab assignments), parentheses (·) are used for terms
and formulas, but braces {·} are used to group programs.

• Unary operators always bind stronger than binary operators. This includes the
first-order and modal quantifiers. Examples:

– ∀xP ∧Q ≡ (∀xP ) ∧Q (similarly for ∃x ),

– [α]P ∧Q ≡ ([α]P ) ∧Q (similarly for 〈α〉),
– ¬P ∧Q ≡ (¬P ) ∧Q,

– α; β∗ ≡ α; (β∗).

• The arithmetic operators have their usual precedence from mathematics.

1



• The binary logical connective ∧ binds stronger than ∨, which in turn binds
stronger than →,↔. To avoid confusion, there is no default binding precedence
between → and ↔. Explicit disambiguating parentheses are required when these
appear in sequence. Examples:

– P ∧Q ∨R ≡ (P ∧Q) ∨R
– P → Q ↔ R is considered illegal, and must be disambiguated either as

(P → Q)↔ R or P → (Q↔ R).

• Hybrid program operator ; binds tighter than ∪. Example:

– α; β ∪ γ ≡ {α; β} ∪ γ
• All arithmetic operators +,−, · associate to the left. All logical and program

operators associate to the right. In particular, implication (→) associates to the
right. Examples:

– a− b− c ≡ (a− b)− c
– P → Q→ R ≡ P → (Q→ R).

– α; β; γ ≡ α; (β; γ).

Although many of these operators satisfy an associativity law (e.g., a+ (b+ c) =
(a+ b)+ c), it is important to know their default associativity because that is also
how KeYmaera X parses expressions.

For this question, you will practice applying the above precedence rules. For each
formula/program below, add parentheses/braces indicating the correct binding for the
connectives.

(a) [y := 5]x = 3 ∨ x = 5→ x+ 1 = 6

(b) ∃x x = 5→ x+ 1 = 6→ x = 1

(c) [x := 5; y := y + x ∪ {x′ = v, v′ = a& v = −1 ∨ v = 1 ∧ v = 2}]x > 0

3. Evolve nondeterministically! This question will test your understanding of nonde-
terministic evolution.

β
def≡ x := x0; v := v0; t := 0; {x′ = v, v′ = a, t′ = 1 & v ≥ 0}; ?v = 0

Intuitively, hybrid program β first sets the initial values of x, v to x0, v0, and the initial
value of the clock variable t to 0. It then runs the differential equations (where a is
a constant acceleration) subject to the evolution domain constraint v ≥ 0. Finally, it
tests that v = 0 at the end of the run.

(a) Assume that a < 0 ∧ v0 ≥ 0. At the end of a run of hybrid program β, what is
the value of t as a function of x0, v0, and a?

2



Let us modify our program a little by removing the test:

γ
def≡ x := x0; v := v0; t := 0; {x′ = v, v′ = a, t′ = 1 & v ≥ 0}

(b) Again assuming that a < 0 ∧ v0 ≥ 0, what are the possible values of v at the end
of a run of γ? What about the possible values of t?

(c) Suppose we assume instead that a < 0∧ v0 ≤ 0 (v0 is less than or equal to zero).
What are the possible values of v and t at the end of a run of β?

(d) Let us consider some dL formulas that use the above programs β and γ. For
each of the following formulas, state whether the formula is valid and give a brief
explanation why. (The antecedents correspond to the various sign assumptions
on a and v0 from the previous parts of this question.)

i. a < 0 ∧ v0 ≥ 0→ [β]v = 0

ii. a < 0 ∧ v0 < 0→ [β]v = 0

iii. a < 0 ∧ v0 < 0→ 〈β〉v = 0

iv. a < 0 ∧ v0 ≥ 0→ [γ]v = 0

v. a < 0 ∧ v0 ≥ 0→ 〈γ〉v = 0

Hint: Carefully review the semantics of differential equations with evolution domain
constraints {x′ = f(x) &Q}.

4. Search for the truth! Determine whether each of the following formulas is valid/
satisfiable/unsatisfiable. If the formula is satisfiable, describe the set of states in which
it is satisfiable. If it is unsatisfiable, briefly explain why.

(a) ∀x 〈{x′ = c}〉x > 0

(b) [?x ≥ 0;x :=−x]x < 0

(c) 〈{z′ = −c& z > 0}; {z′ = c& z < 0}〉z = k

5. Find a program!

(a) Write down a program α that makes the following formula satisfiable, but not
valid: [α]z > 5

(b) Write down a program α that makes the formula ∀x ∀y 〈α〉x = y valid. The
program may mention x but not y.

6. Define an operator! As we’ve seen in class, the primitive operators of hybrid pro-
grams can be used to define more complex operators. Define an n-ary nondeterministic
switch statement with a fallback program β. This statement should run program αi

if formula Pi is true, for 1≤i≤n. If multiple Pi’s are true, 1≤i≤n, then it chooses

3



nondeterministically between the corresponding αi’s. If none of the Pi’s is true, then
it runs β. In pseudocode, this could be written as:

switch {
case P1 : α1

case P2 : α2

...

case Pn : αn

default : β

}

4


